Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T19:46:29.185Z Has data issue: false hasContentIssue false

Precision timing requirements suggest wider brain connections, not more restricted ones

Published online by Cambridge University Press:  04 February 2010

William H. Calvin
Affiliation:
Department of Neurological Surgery, University of Washington, Seattle Wash. 98195

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P. (1982a) The generative and regulatory role of development in evolution. In: Environmental adaptation and evolution, ed. Mossakowski, D. & Roth, G.. Stuttgart: Gustav Fisher. [PA]Google Scholar
Alberch, P. (1982b) Developmental constraints in evolutionary processes. In: Evolution and development, ed. Bonner, J. T.. Dahlem Conference Report no. 20. [PA]Google Scholar
Allman, J. M. & Kaas, J. H. (1971) A representation of the visual field in the posterior third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Research 31: 85105. [JHK]Google Scholar
Ariëns Kappers, C. U., Huber, G. C. & Crosby, E. C. (1960) The comparative anatomy of the nervous system of vertebrates, including man. Hafner; original 1936. [DF]Google Scholar
Armstrong, E. & Falk, D., eds. (1982) Primate brain evolution: Methods and concepts. Plenum Publishers. [DF]Google Scholar
Bell, C. (1811) Idea of a new anatomy of the brain submitted for the observations of my friends. London: Strahan and Preston. [ER-M]Google Scholar
Bergmann, G. (1958) Philosophy of science. University of Wisconsin Press. [CBGC]Google Scholar
Berkley, K. J. (1975) Different targets of different neurons in nucleus gracilis of the cat. Journal of Comparative Neurology 163: 285304. [rSOEE]Google Scholar
Bishop, G. H. (1959) The relation between nerve fiber size and sensory modality: Phylogenetic implications of the afferent innervation of cortex. Journal of Nervous and Mental Disease 128: 89114. [ITD, rSOEE]Google Scholar
Bock, W. J. (1981) Functional-adaptive analysis in evolutionary classification. American Zoologist 21: 520. [LSD]Google Scholar
Bohn, R. C. & Stelzner, D. J. (1979) Aberrant retino-retinal pathway during early stages of regeneration in adult Rana pipiens. Brain Research 160: 139–44. [JHK]Google Scholar
Brickner, R. M. (1929) A description and interpretation of certain parts of the teleostean midbrain and thalamus. Journal of Comparative Neurology 47: 225–82. [HI]Google Scholar
Bunt, S. M., Lund, R. D. & Land, P. W. (1983) Prenatal development of the optic projection in albino and hooded rats. Developmental Brain Research 6: 149–68. [PGHC]Google Scholar
Butler, A. B. (1974) Retinal projections in the night lizard, Xantusia vigilis Baird. Brain Research 80: 116–21. [taSOEE]Google Scholar
Butler, A. B. & Ebbesson, S. O. E. (1975) A Golgi study of the optic tectum of the Tegu lizard, Tupinambis nigropunctatus. Journal of Morphology 146: 215–28. [taSOEE]Google Scholar
Butler, A. B. & Northcutt, R. G. (1978) New thalamic visual nuclei in lizards. Brain Research 149: 469–76. [rSOEE, WW]Google Scholar
Calvin, W. H. (1983a) The throwing madonna: Essays on the brain. McGraw-Hill. [WHC]Google Scholar
Calvin, W. H. (1983b) A stone's throw and its launch window: Timing precision and its implications for language and hominid brains. Journal of Theoretical Biology 104: 121–35. [WHC]Google Scholar
Calvin, W. H. (1984) Why bigger brains? Hominid throwing and the Law of Large Numbers (submitted for publication). [WHC]Google Scholar
Campbell, C. B. G. (1972) Evolutionary patterns in mammalian diencephalic visual nuclei and their fiber connections. Brain, Behavior and Evolution 6: 218–36. [rSOEE]Google Scholar
Campbell, C. B. G., Jane, J. A. & Yashon, D. (1967) The retinal projections of the tree shrew and hedgehog. Brain Research 5: 406–18. [taSOEE]Google Scholar
Campbell, N. (1952) What is science? Dover. [CBG]Google Scholar
Carstens, E. & Trevino, D. L. (1978a) Anatomical and physiologicalproperties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat's spinal cord. Journal of Comparative Neurology 182: 157–84. [WDW]Google Scholar
Carstens, E. & Trevino, D. L. (1978b) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 182: 151–66. [WDW]Google Scholar
Cassirer, E. (1955) The philosophy of symbolic forms. Volume 1: Language. Yale University Press. [JJK]Google Scholar
Cavalcante, L. A. & Rocha-Miranda, C. E. (1978) Postnatal development of retinogeniculate, retinopretectal and retinotectal projections in the opossum. Brain Research 146: 231–48. [taSOEE]Google Scholar
Chow, K. L., Baumbach, H. D. & Lawson, R. (1981) Callosal projections of the striate cortex in the neonatal rabbit. Experimental Brain Research 42: 122–26. [GMI]Google Scholar
Chung, S.-H & Cooke, J. (1975) Polarity of structure and of ordered nerve connections in the developing amphibian brain. Nature 258: 126–32. [JHK]Google Scholar
Clairambault, P. (1976) Development of the prosencephalon. In: Frog neurobiology, ed. Llinas, R. & Precht, W.. Springer-Verlag. [JPE]Google Scholar
Clarke, P. G. H. (1981) Chance, repetition and error in the development of normal nervous systems. Perspectives in Biology and Medicine 25: 219. [tarSOEE]Google Scholar
Clarke, P. G. H. & Cowan, W. M. (1976) The development of the isthmo-optic tract in the chick, with special reference to the occurrence and correction of developmental errors in the location and connections of isthmo-optic neurons. Journal of Comparative Neurology 167: 143–64. [PGHC, taSOEE]Google Scholar
Clarke, S. & Innocenti, G. M. (1983) Bilateral transitory projections from auditory to visual areas in kittens. Neuroscience Abstracts 9: 376. [rSOEE, GMI]Google Scholar
Coggeshall, R. E. (1980) Law of separation of functions of the spinal roots. Physiological Review 60: 716–55. [ER-M]Google Scholar
Cohen, D. H., Duff, T. A. & Ebbesson, S. O. E. (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182: 492–94. [tarSOEE]Google Scholar
Conrad, C. D. & Stumpf, W. E. (1975) Direct visual input to the limbic system: Crossed retinal projections to the nucleus anterodorsalis thalami in the tree shrew. Experimental Brain Research 23: 141–49. [rSOEE]CrossRefGoogle Scholar
Constantine-Paton, M. (1981) Induced ocular-dominance zones in tectal cortex. In: The Organization of cerebral cortex, ed. Schmitt, F. O., Worden, F. G., Adelman, G., & Dennis, S. G., MIT Press. [JHK]Google Scholar
Constantine-Paton, M. & Capranica, R. R. (1975) Central projection of optictract from translocated eyes in the leopard frog (Rana pipiens). Science 189: 480–82. [rSOEE, JHK]CrossRefGoogle Scholar
Cowan, W. M. (1973) Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Development and aging in the nervous system, ed. Rockstein, M.. Academic Press. [taSOEE]Google Scholar
Cowan, W. M., Adamson, L. & Powell, T. P. S. (1961) An experimental study of the avian visual system. Journal of Anatomy 95: 545–63. ]taSOEE]Google Scholar
Cowan, W. M. & Clarke, P. G. H. (1976) The development of the isthmo-optic nucleus. Brain, Behavior and Evolution 13: 345–75. [taSOEE]Google Scholar
Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L. & Woolsey, T. A. (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Research 37: 2151. [taSOEE]Google Scholar
Coxeter, H. S. M. (1961) Introduction to geometry. John Wiley. [JJK]Google Scholar
