Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T14:14:58.742Z Has data issue: false hasContentIssue false

Output hypothesis: Peering into the black box

Published online by Cambridge University Press:  04 February 2010

Wade H. Berrettini
Affiliation:
Section on Psychogenetics, Biological Psychiatry Branch, National Institute of Mental Health, Bethesda, Md. 20205

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiskal, H. S., McKinney, W. T. Jr, (1973) Depressive disorders: Toward a unified hypothesis. Science 182:2029. ]HSA]CrossRefGoogle Scholar
Angst, J. B., Woggon, J., Schoepf, J. (1977) The treatment of depression with 5-hydroxytryptophan versus imipramine. Archiv für Psychiatric und Nervenkrankheiten 224:175-86. ]MHA]CrossRefGoogle ScholarPubMed
Anisman, H., Kokkinidis, L., Sklar, L. S. (1981) Contribution of neurochemical change to stress-induced behavioral deficits. In: Theory in psychopharmacology, vol. 1, ed. Cooper, S. J., pp. 65102. Academic Press. ]HA]Google Scholar
Anismais, H., Remington, C., Sklar, L. S. (1979) Effects of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance. Psychopharmacology 61:107–24. ]HA]CrossRefGoogle Scholar
Anisman, H., Zacharko, R. M. (1982) Depression: The predisposing influence of stress. Behavioral and Brain Sciences 5:89137. ]taEAS]CrossRefGoogle Scholar
Antelman, S. M. & Chiodo, L. A. (1981) Dopamine autoreceptor subsensitivity: A mechanism common to the treatment of depression and the induction of amphetamine psychosis. Biological Psychiatry 16:717–27. ]HA]Google Scholar
Antelman, S. M., Chiodo, L. A. & DeGiovanni, L. A. (1982) Antidepressants and dopamine autoreceptors: Implications for both a novel means of treating depression and understanding bipolar illness. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, C., pp. 121–32. Raven Press. ]HA]Google Scholar
Aprison, M. H. & Hingtgen, J. N. (1981) Hypersensitive serotonergic receptors: A new hypothesis for one subgroup of unipolar depression derived from an animal model. In: Serotonin: Current aspects of neurochemistry and function, ed. Haber, B., Cabay, S., Alivisatos, S. & Issidorides, M., pp. 627–56. Plenum Press. ]MHA]CrossRefGoogle Scholar
Aprison, M. H. & Hingtgen, J. N. (1983) New depression theory: Predictions based on neurochemical/behavioral data. Transactions of the American Society of Neurochemistry 14:201. ]MHA]Google Scholar
Aprison, M. H., Hingtgen, J. N., Nagayama, H. (1982) Testing a new theory of depression with an animal model: Neurochemical-behavioral evidence for postsynaptic serotonergic receptor involvement. In: New vistas in depression, ed. Langer, S. A., Takahashi, H., Segawa, T. & Briley, M., pp. 171–78. Pergamon Press. ]MHA]Google Scholar
Aprison, M. H., Takahashi, R. & Tachiki, K. (1978) Hypersensitivity serotonergic receptors involved in clinical depression: A theory. In: Ncuropharmacology and behavior, ed. Haber, B. & Aprison, M. H., pp. 2353. Plenum Press. ]MHA]CrossRefGoogle Scholar
Askew, E. W. & Hecker, A. L. (1976) Adipose tissue cell size and lipolysis in the rat: Response to exercise intensity and food restriction. Journal of Nutrition 106:1351–60. ]taEAS]CrossRefGoogle ScholarPubMed
Askew, E. W., Hecker, A. L. & Wise, W. R. Jr, (1977) Dietary carnitine and adipose tissue turnover rate in exercise trained rats. Journal of Nutrition 107:132–42. ]taEAS]CrossRefGoogle ScholarPubMed
Askew, E. W., Huston, R. L., Plopper, C. G. & Hecker, A. L. (1975) Adipose tissue cellularity and lipolysis. Response to exercise and cortisol treatment. Journal of Clinical Incestigation 56:521–29. ]taEAS]CrossRefGoogle ScholarPubMed
Aston-Jones, G. & Bloom, F. E. (1981) Norepinephrine containing locus ceruleus neurons in behaving rats exhibit promsounced responses to nonnoxious stimuli. Journal of Neuroscience 1:887–99. ]US]CrossRefGoogle Scholar
Aston-Jones, G., Foote, S. L. & Bloom, F. E. (1982) Low doses of ethanol disrupt sensory responses of brain noradrenergic neurons. Nature 296:857–60. ]RMC]CrossRefGoogle Scholar
Aulakh, C. S., Cohen, R. M., Pradhan, S. N. & Murphy, D. L. (in press) Self-stimulation responses are altered following long-term but not short- term antidepressant treatmeist. Brain Research. ]RMC]Google Scholar
Baldessarini, R. J. (1975) The basis for amine hypotheses in affective disorders: A critical evaluation. Archives of General Psychiatry 32:1087–93. ]AF, taEAS]CrossRefGoogle ScholarPubMed
Bancrjee, S. P., Kung, L. R., Riggi, S. J. & Chanda, S. K. (1977) Development of β-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–56. ]taEAS, JV]CrossRefGoogle Scholar
Bancrjee, S. P., Sharma, V. K., Kung, L. S. & Chanda, S. K. (1978) Amphetamine induces β-adrenergic receptor supersensitivity. Nature 271:380–81. ]taEAS]CrossRefGoogle Scholar
Barka, T. & Burke, G. T. (1977) Secretory behavior of hypertrophic and hyperplastic salivary gland. Histochemical Journal 9:453–66. ]taEAS]CrossRefGoogle ScholarPubMed
Baudry, M., Martres, M. P. & Schwartz, J. C. (1976) Modulation in the sensitivity of oradrencrgic receptors in the CNS studied by the responsiveness of the cyclic AMP system. Brain Research 116:111–24. ]taEAS]CrossRefGoogle ScholarPubMed
Belenky, G. L., Holaday, J. W. (1981) Repeated electroconvulsive shock (EGS) and morphine tolerance: Demonstration of cross-sensitivity in the rat. Life Sciences 29:553–63. ]taEAS]CrossRefGoogle Scholar
Belmaker, R. H. (1981) Receptors, adenylate cyclase, depression and lithium. Biological Psychiatry 16:333–50. ]taEAS]Google ScholarPubMed
Bergstrom, D. A., Kellar, K. J. (1979) Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature 278:464–66. ]JV]CrossRefGoogle ScholarPubMed
Bertin, R. & Portet, R. (1976) Effects of lipolytic and antilipolytic drugs on metabolism of adenosine 3': 5'-monophosphate in brown adipose tissue of cold acclimated rats. European Journal of Biochemistry 67:177–83. ]taEAS]CrossRefGoogle Scholar
Besse, J. C. & Bass, A. D. (1966) Potentiation by hydrocortisone of responses to catecholamines in vascular smooth muscle. Journal of Pharmacology and Experimental Therapeutics 154:224–38. ]taEAS]Google ScholarPubMed
Bevegard, B. S. & Shepherd, J. T. (1967) Regulation of the circulation during exercise in man. Physiological Reviews 47:178213. ]taEAS]CrossRefGoogle ScholarPubMed
Bhatia, S. P. & Davies, H. J. (1975) Evaluation of tolerance after continuous and prolonged oral administration of salbutamol to asthmatic patients. British Journal of Clinical Pharmacology 2:436–66. ]taEAS]CrossRefGoogle ScholarPubMed
Bjorklund, A., Katzman, R., Stenevi, U. & West, K. (1971) Development and growth of axonal sprouts from NA and 5-hydroxytryptamine neurons in the rat spinal cord. Brain Research 31:2133. ]taEAS]CrossRefGoogle Scholar
Bjorklund, A. & Stenevi, U. (1971) Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Research 31:120. ]taEAS]CrossRefGoogle ScholarPubMed
Blosser, J. C. (1983) β-Adrenergic receptor activation increases acetylcholine receptor number in cultured skeletal muscle myotubes. Journal of Neurochemistry 40:1144–49. ]rEAS]CrossRefGoogle ScholarPubMed
Bodnar, R. J., Kelly, D. D., Brutus, M. & Glusman, M. (1980) Stress- induced analgesia: Neural and hormonal determinants. Neuroscience and Biobehavioral Reviews 4:87100. ]taEAS]CrossRefGoogle ScholarPubMed
Brenner, G. M. & WuIf, R. G. (1981) Adrenergic beta receptors mediating submandibular salivary gland hypertrophy in the rat. Journal of Pharmacology and Experimental Therapeutics 218:608–12. ]taEAS]Google ScholarPubMed
British Medical Council (1965) Clinical trial of treatment of depressive illness. British Medical Journal 1:881. ]AF]CrossRefGoogle Scholar
Brunello, N., Barbaccia, M. L., Chuang, D. M. & Costa, E. (1982) Down regulation of β-adrenergic receptors following injections of desmethylimipramine: Permissive role of serotonergic axons. Neuropharmacology 21:1145–49. ]rEAS]CrossRefGoogle ScholarPubMed
Bukowiecki, L., Follea, N., Vallieres, J. & LeBlanc, J. (1978) β-Adrenergic receptors in brown-adipose tissue. Characterization and alterations during acclimation of rats to cold. European Journal of Biochemistry 92:189–96. ]taEAS]CrossRefGoogle ScholarPubMed
