Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:05:17.343Z Has data issue: false hasContentIssue false

Parcellation and plasticity: Implications for ontogeny

Published online by Cambridge University Press:  04 February 2010

Mark Johnson
Affiliation:
MRC Cognitive Development Unit, 17 Gordon St., London WC1H OAH, England

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Commentary
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Changeux, J. P., Courrege, P.Danchin, A. (1973) A theory of the epigenesis of neuronal networks by selective stabilisation of synapses. Proceedings of the National Academy of Sciences 70:2974–78.Google Scholar
Changeux, J. P. & Danchin, A. (1976) Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264:705–12.CrossRefGoogle ScholarPubMed
Clarke, P. G. H. (1985) Neuronal death in the development of the vertebrate nervous system. Trends in the Neurosdences 8:345–49.CrossRefGoogle Scholar
Cowan, W. M., Fawcett, J. W., O'Leary, D. D. M. & Stanfield, B. B. (1984) Regressive events in neurogenesis. Science 225:1258–65.CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity. Cell and Tissue Research 213:179212.CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1981) Interspecific variability in brain organization and its possible to evolutionary mechanisms. In: Brain mechanisms of behaviour in lower vertebrates, ed. Laming, P. P.. Cambridge University Press.Google Scholar
Ebbesson, S. O. E. (1984) Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences 7:321–66.CrossRefGoogle Scholar
Fawcett, J. W. & O'Leary, D. D. M. (1985) The role of electrical activity the formation of topographic maps in the nervous system. Trends Neurosdences 8:201–6.CrossRefGoogle Scholar
Fawcett, J. W., O'Leary, D. D. M. & Cowan, W. M. (1984) Activity control of ganglion cell death in the cat retina. Proceedings of the National Academy of Sciences 81:5589–93.Google Scholar
Fodor, J. A. (1983), The modularity of mind. MIT Press.CrossRefGoogle Scholar
Greenwald, I. & Martinez-Arias, A. (1984) Programmed cell death in invertebrates. Trends in the Neurosdences 7:179–81.CrossRefGoogle Scholar
Hubel, D. H., Wiesel, T. N. & Le Vay, S. (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London (Series B) 278:153–72.Google ScholarPubMed
lnnocenti, C. M. & Frost, D. O. (1980) The postnatal development of visual callosal connections in the absence of visual experience or of the eyes. Experimental Brain Research 39:365–75.Google Scholar
Karmiloff-Smith, A. (1985) From meta-processes to conscious access: Evidence from children's linguistic and repair data. Cognition 23:95148.CrossRefGoogle Scholar
Witelson, S. F. (1985) The brain connection: The corpus callosum is larger in left-handers. Science 229:665–68.Google Scholar