Crapon de Caprona, M.-D. & Fritzsch, B. (1983) The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase. Developmental Brain Research. In press. [BF]Google Scholar
Cunningham, T. J. (1976) Early eye removal produces excessive bilateral branching in the rat: Application of cobalt filling method. Science 194: 857–59. [PDM]Google Scholar
Cusick, C. G. & Kaas, J. H. (1982) Retinal projections in adult and newborngray squirrels. Developmental Brain Research 4: 275–85. [taSOEE]Google Scholar
Dacey, D. M. & Ulinski, P. S. (1983) Nucleus rotundus in a snake (Thamnophis sirtalis). Journal of Comparative Neurology. In press. [CBGC]Google Scholar
D'Amato, C. J. & Hicks, S. P. (1978) Normal development and post-traumatic plasticity of corticospinal neurons in rats. Experimental Neurology 60: 557–69. [taSOEE]Google Scholar
Devor, M. (1976) Neuroplasticity in the rearrangement of olfactory tract fibers after neonatal transection in hamsters. Journal of Comparative Neurology 166: 3148. [GES]Google Scholar
Diamond, I. T. & Hall, W. C. (1969) Evolution of neocortex. Science 164: 251–62. [ITD, tarSOEE, GES]Google Scholar
Diamond, M. C, Krech, D. & Rosenzweig, M. R. (1964) The effects ofenriched environment on the histology of the rat cerebral cortex. Journal of Comparative Neurology 123: 111–19. [DF]Google Scholar
Distel, H. & Hollander, H. (1980) Autoradiographic tracing of developing subcortical projections of the occipital region in fetal rabbits. Journal of Comparative Neurology 192: 505–18. [taSOEE, GMI]Google Scholar
Dobzhansky, T. (1951) Genetics and the origin of species, 3rd ed.Columbia University Press. [RGN]Google Scholar
Donoghue, J. P., Kerman, K. L. & Ebner, F. F. (1979) Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. Journal of Comparative Neurology 183: 647–64. [taSOEE, JHK]Google Scholar
DuBrul, E. L. (1971) On the phylogeny and ontogeny of the human larynx: A morphological and functional study. Evolution 25: 739–40. [rSOEE]Google Scholar
Ebbesson, S. O. E. (1967) Ascending axon degeneration following hemisection of the spinal cord in the Tegu lizard, Tupinambis nigropunctatus. Brain Research 5: 178206. [tarSOEE]Google Scholar
Ebbesson, S. O. E. (1968) Retinal projections in two teleost fishes, Opsanus tau and Gymnothorax funebris: An experimental study with silver impregnation methods, Brain. Behavior and Evolution 1: 134–54. [taSOEE]Google Scholar
Ebbesson, S. O. E. (1969) Brainstem afferents from the spinal cord in a sample of reptilian and amphibian species. Annals of the New York Academy of Sciences 167: 80101. [tarSOEE]Google Scholar
Ebbesson, S. O. E. (1970a) Selective silver impregnation of degenerating axoplasm in poikilothermic vertebrates. In: Contemporary research methods in neuroanatomy, ed. Nauta, J. H. W. & Ebbesson, S. O. E.. Springer-Verlag. [tarSOEE]Google Scholar
Ebbesson, S. O. E. (1970b) On the organization of central visual pathways in vertebrates. Brain, Behavior and Evolution 3: 178–94. [taSOEE]Google Scholar
Ebbesson, S. O. E. (1972a) New insights into the organization of the shark brain. Comparative Biochemistry and Physiology 42A: 121–29. [tarSOEE]Google Scholar
Ebbesson, S. O. E. (1972b) A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain, Behavior and Evolution 6: 7591. [tarSOEE, TEF]Google Scholar
Ebbesson, S. O. E. (1976a) Morphology of the spinal cord. In: Frog neurobiology, ed. Llinas, R. & Precht, W.. Springer-Verlag. [taSOEE]Google Scholar
Ebbesson, S. O. E. (1976b) Organization of the ranid spinal cord. In: Frog neurobiology. ed. Llinas, R. & Precht, W.. Springer-Verlag. [rSOEE]Google Scholar
Ebbesson, S. O. E. (1978) Somatosensory pathways in lizards: The identification of the medial lemniscus and related structures. In: Lizard neurology and behavior, ed. MacLean, P. D. & Greenberg, N.. DHEW Publication No. (ADM) 77–491. [tarSOEE]Google Scholar
Ebbesson, S. O. E. (1980a) A visual thalamotelencephalic pathway in a teleost, Holocentrusrufus. Cell and Tissue Research 213: 505–8. [taSOEE]Google Scholar
Ebbesson, S. O. E. (1980b) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213: 179212. [THB, CBGC, tarSOEE, GMI, RGN]Google Scholar
Ebbesson, S. O. E. (1980c) On the organization of the telencephalon in elasmobranchs. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E.. Plenum Press. [tarSOEE, PDM]Google Scholar
Ebbesson, S. O. E. (1981) Interspecific variability in brain organization and its possible relation to evolutionary mechanisms. In: Brain mechanisms of behavior in lower vertebrates, ed. Laming, P.. Cambridge University Press. [tarSOEE] (in preparation) Brain development and parcellation. [rSOEE]Google Scholar
Ebbesson, S. O. E. & Campbell, C. B. G. (1973) On the organization of cerebellar efferent pathways in the nurse shark, Ginglymostoma cirratum. Journal of Comparative Neurology 152: 233–55. [tarSOEE]Google Scholar
Ebbesson, S. O. E. & Goodman, D. C. (1981) The organization of ascending spinal projections in Caiman crocodilus. Cell and Tissue Research 215: 383–95. [tarSOEE]Google Scholar
Ebbesson, S. O. E. & Heimer, L. (1968) Olfactory bulb projections in two species of sharks (Galcocerdo cuvieri and Cinglymostoma cirratum). Anatomical Record 160: 469. [rSOEE]Google Scholar
Ebbesson, S. O. E. & Heimer, L. (1970) Projections of the olfactory tract fibers in the nurse shark, Ginglymostoma cirratum. Brain Research 17: 4755. [taSOEE, TEF]Google Scholar
Ebbesson, S. O. E. & Hodde, K. (1981) Ascending spinal systems in the nurse shark, Ginglymostoma cirratum. Cell and Tissue Research 216: 313–31. [tarSOEE]Google Scholar
Ebbesson, S. O. E. & Ito, H. (1980) Bilateral retinal projections in the black piranha, Serrasalmus niger. Cell and Tissue Research 213: 483–95. [taSOEE]Google Scholar
Ebbesson, S. O. E., Jane, J. A. & Schroeder, D. M. (1972) A general overview of major interspecific variations in thalamic organization. Brain, Behjvior and Evolution 6: 92130. [tarSOEE, WW]Google Scholar
Ebbesson, S. O. E. & Karten, H. J. (1981) Retinal projections in the Tegulizard, Tupinambis nigropunctatus. Cell and Tissue Research 215: 591606. [taSOEE]Google Scholar
Ebbesson, S. O. E. & Meyer, D. L. (1981). Efferents to the retina have multiple sources in teleost fish. Science 214: 924–26. [PGHC, taSOEE]Google Scholar
Ebbesson, S. O. E., Meyer, D. & Scheich, H. (1981) The olfactory system of the black piranha, Serrasalmus nattereri. Cell and Tissue Research 216: 167–80. [taSOEE]Google Scholar
Ebbesson, S. O. E. & Northcutt, R. G. (1975) Neurology of anamniotic vertebrates. In: Evolution of Brain and Behavior, ed. Masterton, B. et al. Lawrence Erlbaum Associates. [taSOEE]Google Scholar
Ebbesson, S. O. E. & Ramsey, J. S. (1968) The optic tracts in two species of sharks (Galcocerdo cuvieri and Ginglymostoma cirratum). Brain Research 8: 3653. [rSOEE]Google Scholar
Ebbesson, S. O. E. & Schroeder, D. M. (1971) Connections of the nurse shark's telencephalon. Science 173: 254–56. [tarSOEE]Google Scholar
Ebbesson, S. O. E., Schroeder, D. M. & Butler, A. B. (1975) The Golgi method and the revival of comparative neurology. In: Golgi centennial symposium, ed. Santini, M.. Raven Press. [taSOEE]Google Scholar
Ebner, F. F. (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Annals of the New York Academyof Sciences 167: 241–57. [taSOEE]Google Scholar