Burke, G. T. & Barka, T. (1978) Beta-adrenergic receptors and adenylate cyclase in hypertrophic and hyperplastic rat salivary glands. Biochimica et Biophysica Acta 539:5461. ]taEAS]CrossRefGoogle ScholarPubMed
Bylund, D. B. & Snyder, S. H. (1976) Beta adrenergic receptor bindimsg in membrane preparations from mammaliam brain. Molecular Pharmacology 12:568–80. ]taEAS]Google Scholar
Campbell, I. C., McKernan, R. M. (1982) Central and peripheral changes in α-adrenoceptors in the rat in response to chronic antidepressant drug administration. In: New vistas in depression, ed. Langer, S. Z., Takashi, R., Segawa, T. & M., Briley, pp. 153160. Pergamon Press. ]JV]Google Scholar
Campos, H. A. & Parr, J. J. (1968) Enlargement of the guinea pig salivary gland caused by catecholamines or tooth amputation. European Journal of Pharmacology 2:371–76. ]taEAS]CrossRefGoogle ScholarPubMed
Carroll, B. J. (1977) Psychiatric disorders and steroids. In: Neuroregulators and psychiatric disorders, ed. Usdin, E., Hamburg, D. A. & Barchas, J. D., pp. 276–82. Oxford University Press. ]taEAS]Google Scholar
Carroll, B. J., Curtis, G. C., Mendels, J. (1976) Cerebrospinal fluid and plasma free cortisol concentrations in depression. Psychological Medicine 6:235–44. ]taEAS]CrossRefGoogle ScholarPubMed
Carroll, B. J., Feinberg, M., Greden, J. F., Tarika, J., Albala, A. A., Haskett, R. F., James, N.M., Kronfol, Z., Lohr, N., Steiner, M., deVigne, J. P. Vigne, J. P., Young, E. (1981) A specific laboratory test for the diagnosis of melancholia. Archives of General Psychiatry 38:1522. ]taEAS]CrossRefGoogle ScholarPubMed
Cedarbaum, J. M. & Ághajanian, G. K. (1976) Noradrenergic neurons on the locus coeruleus: Inhibition by epinephrine and activation by the α-antagonist piperoxane. Brain Research 112:413–19. ]KAR]CrossRefGoogle ScholarPubMed
Cedarbaum, J. M., Ághajanian, G. K. (1977) Catecholamine receptors on locus coeruleus neurons. Pharmacological characterization. European Journal of Pharmacology 44:375–85. ]taEAS]CrossRefGoogle ScholarPubMed
Cerrito, F. & Raiteri, M. (1981) Supersensitivity of central noradrenergic presynaptic autoreceptors following chronic treatment with the antidepressant mianserin. European Journal of Pharmacology 70:425–26. ]taEAS, JV]CrossRefGoogle ScholarPubMed
Charney, D. S., Hafstad, K. M., Ciddings, S. & Landis, D. H. (1982) Adrenergic receptor sensitivity in depression: Effects of clonidinc in depressed patients and healthy subjects. Archives of General Psychiatry 39:290–94. ]CBS]CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R. & Sternberg, D. E. (1983) Alpha-2 adrenergic receptor sensitivity and the mechanism of action of antidepressant therapy. British Journal of Psychiatry 142:265–75. ]CBS]CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R., sternberg, D. E., Hafstad, K. M., Giddings, S., Landis, D. H. (1982) Adrenergic receptor sensitivity in depression. Archices of General Psychiatry 39:290–94. ]HAD]CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R., Sternberg, D. E., Redmond, D. E., Leckman, J. F., Mass, J. W. & Roth, R. H. (1981) Presynaptic adrenergic receptor sensitivity in depression. Archives of General Psychiatry 38:1334–40. ]RJK]CrossRefGoogle ScholarPubMed
Charney, D. C., Menkes, D. B. & Heninger, G. R. (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment: Implications for the etiology and therapy of depression. Archices of General Psychiatry 38:1160–80. ]RAD, LJS, CBS, taEAS]CrossRefGoogle ScholarPubMed
Chatelain, P., Robberecht, P., De, Neef P., Camus, J. C. & Cristophe, J. (1982) Early decrease in secretin-, glucagon-, and isoproterenolstimulated cardiac adenylate cyclase activity in rats treated with isoproterenol. Biochemical Pharmacology 31:347–52. ]taEAS]CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Antelman, S. M. (1980) Repeated tricyclics induce a progressive dopamnine autoreceptor subsensitivity independent of daily drug treatment. Nature 287:451–54. ]HA]CrossRefGoogle Scholar
Ciaranello, R. D., Barchas, R. E., Byers, G. S., Stemmle, D. W. & Barchas, J. D. (1969) Enzymatic synthesis of adrenaline in mammalian brain. Nature 221:368–69. ]KAR]CrossRefGoogle ScholarPubMed
Clements-Jewery, S. (1978) The development of cortical β-adrenoceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserine. Neuropharmacology 17:779–81. ]taEAS]CrossRefGoogle ScholarPubMed
Cohen, J., Aroesty, J. M. & Rosenfeld, M. G. (1966) Determinants of thyroxine induced cardiac hypertrophy in mice. Circulation Research 18:388–97. ]taEAS]CrossRefGoogle ScholarPubMed
Cohen, R.M., Aulakh, C. S., Campbell, I. C. & Murphy, D. L. (1982) Functional subsensitivity of α2-adrenoceptors accompanies reductions in yohimbine binding after clorgyline treatment. European Journal of Pharmacology 81:145–48. ]RMC]CrossRefGoogle Scholar
Cohen, R. M. & Campbell, I. C. (in press) Receptor adaptation in animal models: A state change approach to psychiatric illness. In: Neurobiology of the mood disorders, ed. Ballenger, J. C. & Post, R. M.. Williams and Wilkins. ]RMC]Google Scholar
Cohen, R. M., Campbell, I. C., Cohen, M. R., Torda, T., Pickar, D., Siever, L. J. & Murphy, D. L. (1980) Presynaptic noradrenergic regulation during depression and antidepressant drug treatment. Psychiatry Research 3:93105. ]RMC, CBS]CrossRefGoogle ScholarPubMed
Cohen, R. M., Campbell, I. C., Dauphin, M., Tallman, J. F., Murphy, D. L. (1982) Changes in α- and β-receptor densities in rat brain as a result of treatment with monoamine oxidase inhibiting antidepresssnts. Neuropharmacology 21:293–98. ]CBS]CrossRefGoogle Scholar
Cohen, R. M., Ebstein, R. P., Daly, J. W. & Murphy, D. L. (1982) Chronic effects of a monoamine-oxidase inhibiting antidepressant: Decrease in functional alpha-adrenergic antoreceptors precede the decrease in norepinephrine stimnulated cyclic AMP systems in rat brain. Journal of Neuroscience 2:1588–95. ]RMC]CrossRefGoogle ScholarPubMed
Colucci, W. S., Alexander, W., Williams, G. H., Rude, R. E., Holman, B. L., Konstam, M. A., Wynne, J., Mudge, G. H. & Braunwald, E. (1981) Decreased lymphocyte beta-adrenergic receptor density in patients with heart failure and tolerance to the beta-adrenergic agonist pirbuterol. New England Journal of Medicine 305:185–90. ]taEAS]CrossRefGoogle Scholar
Cooper, B. R. & Butz, R. F. (1982) Behavioral and biochemical effects of chronic infusion of the novel antidepressant, bupropion, in rats. Society for Neuroscience Abstracts 8:465. ]taEAS]Google Scholar
Coppen, A., Whybrow, P. C., Noguera, R., Maggs, R. & Prange, A. J. Jr, (1972) The comparative antidepressant value of L-tryptophan and imipramine with and without attempted potentiation by liothyronine. Archives of General Psychiatry 26:234–41. ]taEAS]CrossRefGoogle ScholarPubMed
Cotman, C. W. & Nieto-Sampedro, M. (1982) Brain function, synapse removal and plasticity. Annual Review of Psychology 33:371401. ]taEAS]CrossRefGoogle Scholar
Crews, F. T., Paul, S. M. & Goodwin, F. K. (1981) Acceleration of beta- receptor desensitization in combined administration of antidepressants and phenoxybenzamine. Nature 290:787–89. ]WBE, CBS]CrossRefGoogle ScholarPubMed
Crews, F. T., Smith, C. B. (1978) Presyisaptic alpha-receptor subsensitivity after long-term antidepressant treatment. Science 202:322–24. ]CBS]CrossRefGoogle ScholarPubMed
Crews, F. T., Smith, C. B. (1980) Potentiation of responses to adrenergic nerve stimulation in isolated rat atria during chronic tricyclic antidepressant administration. Journal of Pharmacology and Experimental Therapeutics 215:143–49. ]CBS]Google ScholarPubMed
Cutilletta, A. F., Thilenius, O. G. & Areilla, R. A. (1972) Adenyl cyclase activity in experimental myocardial hypertrophy. American journal of Cardiology 29:258. ]taEAS]CrossRefGoogle Scholar
Daly, J. W., Padgett, W., Nimitkitpaisan, Y., Creveling, C. R., Cantacuzene, D. & Kirk, K. L. (1980) Fluoronorepinephrines: Specific agonists for the activation of alpha and beta adrenergic-sensitive cyclic AMP-generating systems in brain slices. Journal of Pharmacology and Experimental Therapeutics 212:382–89. ]taEAS]Google ScholarPubMed