Ebner, F. F. & Myers, R. E. (1965) Distribution of the corpus callosum and anterior commissure in cat and raccoon. Journal of Comparative Neurology 124: 353–66. [taSOEE]Google Scholar
Eccles, J. C., Ito, M. & Szentágothai, J. (1967) The cerebellum as a neuronal machine. Springer-Verlag. [JS]Google Scholar
Eichler, V. B. & Porter, R. A. (1981) Rohon-Beard cells in frog development: A study of temporal and spatial changes in a transient cell population. Journal of Comparative Neurology 203: 121–30. [BF]Google Scholar
Eldredge, N. & Cracraft, J. (1980) Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. Columbia University Press. [MRB]Google Scholar
Ewert, J.-P. (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum Press. [J-PE]Google Scholar
Ewert, J.-P., Capranica, R. R. & Ingle, D. J. (1983) Advances in vertebrate neuroethology. NATO Advanced Study Institute Series A: Life Sciences Vol. 56. Plenum Press. [LSD]Google Scholar
Falk, D. (1978) External neuroanatomy of Old World monkeys (Cercopithecoidea). Contributions to Primatology 15: 195. [DF]Google Scholar
Falk, D. (1980a) A reanalysis of the South African australopithecine natural endocasts. American Journal of Physical Anthropology 53: 525–39. [DF]Google Scholar
Falk, D. (1980b) Comparative study of the endocranial casts of New and Old World monkeys. In: Biology of the New World monkeys and continental drift, ed. Ciochon, R. L. & Chiarelli, B.. Plenum Publishers. [DF]Google Scholar
Falk, D. (1980c) Hominid brain evolution: The approach from paleoneurology. Yearbook of Physical Anthropology 23: 93107. [DF]Google Scholar
Falk, D. (1982a) A reconsideration of the endocast of Proconsul africanus. In: New interpretations of ape and human ancestry, ed. Ciochon, R. L. & Corruccini, R.. Plenum Publishers. [DF]Google Scholar
Falk, D. (1982b) Mapping fossil endocasts. In: Primate brain evolution: Methods and concepts, ed. Armstrong, E. & Falk, D.. Plenum Publishers. [DF]Google Scholar
Falk, D. (1983) Cerebral cortices of East African early hominids. Science 221: 1072–74. [DF]Google Scholar
Feng, J. Z. & Brugge J. F. (1983) Postnatal development of auditory callosal connections in the kitten. Journal of Comparative Neurology 214: 416–26. [GMI]Google Scholar
Ferguson, J. U, Mulvanny, P. J. & Brauth, S. E. (1978) Distribution of neurons projecting to the retina of Caiman crocodilus. Brain, Behavior and Evolution 15: 294306. [taSOEE]Google Scholar
Fiebig, E., Ebbesson, S. O. E. & Meyer, D. L. (1982) Afferent connections of the optic tectum of the piranha (Serrasalmus nattereri). Cell and Tissue Research 231: 5572. [taSOEE]Google Scholar
Finger, T. E. (1974) The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosus. Journal of Comparative Neurology 161: 125–42. [taSOEE]Google Scholar
Finger, T. E. (1978) Gustatory pathways in the bullhead catfish. II. Facial lobe connections. Journal of Comparative Neurology 180: 591706. [HI]Google Scholar
Finger, T. E. (1980) Nonolfactory sensory pathways to the telencephalon in a teleost fish. Science 210: 671–73. [rSOEE, HI]Google Scholar
Finger, T. E. (1981) Fish that taste with their feet: Spinal sensory pathways in the searobin, Prionotus carolinus. Biological Bulletin 161: 343. [TEF]Google Scholar
Finger, T. E. & Bullock, T. H. (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: Evoked potential evidence. Journal of Neurobiology 13: 3947. [rSOEE, HI]Google Scholar
Fink, R. P. & Heimer, L. (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Research 4: 369–74. [taSOEE]Google Scholar
Finkenstädt, T. & Ewert, J.-P (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. Journal of Comparative Physiology 153: 8598. [J-PE]Google Scholar
Finkenstädt, T. & Ewert, J.-P (1983b) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. Journal of Comparative Physiology 153: 99110. [J-PE]Google Scholar
Finkenstädt, T., Ebbesson, S. O. E., & Ewert, J.-P. (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell and Tissue Research 234: 3955. [rSOEE, J-PE]Google Scholar
Finlay, B. L. & Slattery, K. (1983) Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219: 1349–51. [taSOEE]Google Scholar
Fite, K. V. & Scalia, F. (1976) Central visual pathways in the frog. In: The amphibian visual system, ed. Fite, K. V.. Academic Press. [WW]Google Scholar
Florence, S. L. & Casagrande, V. A. (1978) A note on the evolution of ocular dominance columns in primates. Investigative Ophthalmology and Visual Science, Suppl. (ARVO) Abstr. 291–92. [taSOEE]Google Scholar
Fritzsch, B. (1980). Retinal projections in European Salamandridae. Cell and Tissue Research 213: 325–41. [taSOEE]Google Scholar
Fritzsch, B. & Himstedt, W. (1981) Pretectal neurons project to the salamander retina. Neuroscience Letters 24: 1317. [PGHC]Google Scholar
Fritzsch, B. & Wahnschaffe, U. (1983) The electroreceptive ampullary organs of urodeles. Cell and Tissue Research 229: 483503. [BF]Google Scholar
Fritzsch, B., Will, U. & Nikundiwe, A. (1983) The area octavolateralis of amphibians: A reinterpretation. In: Functional morphology of vertebrates, ed. Duncker, H.-R. & Fleischer, D. G.. Fischer-Verlag, in press. [BF]Google Scholar
Frost, D. O. (1981) Orderly anomalous retinal projections to the medial genieulate, ventrobasal, and lateral posterior nuclei of the hamster. Journal of Comparative Neurology 203: 227–56. [GES]Google Scholar
Fujisawa, H., Tani, N., Watanabe, K. & Ibata, Y. (1982) Branching of regenerating retinal axons and preferential selection of appropriate branches for specific neuronal connection in the newt. Developmental Biology 90: 4357. [GES]Google Scholar
Futuyma, D. J. (1979) Evolutionary biology. Sinauer Associates. [RGN]Google Scholar
Garey, L. J. & Saini, K. D. (1981) Golgi studies of the normal development of neurons in the lateral genieulate nucleus of the monkey. Experimental Brain Research 44: 117–28. [taSOEE]Google Scholar
Giesler, G. J., Menetrey, D. & Basbaum, A. I. (1979) Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. Journal of Comparative Neurology 184: 107–26. [WDW]Google Scholar
Giesler, G. J., Yezierski, R. P., Gerhart, K. D. & Willis, W. D. (1981) Spinothalamic tract neurons that project to medial and/or lateral thalamic nucleus: Evidence for a physiologically novel population of spinal cord neurons. Journal of Neurophysiology 46: 1285–308. [WDW]Google Scholar
Giorgi, P. P. & Van der Loos, H. (1978) Axons from eyes grafted in Xenopus can grow into the spinal cord and reach the optic tectum. Nature 275: 746–48. [BF]Google Scholar
Glendenning, K. K., Kofron, E. A., Diamond, I. T. (1976) Laminar organization of projections of the lateral genieulate nucleus of the striate cortex in Galago. Brain Research 105: 538–46. [taSOEE]Google Scholar
Goldby, F. & Robinson, L. R. (1962) The central connections of dorsal spinal nerve roots and the ascending tracts in the spinal cord of Lacerta viridis. Journal of Anatomy (London) 96: 153–70. [taSOEE]Google Scholar
Goodrich, E. S. (1930) Studies on the structure and development of vertebrates. Macmillan. [JZY]Google Scholar
Goodwin, B. (1982) Development and evolution. Journal of Theoretical Biology 97: 4355. [PA]Google Scholar
Gould, S. J. (1977) Ontogeny and phylogeny. Belknap Press of Harvard University Press. [PA, WHC, rSOEE, RGN]Google Scholar