Deakin, J. F. W., Owen, F., Cross, A. J. & Dashwood, M. J. (1981) Studies on possible mechanisms of action of electroconvulsive therapy: Effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology 73:345–49. ]taEAS]CrossRefGoogle ScholarPubMed
DeMontigny, C. & Aghajanian, G. K. (1978) Tricyclic antidepressants: Long term treatment increases responsivity of rat forebrain neurons to serotonin. Science 202:1303–6. ]tarEAS]CrossRefGoogle Scholar
DeMontigny, C., Grunberg, F., Mayer, A. & Deschenes, J. P. (1981) Lithium induces rapid relief of depression in tricyclic antidepressant drug non-responders. British Journal of Psychiatry 138:252–56. ]rEAS]CrossRefGoogle Scholar
Denber, H. C. B. (1975) Pharmacotherapy of depression. In: Psychopharmacological treatment: Theory and practice, ed. Denber, H. C. B., pp. 121–34. Marcel Dekker. ]taEAS]Google Scholar
Dengler, J. H., Spiegel, H. E. & Titus, E. O. (1961) The effect of drugs on the uptake of isotopic norepinephrine by cat tissues. Nature 191:816–17. ]taEAS]CrossRefGoogle Scholar
DeVellis, J. & Kukea, G. (1973) Regulation of glial cell functions by hormones and ions: A review. Texas Reports on Biology & Medicine 31:271–93. ]taEAS]Google Scholar
Dismukes, R. K., Daly, J. W. (1976) Adaptive responses of brain cyclic AMP generating systems to alterations in synaptic input. Journal of Cyclic Nucleotide Research 2:321–36. ]taEAS]Google ScholarPubMed
Dohin, G. L., Pennington, S. N. & Brakat, H. (1976) Effect of exercise training on adenyl cyclase and phosphodiesterase in skeletal muscle, heart and liver. Biochemical Medicine 16:138–42. ]taEAS]Google Scholar
Evans, J. P. M., Grahame-Smith, D. G., Green, A. R. & Tordoff, A. F. C. (1976) Electroconvulsive shock increases the behavioral responses of rats to brain 5-hydroxytryptamine accumulation and central nervous system stimulant drugs. British Journal of Pharmacology 56:193–99. ]taEAS]CrossRefGoogle ScholarPubMed
Evonuk, E. & Hannon, J. P. (1963) Cardiovascular function and norepinephrine thermogenesis in cold-acclimated rats. American Journal of Physiology 204:888–94. ]taEAS]CrossRefGoogle Scholar
Exton, J. H., Friedman, N., Wonge, H. A., Brineaux, J. P., Corbin, J. D. & Park, C. R. (1972) Interactions of glucocorticoids with glucagon and epinephrine in the control of gluconeogenesis and glycogenolysis in liver and of lipolysis in adipose tissue. Journal of Biological Chemistry 247:3579–88. ]taEAS]CrossRefGoogle ScholarPubMed
Fain, J. N. (1977) Cyclic nucleotides in adipose tissue. In: Cyclic– 3',5'- nucleotides: Mechanism of action, ed. Crammer, H. & Schultz, J., pp. 205–28. John Wiley and Sons. ]taEAS]Google Scholar
Feighner, J. P., King, L. J., Schuckit, M. A., Croughan, J. & Briscoe, W. (1972) Hormonal potentiation of imipramine and ECT in primary depression. American journal of Psychiatry 128:1230–38. ]taEAS]CrossRefGoogle ScholarPubMed
Felten, D. L., Hallman, H. & Jonsson, G. (1982) Evidence for a neurotropic role of noradrenaline neurons in the postnatal development of rat cerebral cortex. Journal of Neurocytology 11:119–35. ]taEAS]CrossRefGoogle ScholarPubMed
Ferris, R. M., Maxwell, R. A., Cooper, B. R. & Soroko, F. E. (1982) Neurochemical and neuropharmacological investigations into the mechanisms of action of bupropion. HCI– A new atypical antidepressant agent. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G., pp. 277–86. Raven Press. ]taEAS]Google Scholar
Fibiger, H. C., Phillips, A. G. (1981) Increased intracranial self-stimulation its rats after long-term administration of desipramine. Science 214:683–84. ]HA]CrossRefGoogle ScholarPubMed
Fink, M., Klein, D. F. &, Kramer, J. C. (1968) Clinical efficacy of chlorpromazine-procyclidine combination, imipramine and placebo in depressive disorders. Psychopharmacologia 7:2736. ]taEAS]CrossRefGoogle Scholar
Formgren, H. (1976) The therapeutic value of oral long-term treatment with terbutaline (Bricanyl) in asthma. Scandinavian Journal of Respiratory Diseases 57:321–25. ]taEAS]Google Scholar
Foster, D. O. & Frydman, M. L. (1978) Nonshivering thermogenesis. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Canadian Journal of Physiology and Pharmacology 56:110–22. ]taEAS]CrossRefGoogle ScholarPubMed
Frazer, A. (1951) Tricyclic antidepressants– basic considerations. In: Neuropharmacology of central nervous system and behavior disorders, ed. Palmer, G. C., pp. 7391. John Wiley and Sons. ]AF]Google Scholar
Frazer, A., Hess, M. E., Mendels, J., Gable, B., Kunkel, E. & Bender, A. (1978) Influence of acute and chronic treatment with desmethylimipramine on catecholamine effects in the rat. Journal of Pharmacology and Experimental Therapeutics 206:311–19. ]taEAS]Google ScholarPubMed
Fregly, M. F., Nelson, E. L., Resch, G. E., Field, F. P. & Lutherer, L. O. (1975) Reduced beta adrenergic responsiveness in hypothyroid rats. American Journal of Physiology 229:916–24. ]taEAS]CrossRefGoogle ScholarPubMed
Friedli, C., Chinet, A. & Girardier, L. (1978) Comparative measurements of in vitro thermogenesis of brown adipose tissue from control and cold adapted rats. Experientia 32 (supp.):259–66. ]taEAS]Google ScholarPubMed
Friedman, E. & Dallob, A. (1979) Enhanced serotonin receptor activity after chronic treatment with imipramine or amitriptyline. Communications in Psychopharmacology 3:8992. ]tarEAS]Google ScholarPubMed
Fuller, R. W. (1982) Pharmacology of brain epinephrine neurons. Annual Review of Pharmacology and Toxicology 22:3155. ]KAR]CrossRefGoogle ScholarPubMed
Fuxe, K., Bolme, P., Agnati, L. F., Jonsson, G., Andersson, K., Kohler, C. & Hokfelt, T. (1980) On the role of central adrenaline neurons in central cardiovascular regulation. In: Central adrenaline neurons, ed. Fuxe, K., Goldstein, M., Hokfelt, B. & Hokfelt, T., pp. 161–82. Pergamon Press. ]KAR]CrossRefGoogle Scholar
Fuxe, K., Ogren, S. O., Agnati, L. F., Benfenati, F., Fredholm, B., Andersson, K., Zini, I. & Enroth, P. (1983) Chronic antidepressant treatment and central 5-HT synapses. Neuropharmacology 22:389400. ]MHA]CrossRefGoogle ScholarPubMed
Garcia-Sevilla, J. A., Hollingsworth, P. J. & Smith, C. B. (1981) Platelet α2-Adrenoreceptors on human platelets: Selective labelling by ]3H]clonidine and ]3H]yohimbine and competitive inhibition by antidepressant drugs. European Journal of Pharmacology 74:329–41. ]CBS]CrossRefGoogle Scholar
Garcia-Sevilla, J. A., Zis, A. P., Hollingsworth, P. J, Creden, J. F., Smith, C. B. (1981) Plateletα2-adrenergic receptors in major depressive disorder. Archives of General Psychiatry 38:1327–33.]Ri K, CBS]Google ScholarPubMed
Garzon, J. & DelRio, J. Rio, J. (1981) Hyperactivity induced us rats by long-term isolation: Further studies on a new animal model for the detection of antidepressants. European Journal of Pharmacology 74:287–94. ]taEAS]CrossRefGoogle Scholar
Gerry, J. I., Sourisseau, G., Swissa, A. & Evonuk, E. (1981) Chonotropic responses in rats given repeated injections of isoproterenol, norepinephrine or chronically exercised. (abstract) Federation Proceedings 40:464. ]taEAS]Google Scholar
Glass, I. B., Checkly, S. A., Shur, E. & Dawlimsgs, S. (1982) The effect of desipramine upon central adrenergic function depressed patients. British Journal of Psychiatry 41:372–76. ]RMC]CrossRefGoogle Scholar
Glaubiger, G. & Letkowitz, R. J. (1977) Elevated beta-adrenergic receptor number after chronic propranolol treatment. Biochemistry and Biophysics Research Communications 78:720–25. ]taEAS]CrossRefGoogle ScholarPubMed
Goldberg, M. R., Curatolo, P. W., Tung, C. S. & Robertson, D. (1982) Caffeine down-regulates β-adrenoreceptors in rat forebrain. Neuroscience Letters 31:4752. ]taEAS]CrossRefGoogle ScholarPubMed
Górka, Z. & Zacny, E. (1981) The effect of single and chronic administration of imipramine on clonidine-induced hypothermia in the rat. Life Sciences 28:2847–54. ]RMC, JV]CrossRefGoogle ScholarPubMed
Crahame-Smith, D. G., Green, A. R. & Costain, D. W. (1978) The mechanism of the antidepressant effect of ECT. Lancet 1:2 5457. ]taEAS]Google Scholar
Gram, L. F. (1977) Plasma level monitoring of tricyclic antidepressant therapy. Clinical Pharmacokinetics 2:237–51. ]taEAS]CrossRefGoogle ScholarPubMed