Graeber, R. C. & Ebbesson, S. O. E. (1972) Retinal projections in the lemon shark (Negaprion brevirostris). Brain, Behavior and Evolution 5: 460–77. [rSOEE]Google Scholar
Graeber, R. C, Ebbesson, S.O. E. & Jane, J. A. (1973) Visual discrimination in sharks without optic tectum. Science 180: 413–15. [taSOEE]Google Scholar
Graeber, R. C, Schroeder, D. M., Jane, J. A. & Ebbesson, S. O. E. (1978) Visual discriminations following parietal ablations in the nurse shark, Ginglymostoma cirratum. Journal of Comparative Neurology 180: 325–44. [taSOEE]CrossRefGoogle Scholar
Gregory, W. K. (1935) Reduplication in evolution. Quarterly Review of Biology 10: 272–90. [JHK]Google Scholar
Gregory, W. K. (1967) Our face from fish to man. Hafner Publishing Co. [PDM]Google Scholar
Gruberg, E. R. & Udin, S. B. (1978) Topographic projections between the nucleus isthmi and the tectum of the frog, Rana pipiens. Journal of Comparative Neurology 179: 487500. [taSOEE]Google Scholar
Hall, W. C. & Ebner, F. F. (1970) Parallels in the visual afferent projections of the thalamus in the hedgehog, Paraechimus hypomelas, and the turtle, Pseudemys scripta. Brain, Behavior and Evolution 3: 135–54. [taSOEE]Google Scholar
Hayes, B. P. & Webster, K. E. (1981) Neurons situated outside the isthmooptic nucleus and projecting to the eye in adult birds. Neuroscience Letters 26: 107–12. [taSOEE]CrossRefGoogle Scholar
Hayle, T. H. (1973) A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilothermic vertebrates. Journal of Comparative Neurology 149: 463–76. [TEF]Google Scholar
Hendrickson, A. E., Wilson, J. R. & Ogren, M. P. (1978) The neuroanatomical organization of pathways between the dorsal lateral genieulate nucleus and visual cortex in Old World and New World primates. Journal of Comparative Neurology 182: 123–36. [taSOEE]Google Scholar
Herrick, C. J. (1899) The cranial and first spinal nerves of menidia: A contribution upon the nerve components of the bony fishes. Journal of Comparative Neurology 9: 153455. [PDM]Google Scholar
Herrick, C. J. (1926) Brains of rats and men. University of Chicago Press. [CBGC, GES]Google Scholar
Herrick, C. J. (1948) The brain of the tiger salamander. University of Chicago Press. [CBGC, tarSOEE]Google Scholar
Hodos, W. (1970) Evolutionary interpretations of neural and behavioralstudies of living vertebrates. In: The neurosciences, second study program, ed. Schmitt, F. O.. Rockefeller University Press. [MRB]Google Scholar
Holloway, R. L. (1966) Cranial capacity and the evolution of the human brain. American Anthropologist 68: 103–21. [DF]Google Scholar
Holloway, R. L. (1967) The evolution of the human brain: Some notes toward a general theory. General Systems Yearbook 12: 319. [DF]Google Scholar
Hoogland, P. V. (1981) Spinothalamic projections in a lizard, Varanus exanthematicus: An HRP study. Journal of Comparative Neurology 198: 712. [taSOEE]Google Scholar
Hoogland, P. V. & Welker, E. (1981) Telencephalic projections to the eye in Python reticulatus. Brain Research 213: 173–76. [PGHC]Google Scholar
Hubel, D. H. & Wiesel, T. N. (1968) Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195: 215–44. [taSOEE]Google Scholar
Hubel, D. H., Wiesel, T. N. & LeVay, S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London Series B 278: 377409. [taSOEE, GES]Google Scholar
Hunt, S. P. & Künzle, H. (1976) Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. Journal of Comparative Neurology 170: 153–72. [taSOEE]Google Scholar
Innocenti, G. M. (1979) Adult and neonatal characteristics of the callosal zone at the boundary between areas 17 and 18 in the cat. In: Structure and function of cerebral commissures, ed. Russel, J. S., van Hof, N. W. & Berlucchi, C.. Macmillan Press. [taSOEE]Google Scholar
Innocenti, G. M. (1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science 212: 824–27. [GMI]Google Scholar
Innocenti, G. M. & Caminiti, R. (1980) Postnatal shaping of callosal connections from sensory areas. Experimental Brain Research 38: 381–94. [GMI]Google Scholar
Innocenti, G. M. & Clarke, S. (1983) Multiple sets of visual cortical neurons projecting transitorily through the corpus callosum. Neuroscience Letters 41: 2732. [GMI]Google Scholar
Innocenti, G. M. & Clarke, S. (1984) The organization of immature callosal connections. In preparation. [GMI]Google Scholar
Innocenti, G. M., Fiore, L. & Caminiti, R. (1977) Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neuroscience Letters 4: 237–42. [GMI]Google Scholar
Innocenti, G. M. & Frost, D. O. (1979) Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280: 231–34. [GMI]Google Scholar
Itaya, S. K. (1980) Retinal efferents from the pretectal area in the rat. Brain Research 201: 436–41. [PGHC, taSOEE]Google Scholar
Itaya, S. K. & Van Hoesen, G. W. (1982) Retinal innervation of the inferior colliculus in rat and monkey. Brain Research 233: 4552. [BF]Google Scholar
Ito, H., Butler, A. B. & E, Ebbesson S. O.. (1980) An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferents from the retina, telencephalon and the contralateral tectum in a teleost, Holocentrus rufus. Journal of Comparative Neurology 191: 639–60. [taSOEE]Google Scholar
Ito, H. & Kishida, R. (1975) Organization of the nucleus rotundus. Journal of Morphology 147: 89108. [HI]Google Scholar
Ito, H. & Kishida, R. (1977) Synaptic organization of the nucleus rotundus in some teleosts. Journal of Morphology 151: 397418. [HI]Google Scholar
Ito, H., Morita, Y., Sakamoto, N. & Ueda, S. (1980b) Possibility of telencephalic visual projection in teleosts, Holocentridae. Brain Research 197: 219–22. [taSOEE]Google Scholar
Ito, H., Murakami, T. & Morita, Y. (1982) An indirect telencephalo-cerebellar pathway and its relay nucleus in teleosts. Brain Research 249: 113. [HI]Google Scholar
Ito, H., Sakamoto, N. & Takatsuji, K. (1982) Cytoarchitecture, fiber connections, and ultrastructure of nucleus isthmi in a teleost, Navodon modestus, with a special reference to degenerating isthmic afferents from optic tectum and nucleus pretectalis. Journal of Comparative Neurology 205: 299311. [taSOEE]Google Scholar
Ito, H., Tanaka, H., Sakamoto, N. & Morita, Y. (1981) Isthmic afferent neurons identified by the retrograde HRP method in a teleost, Navodon modestus. Brain Research 207: 163–69. [taSOEE]Google Scholar
Ito, H. & Vanegas, H. (1983a) Cytoarchitecture and ultrastructure of nucleus prethalamicus, with special reference to degenerating afferents from optic tectum and telencephalon, in a teleost (Holocentrus ascensionis). Journal of Comparative Neurology. In press. [HI]Google Scholar
Ito, H. & Vanegas, H. (1983b) Visual receptive thalamopetal neurons in the optic tectum. Brain Research. In press. [HI]Google Scholar
Ivy, G. O. & Killaekey, H. P. (1981) The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. Journal of Comparative Neurology 195: 367–89. [GMI]Google Scholar
Ivy, G. O. & Killaekey, H. P. (1982) Ontogenetic changes in the projections of neocortical neurons. Journal of Neuroscience 2: 735–43. [GMI]Google Scholar
Jacobson, M. (1978) Developmental neurobiology. Plenum Press. [BF]Google Scholar
Jaeger, C. B. & Lund, R. D. (1980) Transplantation of embryonic occipital cortex to the tectal region of newborn rats: A light microscopic study of organization and connectivity of the transplants. Journal of Comparative Neurology 194: 571–97. [GES]Google Scholar