Gray, J. A. (1977) Drug effects on fear and frustration: Possible limbic site of action of minor tranquilizers. In: Handbook of psychopharmacology, vol. 8: Drugs, neurotransmitters, and behavior, ed. Iversems, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. ]RAD]Google Scholar
Greden, J. F., Gardner, R., King, D., Grunhaus, L., Carroll, B. J. & Kronfol, Z. (1983) Dexamethasone suppression tests in antidepressant treatment of melancholia. Archives of General Psychiatry 40:493500. ]rEAS]CrossRefGoogle ScholarPubMed
Green, A. R., Costain, D. W. & Deakin, J. F. (1980) Enhanced 5-hydroxytryptamine and dopamine-mediated behavioural responses following convulsions. III. The effects of monoamine antagonists and synthesis inhibitors on the ability of electroconvulsive shock to enhance responses. Neuropharmacology 19:907–24. ]taEAS]CrossRefGoogle ScholarPubMed
Green, A. R. & Deakin, J. F. W. (1980) Brain noradrenaline depletion prevents ECS induced enhancement of serotonin and dopamine mediated behaviours. Nature 285:232–33. ]taEAS]CrossRefGoogle Scholar
Greenblatt, D. J., Shader, R. I. (1972) On the psychopharmacology of betaadrenergic blockade. Current Therapeutic Research 14:615-25. ]taEAS, JV]Google Scholar
Griswold, R. L. & Gray, I. (1957) Conditioning of rats to trauma by electroconvulsive shock. American Journal of Physiology 189:504–8. ]taEAS]CrossRefGoogle ScholarPubMed
Grossman, W., Robin, N.J., Johnson, L. W., Brooks, H., Selenkow, H. A. & Dexter, L. (1971) Effects of beta blockade on the peripheral manifestations of thyrotoxicosis. Annals of Internal Medicine 74:875–81. ]taEAS]CrossRefGoogle ScholarPubMed
Hall, H., Ross, S. B., Ogren, S. O. (1982) Effect of zimelidine on various transmitter systems in the brain. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G., pp. 321–25. Raven Press. ]taEAS]Google Scholar
Hallberg, H., Almgren, O. & Svensson, T. H. (1981) Increased brain serotonergic and noradrenergic activity after repeated systemic administration of the beta-2 adrenoceptor agonist salbutamol, a putative antidepressant drug. Psychopharmacology 73:201–4. ]taEAS]CrossRefGoogle ScholarPubMed
Harri, M. N. E. (1978) Metabolic and cardiovascular responses to prolonged noradrenaline load and their antagonism by beta blockade in the rat. Acta Physiologica Scandinavica 104:402–14. ]taEAS]CrossRefGoogle ScholarPubMed
Harri, M. N. E. & Narvola, I. (1979) Physical training under the influence of beta blockade in rats: Effect on adrenergic responses. European Journal of Applied Physiology 41:199210. ]taEAS]CrossRefGoogle ScholarPubMed
Heal, D. J., Akagi, H., Bowdler, J. M. & Green, A. R. (1981) Repeated electroconvulsive shock attenuates clonidine-induced hypoactivity in rodents. European Journal of Pharmacology 75:231–37. ]RMC, JV]CrossRefGoogle ScholarPubMed
Heal, D. J. & Green, A. R. (1978) Repeated electroconvulsive shock increases the behavioral responses of rats to injections of both dopamine and dibutyryl cyclic AMP into the nucleus accumbens. Neuropharmacology 17:1085–87. ]taEAS]CrossRefGoogle ScholarPubMed
Herman, J. P., Guillonneau, D., Dantzer, R., Scatton, B., Semerdjian-Rouquier, L. & LeMoal, M. (1982) Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sciences 30:2207–14. ]HA]CrossRefGoogle ScholarPubMed
Hertz, L. (in press) Astrocytes. In: Handbook of neurochemistry. ed. Lajtha, A.. 2d ed.Plenum Press. ]taEAS]Google Scholar
Hertz, L., Mukerji, S. & Richardson, J. S. (1981) Down regulation of betaadrenergic activity in astroglia by chronic treatment with an antidepressant drug. European Journal of Pharmacology 72:267–68. ]taEAS]CrossRefGoogle ScholarPubMed
Herve, D., Tassin, J. P., Barthelemy, C., Blanc, G., Levielle, S. & Glowinski, J. (1979) Difference in the reactivity of the mesocortical dopaminergic neurons to stress in the BALB/c and C57BL/6 mice. Life Sciences 25:1659–64. ]HA]CrossRefGoogle Scholar
Hess, M. E., Prostran, M., Carricato, A. M., Locke, C. L, Brzozowski, C., Sills, M. & Viscuse, D. (1982) Interaction between thyroxine and tricyclic antidepressant antidepressant drugs on cardiac neurotransmitter receptors. Journal of Cardiocascular Pharmacology 4:856-62. ]rEAS]CrossRefGoogle ScholarPubMed
Heydorn, W. E., Brunswick, D. J. & Frazer, A. (1982) Effect of treatment of rats with antidepressants on melatonin concentrations in the pineal gland and serum. Journal of Pharmacology and Experimental Therapeutics 222:534–43. ]AF, tarEAS]Google ScholarPubMed
Heydorn, W. E., Fraser, A. & Weiss, B. (1981) Electrical stimulation of sympathetic nerves increases the concentration of cyclic AMP in rat pineal gland. Proceedings of the National Academy of Sciences 78:7176–79. ]taEAS]CrossRefGoogle ScholarPubMed
Himms-Hagen, J. (1972) Effects of catecholamines on metabolism. In: Catecholamines: Handbook of experimental pharmacology, vol. 33, ed. Blaschko, H. & Muscholl, E., pp. 363462. Springer-Verlag. ]taEAS]CrossRefGoogle Scholar
Hingtgen, J. N., Hendrie, H. C. & Aprison, M. H. (1982) Acute and chronic effects of a new antidepressant, trazodone, on an animal model of depression. Society for Neuroscience Abstracts 8:101. ]MHA]Google Scholar
Holgate, S. T., Baldwin, C. J. & Tattersfield, A. E. (1977) Beta-adrenergic agonist resistance in normal human airways. Lancet 2:375–77. ]taEAS]CrossRefGoogle ScholarPubMed
Hong, J. S., Gillin, J. C., Yang, H. Y. T. & Costa, E. (1979) Repeated elcctroconvulsivc shocks and the brain content of endorphins. Brain Research 177:273–78. ]taEAS]CrossRefGoogle ScholarPubMed
Huang, Y. H. (1979a) Chronic desipramine treatment increases activity at noradrenergic postsynaptic cells. Life Sciences 25:709–16. ]HA, LJS, tarEAS]CrossRefGoogle ScholarPubMed
Huang, Y. H. (1979b) Net effect of acute administration of desipramine on the locus coeruleus-hippocampal system. Life Sciences 25:739–46. ]US, taEAS]CrossRefGoogle ScholarPubMed
Huang, Y. H., Mass, J. W. & Hu, G. H. (1980) The time course of noradrenergic pre- and postsynaptic activity during chronic desipraminc treatment. European Journal of Pharmacology 68:4147. ]AF, YHH, rES]CrossRefGoogle ScholarPubMed
Irwin, J., Bowers, W., Zacharko, R. M., Anisman, H. (1982) Stress-induced alterations of norepinephrine: Cross-stressor sensitization. Society for Neuroscience Abstracts 8:359. ]HA]Google Scholar
Iversen, L. L. (1965) The inhibition of noradrtenaline uptake by drugs. Adcances in Drug Research 2:523. ]taEAS]Google ScholarPubMed
Janowsky, A., Okada, F., Manier, D. H., Applegate, C. D., Sulser, F. & Steranka, L. R. (1982) Role of serotonergic input in the regulation of theβ-adrenergic receptor coupled adenylate cyclase system. Science 218:900901. ]tarEAS]CrossRefGoogle ScholarPubMed
Jansky, L. & Hart, J. S. (1968) Cardiac output and organ blood flow in warm and cold acclimated rats exposed to cold. Canadian Journal of Physiology & Pharmacology 46:653–59. ]taEAS]CrossRefGoogle ScholarPubMed
Jenne, J. W., Chick, T. W., Strickland, R. D. & Wall, F. J. (1977) Subsensitivity of beta responses during therapy with a long-acting beta-2 preparation. Journal of Allergy and Clinical Immunology 59:383–90. ]taEAS]CrossRefGoogle ScholarPubMed
Jesberger, J. A. & Richardson, S. S. (1981) Actions of amitriptyline in an animal model of depression. (abstract) Transactions of the American Society of Neurochemistry 11:276. ]taEAS]Google Scholar
Jimerson, D. C., Insel, T. R. & Kopin, I. J. (1983) Increased plasma MHPC in dexamethasone-resistant depressed patients. Archices of General Psychiatry 40:173–76. ]rEAS]CrossRefGoogle Scholar
Katz, M. M., Koslow, S.H., Mass, J. W., Bowden, C. L., Croughan, J., Kocsis, J. & Redmond, D. E. Jr, (submitted for publication) The timing and specificity of drug effects in unipolar and biopolar depressions. ]AF]Google Scholar
Katz, R. J., Carroll, B. J. (1977) Brain stimulation reward: Evidence for an adrenergic contribution in the rat. Neuroscience Letters 5:227–31. ]KAR]CrossRefGoogle ScholarPubMed
Katz, R. J., Carroll, B. J. (1978) Inhibition of phenylethanolamine-N-methy transferase and brain stimulated reward. Psychopharmacology 57:3942. ]RJK]CrossRefGoogle ScholarPubMed