Jane, J. A. and Schroeder, D. M. (1971) A comparison of dorsal column nuclei and spinal afferents in the European hedgehog (Erinaceus europcaus). Experimental Neurology 30: 117. [rSOEE]Google Scholar
Jarvik, E. (1980) Basic structure and evolution of vertebrates, vol. 2. Academic Press. [PA]Google Scholar
Jerison, H. J. (1973) Evolution of the brain and intelligence. Academic Press. [DF]Google Scholar
Jhaveri, S. & Morest, D. K. (1982) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: A Golgi study. Neuroscience 7: 837–53. [taSOEE]Google Scholar
Joseph, B. & Whitlock, D. (1968) The spatio-temporal course of Wallerian degeneration: A Nauta study in the toad (Bufo marinus). Anatomical Record 160: 372. [taSOEE]Google Scholar
Kaas, J. H. (1980) A comparative survey of visual cortex organization in mammals. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E., Plenum Pres. [MRB]Google Scholar
Kaas, J. H. (1982) The segregation of function in the nervous system: Why do sensory systems have so many subdivisions? In: Contributions to sensory physiology, vol. 7, ed. Neff, W. D.. Academic Press. [MRB, JHK, RGN]Google Scholar
Kaas, J. H., Huerta, M. F., Weber, J. R. & Harting, J. K. (1978) Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. Journal of Comparative Neurology 182: 517–54. [taSOEEJ]Google Scholar
Kaiserman-Abramof, I. R., Graybiel, A. M. & Nauta, W. J. H. (1980) The thalamic projection to cortical area 17 in a congenitally anophthalmic mouse strain. Neuroscience 5: 4152. [taSOEE]Google Scholar
Kalil, K. & Reh, T. (1982) A light and electronmicroscopic study of regrowing pyramidal tract hamster fibers. Journal of Comparative Neurology 211: 265–75. [taSOEE]Google Scholar
Kalil, R. & Schneider, G. E. (1975) Abnormal synaptic connections of the optic tract in the thalamus after midbrain lesions in newborn hamsters. Brain Research 100: 690–98. [GES]Google Scholar
Karten, H. J. (1965) Projections of the optic tectum of the pigeon (Columba livia). Anatomical Record 151: 369 [CBGC]Google Scholar
Karten, H. J. (1967) The organization of the avian ascending auditory pathway in thepigeon (Columba livia). 1. Diencephalic projections of the inferior colliculus (nucleus mesencephalicus lateralis, pars dorsalis). Brain Research 6: 407–27 [CBGC]Google Scholar
Karten, H. J. (1968) The ascending auditory pathway in the pigeon (Columba livia). 2. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research 11: 134–53. [CBGC]Google Scholar
Karten, H. J. (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Annals of the New York Academy of Sciences 167: 164–80. [CBGC]Google Scholar
Karten, H. J. (1971) Efferent projections of the Wulst of the owl. Anatomical Record 169: 353. [CBGC]Google Scholar
Karten, H. J. & Hodos, W. (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). Journal of Comparative Neurology 140: 3552. [CBGC]Google Scholar
Karten, H. J., Hodos, W., Nauta, W. J. H., & Revzin, A. M. (1973) Neural connections of the “visual Wulst” of the avian telencephalon: Experimental studies in the pigeon and owl. Journal of Comparative Neurology 150: 253–78. [CBGC, taSOEE]Google Scholar
Karten, H. J. & Nauta, W. J. H. (1968) Organization of retinothalamic projections in the pigeon and owl. Anatomical Record 160: 373. [taSOEE]Google Scholar
Karten, H. J. & Revzin, A. M. (1966) The afferent connections of the nucleus rotundus in the pigeon. Brain Research 2: 368–77. [CBGC]Google Scholar
Katz, M. J. (1983) Ontophyletics: Studying evolution beyond the genome. Perspectives in Biology and Medicine 26: 323–33. [PA]Google Scholar
Katz, M. J. & Lasek, R. J. (1978) Evolution of the nervous system: Role of ontogenetic mechanisms in the evolution of matching populations. Proceedings of the National Academy of Sciences, USA 75: 1349–52. [GMI]Google Scholar
Katz, M. J., Lasek, R. J. & Kaiserman-Abramof, I. R. (1981) Ontophyletics of the nervous system: Eyeless mutants illustrate how ontogenetic buffer mechanics channel evolution. Proceedings of the National Academy of Sciences, USA 78: 397401. [PA]Google Scholar
Kevetter, G. A., Haber, L. H., Yezierski, R. P., Chung, J. M., Martin, R. F. & Willis, W. D. (1982) Cells of origin of the spinoreticular tract in the monkey. Journal of Comparative Neurology 207: 6174. [WDW]Google Scholar
Kevetter, G. A. & Willis, W. D. (1983) Collaterals of spinothalamic cells in the rat. Journal of Comparative Neurology 219: 453–64. [WDW]Google Scholar
Kevetter, G. A. & Willis, W. D. (in press) Collateralization in the spinothalamic tract: New methodology to support or deny phylogenetic theories. Brain Research Reviews. [WDW]Google Scholar
Killaekey, H. P., Gould, J. H. III, Cusick, C. G., Pons, T. D. & Kaas, J. H. (1983) The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of New and Old World monkeys. Journal of Comparative Neurology 219: 384419. [JHK]Google Scholar
Koenderink, J. J. (1984a) Simultaneous order in nervous nets from a functional standpoint. Biological Cybernetics. In press. [JJK]Google Scholar
Koenderink, J. J. (1984b) Geometrical structures determined by the functional order in nervous nets. Biological Cybernetics. In press. [JJK]Google Scholar
Kokoros, J. J. & Northcutt, R. G. (1977) Telencephalic efferents of the tiger salamander, Ambystoma tigrinum tigrinum (Green). Journal of Comparative Neurology 173: 613–28. [tarSOEE]Google Scholar
Koppel, H. & Innocenti, G. M. (1983) Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat. Neuroscience Letters 41: 3340. [GMI]Google Scholar
Kristensson, K., Olsson, Y. & Sjostrand, J. (1971). Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Research 32: 399406. [taSOEE]Google Scholar
Künzle, H. & Cuenod, M. (1973) Differential uptake of 3H leucine by neurons: its importance for the autoradiographic tracing of pathways. Brain Research 62: 213–17. [rSOEE]Google Scholar
Kuypers, H. G. J. M. (1981) Anatomy of the descending pathways. In: Handbook on physiology, section 1: The nervous system, vol. II, Motor control, part 1, ed. V. B. Brooks. [MRB]Google Scholar
Kuypers, H. G. J. M., Catsmann-Berrevoets, C. E. & Padt, R. E. (1977) Retrograde axonal transport of fluorescent substances in the rat's forebrain. Neuroscience Letters 6: 127–35. [taSOEE]Google Scholar
Laemle, L. K. & Labriola, A. R. (1982) Retinocollicular projections in the neonatal rat: An anatomical basis for plasticity. Developmental Brain Research 3: 317–22. [taSOEE]Google Scholar
LaVail, J. H. & LaVail, M. M. (1972) Retrograde axonal transport in the central nervous system. Science 176: 1416–17. [taSOEE]Google Scholar
Lazar, C. (1978) Application of cobalt-filling technique to show retinal projections in the frog. Neuroscience 3: 725–36. [taSOEE]Google Scholar
Lende, R. A. (1969) A comparative approach to neocortex: Localization in monotremes, marsupials, and insectivores. Annals of the New YorkAcademy of Sciences 167: 262–76. [JHK]Google Scholar
LeVay, S. & Gilbert, C. D. (1976). Laminar patterns of geniculocortical projections in the eat. Brain Research 113: 119. [taSOEE]Google Scholar
Lichtman, J. W. (1977) The reorganization of synaptic connexions in the rat submandibular ganglion during post-natal development. Journal of Physiology 273: 155–77. [TEF]Google Scholar
Linden, D. C., Guillery, R. W. & Arcchiaro, J. (1981) The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. Journal of Comparative Neurology 203: 189211. [taSOEE]Google Scholar