Kebabian, J. W., Zatz, M., Romcro, J. A. & Axelrod, J. (1975) Rapid changes in rat pineal β-adrenergic receptor: Alterations in 1-]3H] alprenolol binding and adenylate cyclase. Proceedings of the National Academy of Sciences 72:3735–39. ]LJS taEAS]CrossRefGoogle Scholar
Kellar, K., Cascio, C. S., Bergstrom, D. A., Butler, J. A. & Iadarola, P. (1981) Electroconvulsive shock and reserpine: Effects on β-adrenergic receptors in rat brain. Journal of Neurochemistry 37:830–36. ]tarEAS]CrossRefGoogle ScholarPubMed
Kellar, K. J., Cascio, C. S., Butler, J. A. & Kurtzke, R. N. (1981) Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. European Journal of Pharmacology 69:515–18. ]taEAS]CrossRefGoogle ScholarPubMed
Kendal, D. A., Stancel, G. M. & Enna, S. J. (1982) The influence of sex hormones on antidepressant-induced alterations in neurotransmitter receptor binding. Journal of Neuroscience 2:354–60. \taEAS]CrossRefGoogle Scholar
Korf, J., Sevens, J. B. & Postema, F. (1979) Cyclic AMP in the rat cerebral cortex after stimulation of the locus coermileus: Decrease by antidepressant drugs. European Journal of Pharmacology 59:2330. ]taEAS]CrossRefGoogle ScholarPubMed
Kraeuchi, K., Gentsch, C. & Feer, H. (1981) Individually reared rats: Alteration in noradrenergic brain functions. Journal of Neural Transmission 50:103–12. ]taEAS]CrossRefGoogle ScholarPubMed
Kuroshima, A. & Yahata, T. (1979) Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat-acclimated and cold-acclimated rats. Japanese Journal of Physiology 29:683–90. ]taEAS]Google ScholarPubMed
Lambert, P. L., Harrell, E. H. & Emmett-Oglesby, M. W. (1980) Attenuation of response deficits by electroconvulsive shock. Physiological Psychology 8:107–11. ]taEAS]CrossRefGoogle Scholar
Lands, A. M., Arnold, A., McAuliff, J. P., Ludwena, F. P. & Brown, T. G. (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–98. ]WBE]CrossRefGoogle ScholarPubMed
Langer, S. Z., Briley, M. S. & Raisman, R. (1980) Regulation of neurotransmission through presynaptic receptors and other mechanisms: Possible clinical relevance and therapeutic potential. In: Receptors for neurotransmitters and peptides, ed. Pepau, G., Kuhar, M. J. & Enna, S. J., pp. 203–12. Raven Press. ]taEAS]Google Scholar
Langer, S. Z., Cavero, I. & Massingham, R. (1980) Recent developments in noradrenergic neurotransmission and its relevance to the mechanism of action of certain antihypertensive agents. hypertension 2:372–82. ]WBE]CrossRefGoogle Scholar
LeBlanc, J., Vallieres, J. & Vachon, C. (1972) Beta-receptor sensitization by repeated injection of isoproterenol and by cold adaptation. American Journal of Physiology 222:1043–46. ]taEAS]CrossRefGoogle ScholarPubMed
LeBlanc, J. & Villemaire, A. (1970) Thyroxine and noradrenaline on noradrenaline sensitivity cold resistance and brown fat. American Journal of Physiology 281:1742–45. ]taEAS]CrossRefGoogle Scholar
Leerubier, Y., Puech, A. J., Frances, H., Jouvent, R., Widlocher, D. & Simon, P. (1981) Beta-adrenergic stimulation and antidepressant activity. Acta Psychiatrica Scandinacica 63 (supp. 290):173–81. ]taEAS]CrossRefGoogle Scholar
Leibowitz, S. F. (1970) Reciprocal hunger relating circuits involving alpha-and-beta-adrenergic receptors located, respectively, in the ventro medial and lateral hypothalamus. Proceedings of the National Academy of Sciences 67:1063–70. ]RJK]CrossRefGoogle Scholar
Leibowitz, S. F. (1975) Catecholamine mechanisms of the lateral hypothalamus; Their role in the mediation of amphetamine anorexia. Brain Research 98:529–45. ]AF]CrossRefGoogle ScholarPubMed
Leshner, A. I., Remler, H., Biegon, A. & Samuel, D. (1979) Desmethylimipramine (DMI) counteracts learned helplessness in rats. Psychopharmacology 66:207–8. ]taEAS]CrossRefGoogle ScholarPubMed
Linnoila, M., Karoum, F., Calil, H. M., Kopin, I. J. & Potter, W. Z. (1982) Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients. Archices of General Psychiatry 39:1025–28. ]taEAS]CrossRefGoogle ScholarPubMed
Liu, S. J. & Wang, R. I. H. (1981) Increased sensitivity of the central nervous system to morphine analgesia by amitriptyline in naive and morphinetolerant rats. Biochemical Pharmacology 30:2103–9. ]taEAS]CrossRefGoogle ScholarPubMed
Lucki, I. & Frazer, A. (1982) Prevention of the serotonin syndrome in rats by repeated administration of monoamine oxidase inhibitors but not tricyclic antidepressants. Psychopharmacology 77:205–11. ]rEAS]CrossRefGoogle Scholar
Maas, J. W., Dekirmenjian, H. & Fawcett, J. A. (1972) Catecholamine metabolism, depressive illness and drug response. Archives of General Psychiatry 26:252–62. ]rEAS]CrossRefGoogle ScholarPubMed
McCarthy, K. D. & DeVellis, J. (1979) The regulation of adenosine 3':5'–cyclic monophosphate accumulation in glia by alpha-adrenergic agonists. Life Sciences 24:639–50. ]taEAS]CrossRefGoogle Scholar
McMillen, B., Warnack, W., German, D. C. & Shore, P. A. (1980) Effect of chronic desipramine treatment on rat brain noradrenergic responses to alpha-adrenergic drugs. European Journal of Pharmacolocy 61:239–46. ]LJS. CBS, taEAS]CrossRefGoogle ScholarPubMed
McNeil, C. N., Shaw, P. K. & Dock, D. S. (1982) Substitution of atenolol for propranolol in a case of propranolol-related depressiois. American Journal of Psychiatry 139:1187–88. ]rEAS]Google Scholar
Maeda, T., Tohyama, M. & Shimizu, N. (1974) Modification of postnatal development of neocortex in rat brain with experimental deprivation of locus coeruleus. Brain Research 70:515–20. ]taEAS]CrossRefGoogle ScholarPubMed
Maj, J., Górka, Z., Melzacka, M., Rawtów, A. & Pilc, A. (1983) Chronic treatment with imipramine: Further functional evidence for the enhanced noradrenergic transmission in flexor reflex activity. Naunyn-Schmiedebergs Archices of Pharmacology 322:256–60. ]LJS]CrossRefGoogle ScholarPubMed
Maj, J., Mogilnicka, E. & Klimek, V. (1979) The effect of repeated administration of antidepressant drugs on the responsiveness of rats to catecholamine agonists. Journal of Neural Transmission 44:221–35. ]taKAS, JV]CrossRefGoogle ScholarPubMed
Maj, J., Mogilnicka, E., Klimek, V. & Kordecka-Magiera, A. (1981) Chronic treatment with antidepressants: Potentiation of clonidine-induced aggression in mice via noradrenergic mechanism. Journal of Neural Transmission 52:189–97. ]JV]CrossRefGoogle ScholarPubMed
Maj, J., Mogilnicka, E. & Kordecka, A. (1979) Chronic treatment with antidepressant drugs: Potentiation of apomorphine-induced aggressive behaviour in rats. Neuroscience Letters 13:337–41. ]JV]CrossRefGoogle ScholarPubMed
Maj, J., Mogilnicka, E. & Kordecka-Magiera, A. (1980) Effect of chronic administration of antidepressant drugs on aggressive behavior induced by clonidine in mice. Pharmacology, Biochemistry and Behavior 13:153–54. ]JV]CrossRefGoogle ScholarPubMed
Makman, M. H. (1971) Properties of adenylate cyclase of lymphoid cells. Proceedings of the National Academy of Sciences 68:885–89. ]taEAS]CrossRefGoogle ScholarPubMed
Maletsky, B. M. (1978) Seizure duration and clinical effect in electroconvulsivc therapy. Comprehensice Psychiatry 19:541–50. ]taEAS]CrossRefGoogle Scholar
Mendels, J. & Frazer, A. (1974) Brain biogenic amine depletion and mood. Archives of General Psychiatry 30:447–51. ]AF, taEAS]CrossRefGoogle ScholarPubMed
Menkes, D. B. & Aghajanian, G. K. (1981) α1-Adrenoceptor-mediated responses in the lateral geniculate nucleus are enhanced by chronic antidepressant treatment. European Journal of Pharmacology 74:2736. ]LJS. taEAS, JV]CrossRefGoogle Scholar
Mickey, J., Tate, H. & Lefkowitz, R. J. (1975) Subsensitivity of adenylate cyclase and decreased beta-adrenergic receptor binding after chronic exposure to (-) isoprotereisol in vitro. Journal of Biological Chemistry 250:5727–29. ]taEAS]CrossRefGoogle ScholarPubMed
Minneman, K. P., Dibner, M. D., Wolfe, B. B. & Molinoff, P. B. (1979) β1- andβ2-adrenergic receptors in rat cerebral cortex are independently regulated. Science 204:866–68. ]WBE]CrossRefGoogle ScholarPubMed
Minneman, K. P., Hegstrand, L. R. & Molinoff, P. B. (1979) Comparison of beta adrenergic subtypes in mammalian tissues, Journal of Pharmacology and Experimental Therapeutics 211:502–8. ]WBE]Google ScholarPubMed