Liu, C. M. & Chambers, W. W. (1958). Intraspinal sprouting of dorsal root axons. Archives of Neurology and Psychiatry 79: 4661. [taSOEE]Google Scholar
Lotze, H. (1884) Mikrokosmos. Leipzig: Hirzel. [JJK]Google Scholar
Luiten, P. G. M. (1981a) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). 1. Retinal projections. Journal of Comparative Neurology 196: 531–38. [MRB, CBCC, rSOEE, TEF, RGN]Google Scholar
Luiten, P. G. M. (1981b) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). 2. Ascending thalamo-telencephalic connections. Journal of Comparative Neurology 196: 539–48. [MRB, CBGC, tarSOEE, TEF, RGN]Google Scholar
Lund, R. D. (1978) Development and plasticity of the brain. Oxford University Press. [taSOEE]Google Scholar
Lund, R. D., Cunningham, T. J. & Lund, J. S. (1973) Modified opticprojections after unilateral eye removal in young rats. Brain, Behavior and Evolution 8: 5172. [PDM]Google Scholar
McCormick, C. A. (1982) The organization of the octavolateralis area in actinopterygian fishes: A new interpretation. Journal of Morphology 171: 159–81. [MRB]Google Scholar
McKenna, M. C. (1976) Comments on Radinsky's “Later mammal radiations”. In: Evolution of brain and behavior in vertebrates, ed. Masterton, R. B., Bitterman, M. E., Campbell, C. B. G. & Hotton, N.. John Wiley & Sons. [CBGC]Google Scholar
MacLean, P. D. (1975) An ongoing analysis of hippocampal inputs and outputs: Microelectrode and neuroanatomical findings in squirrel monkeys. In: The Hippocampus, vol. 1, ed. Isaacson, R. & Pribram, C.. Plenum Publishing Co. [PDM]Google Scholar
Magendie, F. (1841) Leçons sur les fonctiotts et les maladies du système nerveux. Paris: Lecaplain. [ERM]Google Scholar
Maxwell, P. E. & Land, P. W. (1981) Development of retinogeniculate projections in albino and pigmented rats. Anatomical Record 199: 165A. [taSOEE]Google Scholar
Meader, R. G. (1934) The optic system of the teleost, Holocentrus. 1. The primary optic pathways and the corpus geniculatum complex. Journal of Comparative Neurology 60: 361407. [HI]Google Scholar
Mehler, W. R. (1969) Some neurological species differences: A posteriori. Annals of the New York Academy of Sciences 167: 424–68. [taSOEE]Google Scholar
Mehler, W. R., Feferman, M. E. & Nauta, W. J. H. (1960) Ascending axon degeneration following anterolateral cordotomy: An experimental study in the monkey. Brain 83: 718–51. [WDW]Google Scholar
Meier, S. & Jacobson, A. G. (1982) Experimental studies of the origin and expression of metameric pattern in the chick embryo. Journal of Experimental Zoology 219: 217–32. [PA]Google Scholar
Meier, S. & Tam, P. P. L. (1982) Metameric pattern development in the embryonic axis of the mouse. 1. Differentiation of the cranial segments. Differentiation 21: 95108. [PA]Google Scholar
Mendez-Otero, R., Rocha-Miranda, C. E. & Perry, V. H. (1980) The organization of the parabigemino-tectal projections in the opossum. Brail Research 198: 183–89. [taSOEE]Google Scholar
Meyer, D. L., Gerwerzhagen, K., Fiebig, E., Ahlswede, E., Ebbesson, S. O. E. (1982) An isthmo-optic system in a bony fish. Cell and Tissue Research. In press. [taSOEE]Google Scholar
Minsky, M. & Papert, S. (1969) Perceptrons: An introduction to computational geometry. MIT Press. [JJK]Google Scholar
Molinari, H. H. & Berkley, K. J. (1981) Differences in glia and neuronal labeling following 3H proline or 3H lcucine injections into the dorsalcolumn nuclei of cats. Neuroscience 6: 2313–34. [rSOEE]Google Scholar
Morita, Y., Ito, H. & Masai, H. (1980) Central gustatory paths in the crucian carp, Carassius carassius. Journal of Comparative Neurology 191: 119–32. [HI]Google Scholar
Morita, Y., Murakami, T. & Ito, H. (1983) Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius. Journal of Comparative Neurology 218: 378–94. [HI]Google Scholar
Münz, H. & Claas, B. (1981) Centrifugal innervation of the retina in cichlid and poecilid fishes. A horseradish peroxidase study. Neuroscience Letters 22: 223–26. [PGHC, taSOEE]Google Scholar
Münz, H., Claas, B., Stumpf, W. E. & Jennes, L. (1982) Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell and Tissue Research 222: 313–23. [BF]Google Scholar
Murakami, T., Morita, Y. & Ito, H. (1983) Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. Journal of Comparative Neurology 216: 115–31. [HI]Google Scholar
Nauta, W. J. H. (1950) Über die sogenannte terminale Degeneration im Zentralnervensystem und ihre Darstellung durch Silberimprägnation. Archives of Neurology and Psychiatry 66: 353–76. [taSOEE]Google Scholar
Nauta, W. J. H. (1957) Silver impregnation of degenerating axons. In: New research techniques of neuroanatomy, ed. Windle, W. F.. Charles C. Thomas. [taSOEE]Google Scholar
Neary, T. J. & Northcutt, R. G. (1983) Nuclear organization of the bullfrog diencephalon. Journal of Comparative Neurology 213: 262–78. [RGN]Google Scholar
Northcutt, R. G. (1979) Retinofugal pathways in fetal and adult spiney dogfish Squalus acanthias. Brain Research 162: 219–30. [rSOEE]Google Scholar
Northcutt, R. G. (1981) Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience 4: 301–50. [MRB, rSOEE, RGN]Google Scholar
Northcutt, R. G. (1982) Localization of neurons afferent to the optic tectum in longnose gars. Journal of Comparative Neurology 204: 325–35. [taSOEE]Google Scholar
Northcutt, R. G. (1984) Evolution of the vertebrate central nervous system: Patterns and processes. American Zoologist 24. In press. [RGN]Google Scholar
Northcutt, R. G. & Ebbesson, S. O. E. (1980) Ascending spinal pathways in the sea lamprey. Abstracts of the Society for Neuroscience 6: 628. [TEF]Google Scholar
Northcutt, R. G. & Gans, C. (1983) The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins. Quarterly Review of Biology 58: 128. [WW]Google Scholar
Nottebohm, F., Stokes, T. M. & Leonard, C. M. (1976) Central control of song in the canary, Serinus canarius. Journal of Comparative Neurology 165: 457–86. [taSOEE]Google Scholar
O'Leary, D. D. M. & Cowan, W. M. (1982) Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. Journal of Comparative Neurology 212: 399416. [PGHC]Google Scholar
O'Leary, D. D. M., Gerfen, C. R. & Cowan, W. M. (1983) The development and restriction of the ipsilateral retinofugal projection in the chick. Developmental Brain Research 312: 93109. [PGHC]Google Scholar
O'Leary, D. D. M., Stanfield, B. B. & Cowan, W. M. (1981) Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Developmental Brain Research 1: 607–17. [GMI]Google Scholar
Oster, G. & Alberch, P. (1982) Evolution and bifurcation of developmental programs. Evolution 36: 444–59. [PA]Google Scholar
Packard, D. S. Jr, & Meier, S. (1983) An experimental study of the somitomeric organization of the avian segmental plate. Developmental Biology 97: 191202. [PA]Google Scholar
Paton, J. A., Manogue, K. R. & Nottebohm, F. (1981) Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus. Journal of Neuroscience 1: 1279–88. [taSOEE]Google Scholar
Perry, V. H. & Cowey, A. (1982) A sensitive period for ganglion cell degeneration and the formation of aberrant retino-fugal connectionsfollowing tectal lesions in rats. Neuroscience 7: 583–94. [taSOEE]Google Scholar
Peterson, E. H. (1980) Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae). Journal of Comparative Neurology 196: 225–52. [taSOEE]Google Scholar