Minneman, K. P., Pittman, R. N. & Molinoff, P. B. (1981) β-Adrenergic receptor subtypes: Properties, distribution, and regulation. Annual Review ofNeuroscience 4:419–61. ]KAR]CrossRefGoogle ScholarPubMed
Mishra, R., Janowsky, A. & Sulser, F. (1980) Action of mianserine and zimelidine on the norepinephrine receptor coupled adenylate cyclasc system in brain: Subsensitivity without reduction in beta-adrenergic receptor binding. Neuropharmnacology 19:983–87. ]taEAS]CrossRefGoogle ScholarPubMed
Mobley, P. L., Sanders-Bush, E., Smith, H. E. & Sulser, F. (1979) Modification of the noradrenergic cyclic AMP generating system in the rat limbic forebrain by amphetamine: Role of its hydroxylated metabolites. Naunyn-Schmiedebergs Archives of Pharmacology 306:267–73. ]taEAS]CrossRefGoogle ScholarPubMed
Mobley, P. L. & Sulser, F. (1979) Norepinephrine stimulated cyclic AMP accumulation in rat limbic forebrain: Partial mediation by a subpopulation of receptors with neitherα norβ characteristics. European Journal of Pharmacology 60:221–27. ]taEAS]CrossRefGoogle Scholar
Modigh, K. (1975) Electroconvulsive shock and postsynaptic catecholamine effects: Increased psychomotor stimulant actioms of apomorphimie amid clonidine in reserpine pretreated mice by repeated ECS. Journal of Neural Transmission 36:1932. ]taEAS, JV]CrossRefGoogle Scholar
Mogilnicka, E. (1982) The effects of acute and repeated treatment with salbutamol. a β-adrenoceptor agonist, on clonidine-induced hypoactivity in rats. Journal of Neural Transmission 53:117–26. ]taEAS]CrossRefGoogle ScholarPubMed
Mogilnicka, E. & Klimek, V. (1979a) Effect of chronic administration of antidepressant drugs on the noradrenaline disappearance induced by FLA-63 in the rat brain. Polish Journal of Pharmacology and Pharmacy 31:139–47. ]taEAS]Google ScholarPubMed
Mogilnicka, E. & Klimek, V. (1979b) Mianserin, danitracen and amitriptyline withdrawal increases the behavioral response of rats to L-5-HTP. Journal of Pharmacy and Pharmacology 31:704–5. ]taEAS]CrossRefGoogle ScholarPubMed
Moore, R. L., Riedy, M. J. & Gollnick, P. D. (1982) Effect of training on β-adrenergic receptor number in rat heart. Journal of Applied Physiology 52:1133–37. ]taEAS]CrossRefGoogle ScholarPubMed
Mueller, A. L., Hoffer, B. J. & Dunwiddie, T. V. (1981) Noradrenergic responses in rat hippocampus: Evideisce for mediation by alpha and beta receptors in the in vitro slice. Brain Research 214:113–26. ]taEAS]CrossRefGoogle Scholar
Muirhead, M. & Himms-Hagen, J. (1971) Changes in amount and properties of adenyl cyclase in brown adipose tissue during acclimation of rats to cold. Canadian Journal of Biochemistry 49:802–10. ]taEAS]CrossRefGoogle ScholarPubMed
Murphy, D. L., Campbell, I. & Costa, J. L. (1978) Current status of the indoleamine hypothesis of affective disorders. In: Psychopharmacology: A generation of progress, ed. Lipton, M. A., DiMascio, A. & Killam, K. F., pp. 1235–48. Pergamon Press. ]HA]Google Scholar
Nagayama, H., Hingtgen, J. N. & Aprison, M. H. (1980) Pre- and postsynaptic serotonergic manipulations in an animal model of depression. Pharmacology, Biochemistry and Behavior 13:575579. ]MHA]CrossRefGoogle ScholarPubMed
Nagayama, H., Hingtgen, J. N. & Aprison, M. H. (1981) Postsynaptic action by four antidepressive drugs in an animal model of depression. Pharmacology, Biochemistry and Behacior 15:125–30. ]MHA]CrossRefGoogle ScholarPubMed
Nahorski, S. R., Howlett, D. R., Redgrave, P. (1979) Loss of betaadrenergic binding sites in rat striatum following kainic acid lesions. European Journal of Pharmacology 60:249–52. ]taEAS]CrossRefGoogle Scholar
Nemeroff, C. B. & Evans, D. L. (1983) Concurrent use of antidepressants and propranolol: Case report and theoretical considerations. Biological Psychiatry 18:237–41. ]rEAS]Google ScholarPubMed
Nielsen, M. & Braestrup, C. (1977) Chronic treatment with desipramine causes a sustained decrease of 3,4-dihydroxyphenylglycol-sulfate and total 3-methoxy-4-hydroxyphenylglycol in the rat brain. Naunyn-Schmiedebergs Archives of Pharmacology 300:8792. ]taEAS]CrossRefGoogle ScholarPubMed
Nomura, S., Watanabe, M., Ukei, N. & Nakazawa, T. (1981) Stress and β-adrenergic receptor binding in the rat's brain. Brain Research 224:199203. ]taEAS]CrossRefGoogle ScholarPubMed
Nomura, Y., Kajiyama, H. & Oki, K. (1982) Influence of repeated administration of desmethylimipramine on beta adrenergic and muscarinic cholinergic receptors and 45Ca+ + binding to sarcoplasmic reticulum in the rat heart. Journal of Pharmacology and Experimental Therapeutics 223:834–40. [rEAS]Google ScholarPubMed
Nomura, Y., Kajiyama, H. & Segawa, T. (1982) Alteration in sensitivity to isoproterenol and acetylcholine in the rat heart after repeated administration of isoproterenol. Journal of Pharmnacology and Experimental Therapeutics 220:411–16. ]taEAS]Google ScholarPubMed
Novak-Hofer, I., Malnoe, A. & Stein, E. A. (1980) Regulation of a presynaptic adenylate cyclase from bovine cerebellum by beta-adrenergic receptors. Biochimica and Biophysica Acta 599:167–74. [WBE]CrossRefGoogle ScholarPubMed
Ogren, S. O., Fuxe, K., Agnati, L. F., Gustafsson, J. A., Jonsson, G. & Holm, A. C. (1979) Reevaluation of the indoleamine hypothesis of depression: Evidence for a reduction of functional activity of central 5-HT systems by antidepressant drugs. Journal of Neural Transmission 46:85103. [MHA]CrossRefGoogle ScholarPubMed
Olpe, H. R. & Schellenberg, A. (1980) Reduced sensitivity of neurons to noradrenaline after chronic treatment with antidepressant drugs. European Journal of Pharmacology 63:713. [AF, taEAS]CrossRefGoogle ScholarPubMed
Olpe, H. R. & Schellenberg, A. (1981) The sensitivity of cortical neurons to serotonin. Effect of chronic treatment with antidepressants, serotonin-uptake inhibitors and monoamine-oxidase blocking drugs. Journal of Neural Transmission 51:233–44. [rEAS]CrossRefGoogle ScholarPubMed
Ostman, I. & Nyback, H. (1976) Adaptive changes in central and peripheral noradrenergic neurons in rats following chronic exercise. Neuroscience 1:4147. [rEAS]CrossRefGoogle ScholarPubMed
Ostman-Smith, I. (1976) Prevention of exercise-induced hypertrophy in rats by chemical sympathectomy. Neuroscience 1:497507. [taEAS]CrossRefGoogle ScholarPubMed
Ostman-Smith, I. (1979) Adaptive changes in the sympathetic nervous system and some effector organs of the rat following long term exercise or cold acclimation and the role of cardiac sympathetic nerves in the genesis of compensatory cardiac hypertrophy. Acta Physiologica Scandinavica (supp. 477):1118. [taEAS]Google Scholar
Oswald, I., Brezinova, V. & Dunleavy, D. L. F. (1973) On the slowness of action of tricyclic antidepressant drugs. British Journal of Psychiatry 120:673–77. [taEAS]CrossRefGoogle Scholar
Palmer, G. C., Wagner, H. R. & Putnam, R. W. (1976) Neuronal localization of the enhanced adenylate cyclase responsiveness to catecholamine in the rat cerebral cortex following reserpine injections. Neuropharmacology 15:695702. [taEAS]CrossRefGoogle ScholarPubMed
Pandey, G. N., Heinze, W. J., Brown, B. D. & Davis, J. M. (1979) Electroconvulsive shock treatment decreasesβ-adrenergic receptor sensitivity in rat brain. Nature 280:234–35. [JV]CrossRefGoogle ScholarPubMed
Paykel, E. S., Price, J. S., Gillan, R. U., Palmai, C. & Chesser, E. S. (1968) A comparative trial of imipramine and chlorpromazine in depressed patients. British Journal of Psychiatry 114:1281–87. [taEAS]CrossRefGoogle ScholarPubMed
Peroutka, S. J., Snyder, S. H. (1980) Long term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210:8890. [rEAS]CrossRefGoogle ScholarPubMed
Peroutka, S. J., Snyder, S. H. (1983) Multiple serotonin receptors and their physiological significance. Federation Proceedings 42:213–17. [MHA]Google ScholarPubMed
Perry, E. K., Marshall, E. F., Blessed, G., Tomlinson, B. E. & Perry, R. H. (1983) Decreased imipramine binding in the brains of patients with depressive illness. British Journal of Psychiatry 142:188–92. [HSA]CrossRefGoogle ScholarPubMed
Petrie, W. M., Maffucci, H. J., Woosley, R. L. (1982) Propranolol and depression. American Journal of Psychiatry 139:9293. [WBE, taEAS]Google ScholarPubMed