Pettigrew, J. D. (1974) The effect of visual experience on the development of stimulus specificity by kitten cortical neurons. Journal of Physiology (London) 237: 4974. [taSOEE]Google Scholar
Piaget, J. (1977) The origin of intelligence in the child. Penguin Books. [JJK]Google Scholar
Pickard, G. E. & Silverman, A.-J. (1981) Direct retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique. Journal of Comparative Neurology 196: 155–72. [BF]Google Scholar
Popper, K. R. (1959) The logic of scientific discovery. Hutchinson. [CBGC, PGHC. GMI]Google Scholar
Pubols, B. H. Jr, Pubols, L. M., DiPette, D. J. & Sheely, J. C. (1976) Opossum somatic sensory cortex: A microelectrode mapping study. Journal of Comparative Neurology 165: 229–46. [JHK]Google Scholar
Radinsky, L. B. (1968) A new approach to mammalian cranial analysis, illustrated by examples of prosimian primates. Journal of Morphology 124: 167–80. [DF]Google Scholar
Radinsky, L. B. (1970) The fossil evidence of prosimian brain evolution. In: The primate brain, advances in primatology, ed. Noback, C. R. & Montagna, W.. Appleton-Century-Crofts. [DF]Google Scholar
Radinsky, L. B. (1972) Endocasts and studies of primate brain evolution. In: The functional and evolutionary biology of primates, ed. Tuttle, R.. Aldine. [DF]Google Scholar
Radinsky, L. B. (1976) Later mammal radiations. In: Evolution of brain and behavior in vertebrates, ed. Masterton, R. B., Bitterman, M. E., Campbell, C. B. G., & Hotton, N.. John Wiley & Sons. [CBGC]Google Scholar
Radinsky, L. B. (1978) Evolution of brain size in carnivores and ungulates. American Naturalist 112: 815–31. [DF]Google Scholar
Radinsky, L. B. (1979) The fossil record of primate brain evolution. 49th James ArthurLecture, American Museum of Natural History. [DF]Google Scholar
Raff, R. A. & Kaufman, T. C. (1983) Embryos, genes, and evolution. Macmillan. [RGN]Google Scholar
Rager, G. (1980) Die Ontogenese der retinotopen Projektion: Beobachtung und Reflexion. Naturwissenschaften 67: 280–87. [BF]Google Scholar
Rakic, P. (1976) Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261: 467–71. [taSOEE]Google Scholar
Rakic, P. (1977) Prenatal development of the visual system in rhesus monkey. Philosophical Transactions of the Royal Society of London (Biology) 278: 245–60. [taSOEE]Google Scholar
Ramon-Moliner, E. (1962) An attempt at classifying nerve cells on the basis of their dendritic patterns. Journal of Comparative Neurology 119: 211–27. [taSOEE, JS]Google Scholar
Ramon-Moliner, E. & Nauta, W. J. H. (1966). The isodendritic core of the brainstem. Journal of Comparative Neurology 12: 311–36. [taSOEE, ER-M, JS]Google Scholar
Randall, P. L. (1980) A neuroanatomical theory on the aetiology of schizophrenia. Medical Hypotheses 6(6):645–58. [taSOEE]Google Scholar
Rausch, G. & Scheich, H. (1982) Dendritic spine loss and enlargement during maturation of the speech control system in the mynah bird, Gracula religiosa. Neuroscience Letters 29: 129–33. [taSOEE]Google Scholar
Repérant, J., Peyrichoux, J., Weidner, C., Miceli, D. & Rio, J. P. (1980) The centrifugal visual system in Vipera aspis: An experimental study using retrograde transport of HRP and [3H]adenosine. Brain Research 183: 435–41. [PGHC]Google Scholar
Rexed, B. (1952) The cytoarchitectonic organization of the spinal cord in the cat. Journal of Comparative Neurology 96: 415–66. [WDW]Google Scholar
Rhoades, R. W. (1981) Expansion of the ipsilateral visual corticotectal projection in hamsters subjected to partial lesions of the visual cortex during infancy: Anatomical experiments. Journal of ComparativeNeurology 197: 425–45. [taSOEE]Google Scholar
Riss, W., Knapp, A. D. & Scalia, F. (1963) Optic pathways in Cryptobranchus allegheniensis, as revealed by the Nauta technique. Journal of Comparative Neurology 121: 3143. [taSOEE]Google Scholar
Rogers, L. J. & Ehrlich, D. (1983) Asymmetry in the chicken forebrain during development and a possible involvement of the supraoptic decussation. Neuroscience Letters 37: 123–27. [rSOEE, GMI]Google Scholar
Ronan, M. C. & Northcutt, R. G. (1979) Afferent and efferent connections of the bullfrog medial pallium. Society for Neuroscience Abstracts 5: 146. [WW]Google Scholar
Rubinson, K. (1968) Projections of the tectum opticum in the frog. Brain Behavior and Evolution 1: 529–61. [WW]Google Scholar
Russell, E. S. (1916) Form and function. Murray Ltd. (Reprinted in 1982, University of Chicago Press.) [PA]Google Scholar
Sakamoto, N. & Ito, H. (1982) Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. Journal of Comparative Neurology 205: 291–98. [HI]Google Scholar
Sandeman, D. C. & Rosenthal, N. P. (1974) Efferent axons in the fish optic nerve and their effect on the retinal ganglion cells. Brain Research 68: 4154. [taSOEE]Google Scholar
Satou, M. & Ewert, J.-P. (1983) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften. [J-PE]Google Scholar
Scalia, F. & Ebbesson, S. O. E. (1971) The central projection of the olfactory bulb in a teleost, Gymnothorax funebris. Brain, Behavior and Evolution 4: 376–99. [taSOEE]Google Scholar
Scalia, F., Halpern, M., Knapp, H. & Riss, W. (1968) The efferent connections of the olfactory bulb in the frog: A study of degeneratingunmyelinated fibers. Journal of Anatomy 103: 245–62. [CBGC, rSOEE]Google Scholar
Scheich, H., Bock, W., Bonke, D., Langner, G. & Maier, V. (1982) Auditory pattern recognition, ontogeny and imprinting in the guinea fowl. In: Advances in neuroethology, ed. Ewert, P. J.. Plenum. [taSOEE]Google Scholar
Scheich, H. & Ebbesson, S. O. E. (1983) The multimodal torus in weakly electric fish, Eigenmannia virescens. Advances in Anatomy, Embryology and Cell Biology 82. 69pp. [taSOEE]Google Scholar
Schneider, G. E. (1969) Two visual systems. Science 163: 895. [taSOEE]Google Scholar
Schneider, G. E. (1973) Early lesions of superior colliculus: Factors affecting the formation of abnormal retinal projections. Brain, Behavior and Evolution 8: 73109. [taSOEE, GES]Google Scholar
Schneider, G. E. (1979) Is it really better to have your brain lesion early? A revision of the “Kennard principle”. Neuropsychologia 17: 557–83. [GES]Google Scholar
Schneider, G. E., Jhaveri, S., Edwards, M. A. & So, K.-F (in press) Regeneration, re-routing and redistribution of axons after early lesions: Changes with age, and functional impact. In: Recent achievements in restorative neurology: Upper motor neurone functions and dysfunctions (Advances in Neurology Series), ed. Eccles, J. C. & Dimitrijevic, M. R.. Raven Press. [GES]Google Scholar
Schroeder, D. M. & Ebbesson, S. O. E. (1974) Non-olfactory telencephalic afferents in the nurse shark, Ginglymostoma cirratum. Brain, Behavior and Evolution 9: 121–55. [taSOEE]Google Scholar
Schroeder, D. M. & Ebbesson, S. O. E. (1975) Cytoarchitecture of the optic tectum in the nurse shark. Journal of Comparative Neurology 160: 443–62. [taSOEE]Google Scholar
Schroeder, D. M., Vanegas, H. & Ebbesson, S. O. E. (1980) The cytoarchitecture of the optic tectum of the squirrelfish, Holocentrus. Journal of Comparative Neurology 191: 337–51. [taSOEE]Google Scholar
Shatz, C. (1977) Abnormal interhemispheric connections in the visual system of Boston Siamese cats: A physiological study. Journal of Comparative Neurology 171: 229–46. [GMI]Google Scholar