Pettigrew, J. D., Kasamatsu, T. (1978) Local perfusion of noradrenaline maintains visual cortical plasticity. Nature 271:761–63. [taEAS]CrossRefGoogle ScholarPubMed
Petty, E., Sherman, D. (1979) Reversal of learned helplessness by imipramine. Communications in Psychopharmacology 3:371–73. [taEAS]Google ScholarPubMed
Phillis, J. W. (1977) The role of cyclic nucleotides in the CNS. Canadian Journal of Neurological Sciences 4:151–95. [taEAS]CrossRefGoogle ScholarPubMed
Pilc, A. & Vetulani, J. (1982a) Attenuation by chronic imipramine treatment of [3H]clonidine binding to cortical membranes and of clonidine-induced hypothermia: The influence of central chemosympathectomy. Brain Research 238:499504. ]CrossRefGoogle ScholarPubMed
Pilc, A., Vetulani, J. (1982b) Depression by chronic electroconvulsive treatment of clonidine hypothermia and [3H]clonidine binding to rat cortical membranes. European Journal of Pharmacology 80:109113. [CBS, JV]CrossRefGoogle ScholarPubMed
Platt, J. E., Stone, E. A. (1982) Chronic restraint stress elicits a positive antidepressant response on the forced swim test. European Journal of Pharmacology 82:179–81. [rEAS]CrossRefGoogle ScholarPubMed
Platt, J. E., Trullas, R., Slucky, A. V. & Stone, E. A. (1983) Interrelationships between adaptation to stress and antidepressant treatment. (abstract) Society for Neuroscience Abstracts, in press. [rEAS]Google Scholar
Porsolt, R. D., Anton, G., Blavet, N. & Jalfre, M. (1978) Behavioral despair in rats: A new model sensitive to antidepressant treatments. European Journal of Pharmacology 4:379–81. [rEAS]CrossRefGoogle Scholar
Post, R. M., Goodwin, F. K. (1978) Approaches to brain amines in psychiatric patients: A reevaluation of cerebrospinal fluid studies. In: Handbook of psychopharmacology, vol. 13, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. D.. Plenum Press. [HA]Google Scholar
Post, R. M., Jimerson, D. C., Reus, V. I., Goodwin, F. K., Silberman, E. & Bunney, W. E. (1979) Dopaminergic agents in affective illness: Studies with pirebidil, amphetamine and pimozide. In: Catecholamnines: Basic and clinical Frontiers, vol. 2, ed. Usdin, E., Kopin, I. J. & Barchas, J.. Pergamon Press. [HA]Google Scholar
Praag, H. M. van (1978) Amine hypotheses of affective disorder. In: Handbook of psycho pharmacology, vol. 13, ed. Iversen, L. L., Iversen, S. D. & Snyder, S. H.. Plenum Press. [HA]Google Scholar
Praag, H. M. van (1979) Central serotonin: Its relation to depression vulnerability and depression prophylasix. In: Biological psychiatry today, ed. Objols, E., Ballus, C., Monclus, E. Gonzales & Pujol, J., pp. 485–98. Elsevier. [MHA]Google Scholar
Praag, H. M. van (1981) Management of depression with serotonin precursors. Biological Psychiatry 16:291310. [MHA, rEAS]Google ScholarPubMed
Praag, H. M. van (1983) In search of the mode of action of antidepressants. Neuropharmacology 22:433–40. [MHA]Google ScholarPubMed
Prange, A. J. Jr (1972) In discussion Feighner, J. P., King, L. J., Schuckit, M. A., Croughan, J. & Briscoe, W., Hormonal potentiation of imipramine and ECT in primary depression. American journal of Psychiatry 128:1230–38. [taEAS]Google Scholar
Prange, A. J. Jr & Loosen, P. T. (1982) Hormone therapy in depressive diseases. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G., pp. 289–96. Raven Press. [taEAS]Google Scholar
Prange, A. J. Jr, Wilson, J. C., Rabon, A. M. & Lipton, M. A. (1969) Enhancement of imipramine antidepressant activity by thyroid hormone. American Journal of Psychiatry 126:457–69. [taEAS]CrossRefGoogle ScholarPubMed
Prasad, K. N. (1975) Differentiation of neuroblastoma cells in culture. Biological Reciew 50:129–66. [taEA5]Google ScholarPubMed
Prowse, J., Noreika, L., Gerhardt, S., Leibnian, J. (1981) Selective attenuation of intracranial self stimulation by the beta-2 agonist, salbutamol. (abstract) Federation Proceedings 40(3):293. [RJK]Google Scholar
Przegalinski, E., Kordecka-Magiera, A., Mogilnicka, E. & Maj, J. (1981) Chronic treatment with some atypical antidepressants increases the brain level of 3-methoxy-4-hydroxyphenylglycol (M HPC) in rats. Psychopharmacology 74:187–90. [taEAS]CrossRefGoogle Scholar
Rabinowitz, M. & Zak, R. (1972) Biochensical and cellular changes in cardiac hypertrophy. Annual Reuiew of Medicine 23:245–62. [taEAS]CrossRefGoogle ScholarPubMed
Racagni, G., Mocchetti, I., Renna, G. & Cuomo, V. (1982) In vivo studies on central noradrenergic synaptic mechanisms after acute and chronic antidepressant treatment: Biochemical and behavioral comparison. journal of Pharmacology and Experimental Therapeutics 223:227-34. [CBS]Google ScholarPubMed
Raskin, A., Schulterbrandt, J. C., Reatig, N. & MeKeon, J. J. (1970) Differential response to chlorpromazine, imipramine and placebo. Archives of General Psychiatry 23:164–73. [taEAS]CrossRefGoogle ScholarPubMed
Redmond, D. E. (1977) Alterations in the function of the nucleus locus coeruleus: A possible model for studies in anxiety. Animal models in psychiatry and ncurology, ed. Hanin, L. & Usdin, E., pp. 293304. Pergamon Press. [LJS]Google Scholar
Reisine, T., Johnson, R., Wiech, N., Ursillo, R. & Yamamura, H. I. (1982) Rapid desensitization of central beta-receptors and tip-regulation of alpha2-receptors following antidepressant treatnsent. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G., pp. 6367. Raven Press. [CBS]Google Scholar
Reisine, T. D., U'Prichard, D. C., Wiech, N. L., Ursillo, R. C. & Yamamura, H. I. (1980) Effects of combined administration of amphetamine and iprindole on brain adrenergic receptors. Brain Research 188:587–92. [tarEAS]CrossRefGoogle ScholarPubMed
Riess, W., Dubey, E. W., Funfgeld, P., Imhof, P., Hurzeler, H., Matussek, N., Rajagopalan, T. G., Raschdorf, F. & Schmid, K. (1975) The pharmocokinetic properties of maprotihine (Lsidiomil) in man, journal of International Medical Research 3 (supp. 2):1641. [taEAS]Google Scholar
Risch, S. C., Huey, L. Y. & Janowsky, D. S. (1979) Plasma levels of tricyclic antidepressants and clinical efficacy: Review of the literature, part II. journal of Clinical Psychiatry 40:5869. [taEAS]Google ScholarPubMed
Roberts, D. C. S. & Bloom, F. E. (1981) Adrenal steroid-induced changes in beta-adrenergic receptor binding in rat hippocampus. European Journal of Pharmacology 74:3742. [IaEAS]CrossRefGoogle ScholarPubMed
Robinson, S. E., Mobley, P. L., Smith, H. E. & Sulser, F. (1978) Structural and steric requirements for β-pheimethylamines as agonists of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedebergs Archices of Pharmacology 303:175–80. [taEAS]CrossRefGoogle ScholarPubMed
Roisen, F. J. & Murphy, R. A. (1973) Neurite development in vitro. II. The role of microfilament and microtubules in dubtyrl adenosine 3′,5′-cyclic monophosphate and nerve-growth factor stimulated maturation, journal of Neurobiology 4:397412. [taEAS]CrossRefGoogle Scholar
Roth, K. A. & Katz, R. J. (1981) Further studies on a novel animal model of depression: Therapeutic effects of a tricyclic antidepressant. Neuroscience and Biobehavioral Reviews 5:253–58. [taEAS]CrossRefGoogle ScholarPubMed
Roth, K. A., Katz, R. J., Sibel, M., Mefford, I. N., Barchas, J. D. & Carroll, B. J. (1981) Central epinergic inhibition of corticosterone release in rat. Life Sciences 28:2389–94. [KAR]CrossRefGoogle ScholarPubMed
Roth, K. A., Mefford, I. N. & Barchas, J. D. (1982) Epinephrine, norepinephrine, dopamine, and serotonin: Differential effects of acute and chronic stress on regional brain amines. Brain Research 239:417–24. [KAR]CrossRefGoogle ScholarPubMed
Sabol, S. L. & Nirenberg, M. (1979) Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by α-adrenergic receptors. Journal of Biological Chemistry 254:1913–20. [taEAS]CrossRefGoogle ScholarPubMed
Sachar, E. J., Hellman, L., Fukushima, D. K. & Gallagher, T. F. (1970) Cortisol production in depressive illness. Archives of General Psychiatry 23:289–98. [taEAS]CrossRefGoogle ScholarPubMed
Sachar, E. J., Hellman, L., Roffwarg, H., Halpern, F. S., Fukushima, D. K. & Gallagher, T. F. (1973) Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Archives of General Psychiatry 28:1924. [taEAS]CrossRefGoogle ScholarPubMed