Shatz, C. J. (1983) The prenatal development of the cat's retinogenieulate pathway. Journal of Neuroscience 3: 482–99. [PGHC]Google Scholar
Shatz, C. J. & DiBernadino, A. C. (1980) Prenatal development of the retinogenieulate pathway in the cat. Society for Neuroscience Abstracts 6: 485. [taSOEE]Google Scholar
Sherk, H. (1979) Connections and visual field mapping in cat's tecto-parabigeminul circuit. Journal of Neurophysiology 42: 1656–68. [taSOEE]Google Scholar
Smeets, W. J. A. J. (1981a) Retinofugal pathways in two chondrichthyans, the shark, Scyliorhinus canicula, and the ray, Raja clavata. Journal of Comparative Neurology 195: 111. [rSOEE, RGN]Google Scholar
Smeets, W. J. A. J. (1981b) Efferent tectal pathways in two chondrichthyans, the shark, Scyliorhinus canicula, and the ray, Raja clavata. Journal of Comparative Neurology 195: 1323. [rSOEE, RGN]Google Scholar
Smeets, W. J. A. J. (1982) The afferent connections of the tectum mesencephali in two chondrichthyans, the shark, Scyliorhinus canicula, and the ray, Raja clavata. Journal of Comparative Neurology 205: 139–52. [tarSOEE]Google Scholar
So, K-F., Schneider, G. E. & Frost, D. O. (1977) Normal development of the retinofugal projections in Syrian hamsters. Anatomical Record 187: 719. [taSOEE]Google Scholar
So, K-F., Schneider, G. E. & Frost, D. O. (1978) Postnatal development of retinal projections to the lateral geniculate body in Syrian hamsters. Brain Research 142: 343–52. [taSOEE]Google Scholar
Spatz, W. B. (1979) The retino-geniculo-cortical pathways in Callithrix. 2. The geniculo-cortical projection. Experimental Brain Research 36: 401–10. [taSOEE]Google Scholar
Springer, A. D. (1983) Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis. Journal of Comparative Neurology 214: 404–15. [BF]Google Scholar
Stanfield, B. B., O'Leary, D. D. M. & Fricks, C. (1982) Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298: 371–73. [taSOEE, TEF, GMI].Google Scholar
Steedman, J. G., Stirling, R. V. & Gaze, R. M. (1979) The central pathways of optic fibres in Xenopus tadpoles. Journal of Embryology and Experimental Morphology 50: 199215. [PGHC]Google Scholar
Sterling, P. & Wickelgren, B. G. (1970) Function of the projection from the visual cortex to the superior colliculus. Brain, Behavior, and Evolution 3: 210–18. [taSOEE]Google Scholar
Stevenson, J. A. & Lund, R. D. (1982) A crossed parabigemino-lateral geniculate projection in rats blinded at birth. Experimental Brain Research 45: 95100. [taSOEE]Google Scholar
Strong, O. S. (1895) The cranial nerves of amphibia. Journal of Morphology 10: 101217. [PDM]Google Scholar
Székely, G. (1979) Order and plasticity in the nervous system. Trends in Neuroscience 2: 245–48. [JS]Google Scholar
Szentágothai, J. & Arbib, M. A. (1974) Conceptual models of neural organization. Neuroscience Research Program Bulletin 12: 313510. [rSOEE, JS]Google Scholar
Szentágothai, J. & Székely, G. (1956) Zum Problem der Kreuzung von Nervenbahnen. Acta Biologica Academiae Scientianim Hungaricae 6: 215–79. [JS]Google Scholar
Tigges, J. & Tigges, M. (1979) Ocular dominance columns in the striate cortex of the chimpanzee, Pan troglodytes. Brain Research 166: 386–90. [tarSOEE]Google Scholar
Toth, P., Lazar, G. Y. & Gores, T. (1980) Retinal projections in the adult Xenopus laevis: A study with cobalt filling technique. Acta Morphologica Academiae Scientiarum Hungaricae 28(4):365–74. [taSOEE]Google Scholar
Uchiyama, H. & Ito, H. (1983) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae, Teleostei). Brain Research. In press. [HI]Google Scholar
Uchiyama, H., Sakamoto, N. & Ito, H. (1981) A retinopetal nucleus in the preoptic area in a teleost, Navodon modestus. Brain Research 222: 119–24. [PGHC, HI]Google Scholar
Ulinski, P. S. (1977) Tectal efferents in the banded water snake, Natrix sipedon. Journal of Comparative Neurology 173: 251–74. [CBGC]Google Scholar
Ulinski, P. S. (1983) Dorsal ventricular ridge. Wiley/Interscience. [CBGC]Google Scholar
Van der Loos, (1979) The development of topological equivalences in the brain. In: Neural growth and differentiation, ed. Meisami, E. & Brazier, M. A. B.. Raven Press. [GMI]Google Scholar
Vesselkin, N. P., Ermakova, T. V., Repérant, J., Kosareva, A. A. & Kenigfest, N. B. (1980) The retinofugal and retinopetal systems in hampetra fluviatilis: An experimental study using radioautographic and HRP methods. Brain Research 195: 453–60. [PGHC, taSOEE]Google Scholar
von Baer, K. E. (1828) Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Bornträger. [RGN]Google Scholar
Wang, S-J, Yan, K. & Wang, Y-T. (1981) Visual field topography in the frog's nucleus isthmi. Neuroscience Letters 23: 3741. [taSOEE]Google Scholar
Watanabe, K. & Kawana, E. (1979) Efferent projections of the parabigeminal nucleus in rats: A horseradish peroxidase (HRP) study. Brain Research 168: 111. [taSOEE]Google Scholar
Webster, K. E. (1979) Some aspects of the comparative study of the corpus striatum. In: The neostriatum, ed. Divac, I. & Oberg, R. G. E., Pergamon Press. [PDM]Google Scholar
Weerasuriya, A. & Ewert, J.-P. (1981) Prey-selective neurons in the toad's optic tectum and sensorimotor interfacing: HRP studies and recording experiments. Journal of Comparative Physiology 144: 429–34. [J-PE]Google Scholar
Weerasuriya, A. & Ewert, J.-P. (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufo. Society for Neuroscience Abstracts 9: 536. [J-PE]Google Scholar
Welker, C. (1971) Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat. Brain Research 26: 259–75. [JHK]Google Scholar
Welker, W. I. & Campos, G. B. (1963) Physiological significance of sulci in somatic sensory cerebral cortex in mammals of the family Procyonidae. Journal of Comparative Neurology 120: 1936. [DF]Google Scholar
Wilczynski, W. & Northcutt, R. (1977) Afferents to the optic tectum of the leopard frog: An HRP study. Journal of Comparative Neurology 173: 219–29. [taSOEE, JPE]Google Scholar
Wilczynski, W. & Northcutt, R. (1983) Connections of the bullfrog striatum: Afferent organization. Journal of Comparative Neurology 214: 321–32. [rSOEE, WW]Google Scholar
Wiley, E. O. (1981) Phylogenetics. John Wiley. [RGN]Google Scholar
Williams, R. W. & Chalupa, L. M. (1982) Prenatal development of retinoeollieular projections in the cat: An anterograde tracer transportstudy. Journal of Neuroscience 2: 604–22. [taSOEE]Google Scholar
Willis, W. D., Kenshalo, D. R. & Leonard, R. B. (1979) The cells of origin of the primate spinothalamic tract. Journal of Comparative Neurology 188: 543–74. [WDW]Google Scholar
Witkovsky, P. (1971) Synapses made by myelinated fibers running to teleost and elasmobranch retinas. Journal of Comparative Neurology 142: 205–22. [taSOEE]Google Scholar
Wolff, J. R. (1981) Some morphogenetic aspects of the development of the central nervous system. In: Behavioral development: The Bielefeld Interdisciplinary Project, ed. Immelmann, K., Barlow, G. W., Petrinovich, L. & Main, M.. Cambridge University Press. [taSOEE]Google Scholar
Yoon, M. G. (1979) Reciprocal transplantations between the optic tectum and the cerebellum in adult goldfish. Journal of Physiology 288: 211–25. [GES]Google Scholar
Young, J. Z. (1965) The central nervous system of Nautilus. Philosophical Transactions of the Royal Society. B249: 4567. [JZY]Google Scholar