Sarai, K., Frazer, A., Brunswick, D. & Mendels, J. (1978) Desmethylimipramine-induced decrease in beta-adrenergic receptor binding sites in rat cerebral cortex. Biochemical Pharmacology 27:2179–81. [AF]CrossRefGoogle Scholar
Sauter, A. M., Baba, Y., Stone, E. A. & Goldstein, M. (1978) Effect of stress and of phenylethanolamine-N-methyltransferase inhibition on central norepinephrine and epinephrine levels. Brain Research 144:415–19. [KAR]CrossRefGoogle ScholarPubMed
Schildkraut, J. J. (1965) The catecholamitie hypothesis of affective disorders: A review of supporting evidence. American journal of Psychiatry 122:509–22. [taEAS]CrossRefGoogle ScholarPubMed
Schildkraut, J. J. (1969) Neuropharmacology and the affective disorders. Second part. New England journal of Medicine 281:248–55. [taEAS]CrossRefGoogle Scholar
Schildkraut, J. J. (1978) Current status of the catecholamine hypothesis of affective disorders. In: Psychopharmacology: A generation of progress, ed. Lipton, M. A., DiMascio, A. & Killam, K. E., pp. 1223–34. Raven Press. [taEAS]Google Scholar
Schildkraut, J. J. & Kety, S. S. (1967) Biogenic amines and emotion. Science 156:2129. [RAD, YHH, taEAS, JV]CrossRefGoogle ScholarPubMed
Schneyer, C. A. & Hall, D. H. (1967) Autonomic regulation of the immature and adult rat parotid gland. In: Secretory mechanisms of salivary glands, eds. Schneyer, C. A. & Schneyer, L. H., pp. 155–77. Academic Press. [taEAS]Google Scholar
Schoffelmeer, A. & Mulder, A. H. (1982) 3H-noradrenaline and 3-H-5- hydroxytryptamine release from rat brain slices and its presynaptic alphaadrenergic modulation after long-term desipramine pretreatment. NauynSchmiedebergs Archives of Pharmacology 318:173–80. [RMC]CrossRefGoogle Scholar
Schultz, J. (1976) Psychoactive drug effects on a system which generates cyclic AMP in brain. Nature 261:417–18. [taEAS]CrossRefGoogle ScholarPubMed
Schultz, J. E., Siggins, G. R., Schocker, F. W., Turck, M. & Bloom, F. E. (1981) Effects of prolonged treatment with lithium and tricyclic antidepressants on discharge frequency, norepinephrine responses and beta receptor binding in rat cerebellum: Electrophysiological and biochemical comparison. journal of Pharmacology and Experimental Therapeutics 216:2838. [AF, taEAS]Google ScholarPubMed
Schultz, J. E., Siggins, G. R., Turck, M. & Bloom, P. E. (1982) Electrophysiological and biochemical comparison of the acute and chronic effects of lithium and tricyclic antidepressants. Advances in Biochemical Psychopharmacology 31:347–58. [LJS]Google ScholarPubMed
Schweitzer, J. W., Schwartz, R. & Friedhoff, A. J. (1979) Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. journal of Neurochemistry 33:377–79. [taEAS]CrossRefGoogle ScholarPubMed
Scott, J. A. & Crews, F. T. (1983) Rapid decrease in rat brain beta adreisergic receptor binding during combined antidepressant alpha-2 antagonist treatment. Journal of Pharmacology and Experimental Therapeutics 224:640–46. [CBS]Google ScholarPubMed
Scuvee-Moreau, J. J. & Svensson, T. H. (1982) Sensitivity in vivo of central α2- and opiate receptors after chronic treatment with various antidepressants. Journal of Neural Transmission 54:5163. [CBS]CrossRefGoogle Scholar
Segal, D. S., Kuczenski, R. & Mandell, A. J. (1974) Theoretical implications of drug-induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biological Psychiatry 9:147159. [rEAS]Google ScholarPubMed
Segal, M. & Bloom, F. E. (1974) The action of norepinephrine in the rat hippocaunpus I. lontophoretic studies. Brain Research 72:7997. [YHH]CrossRefGoogle Scholar
Segawa, T., Mizuta, T. & Uehara, M. (1982) Role of central serotonergic system as related to pathogenesis of depression: Effect of antidepressants on rat central serotonergic activity. In: New vistas in depression, ed. Langer, S. Z., Takahashi, R., Segawa, T. & Briley, M., pp. 319. Pergamon Press. [MEIA]Google Scholar
Sellinger-Barnette, M. M., Mendels, J. & Frazer, A. (1980) The effect of psychoactive drugs on beta-adrenergic receptor binding sites in rat brain. Neuropharmacology 19:447–54. [taEAS]CrossRefGoogle ScholarPubMed
Selye, H., Veilleux, R. & Cantin, T. (1961) Excessive stimulation of salivary gland growth by isoproterenol. Science 133:4445. [taEAS]CrossRefGoogle ScholarPubMed
Sengupta, K., Tong, K. J. & Allen, D. O. (1981) Relationship among isoproterenol, cyclic AMP, cyclic AMP-dependent protein kinase and lipolysis in perfused fat cells. Journal of Pharmacology and Experimental Therapeutics 218:128–33. [taEAS]Google ScholarPubMed
Serra, G., Argiolas, A., Fadda, F. & Gessa, G. L. (1980) Hyposensitivity of dopamine “autorcccptors” induced by chronic administration of tricyclic antidepressants. Pharmacological Research Communications 12:619–24. [taEAS]CrossRefGoogle Scholar
Serra, G., Argiolas, A., Fadda, F., Melis, M. R. & Gessa, G. L. (1981) Repeated electroconvulsive shock prevents the sedative effect of small doses of apomorphine. Psychopharmacology 73:94196. [taEAS]CrossRefGoogle ScholarPubMed
Serra, G., Melis, M. R., Argiolas, A., Fadda, F. & Gessa, G. L. (1981) REM sleep deprivation induces subsensitivity of dopamine receptors mediating sedation in rats. European Journal of Pharmacology 72:131–35. [taEAS]CrossRefGoogle ScholarPubMed
Sethy, V. H. & Harris, D. G. (1981) Effect of norepinephrine uptake blocker on β-adrenergic receptors of the rat cerebral cortex. European journal of Pharmacology 75:5356. [taEAS]CrossRefGoogle ScholarPubMed
Shepherd, M. (1965) Clinical trial of the treatment of depressive illness. Report to the Medical Research Council by its Clinical Psychiatry Committee. British Medical journal 1:881–86. [taEAS]Google Scholar
Shepherd, R. E., Noble, E. G., Klug, G. A. & Gollnick, P. D. (1981) Lipolysis and cAMP accumulation in adipocytes in response to physical training. Journal of Applied Physiology 50:143–48. [tarEAS]CrossRefGoogle ScholarPubMed
Sheppard, J. R. & Prasad, K. N. (1973) Cyclic AMP levels and the morphological differentiation of mouse neuroblastoma cells. Life Sciences 12:431–39. [taEAS]CrossRefGoogle Scholar
Shopsin, B., Friedman, E. & Cershon, S. (1976) Parschloroplscnylalaninc reversal of tranylcypromine effects in depressed patients. Archives of General Psychiatry 33:811–19. [rEAS]CrossRefGoogle ScholarPubMed
Shopsin, B., Wilk, S., Sathananthan, C., Cershon, S. & Davis, K. (1974) Catecholamines and affective disorders revised: A critical assessment. Journal of Nervous and Mental Diseases 158:369–83. [taEAS]CrossRefGoogle ScholarPubMed
Siever, L. J., Cohen, R. M. & Murphy, D. L. (1981) Antidepressants may induce α2-adrenergic autoreceptor desensitization in man. American journal of Psychiatry 138:681–82. [RMC, JV]Google Scholar
Siever, L. J., Uhde, T. W. & Murphy, D. L. (1982) Possible subsensitization of alpha2-adrenergic receptors by chronic monoamine oxidase inhibitor treatment in psychiatric patients. Psychiatry Research 6:293302. [US, CBS]CrossRefGoogle Scholar
Siever, L. J., Uhde, T. W., Potter, W. Z. & Murphy, D. L. (1983) Norepinephrine in the affective disorders: Receptor assessment strategies. In: Norepinephrine: Clinical aspects, ed. Lake, C. R. & Ziegler, M. G.. Williams & Wilkins Co. [LJS]Google Scholar
Siever, L. J., Uhde, T. W., Silberman, E. K., Jimerson, D. C., Aloi, J. A., Post, R. M. & Murphy, D. L. (1982) Growth hormone response to clonidine as a probe of noradrenergic receptor responsiveness in affective disorder patients and controls. Psychiatry Research 6:171–83. [CBS]CrossRefGoogle ScholarPubMed
Siggins, G. R. & Schultz, J. E. (1979) Chronic treatment with lithium or despramine alters discharge frequency and norepinephrine responsiveness of cerebellar Purkinje cells. Proceedings of the National Academy of Sciences 76:5987–91. [taEAS]CrossRefGoogle ScholarPubMed
Smith, C. B. & Carcia-Sevilla, J. A. (1982) Alpha2 adrenoreceptors in endogenous depression. Advances in the Biosciences 40:99106. [CBS, rES]Google Scholar
Smith, C. B., Garcia-Sevilla, J. A. & Hollingsworth, P. J. (1981) Alpha2 adrenoceptors in rat brain are decreased after long-term tricyclic antidepressant drug treatment. Brain Research 210:413–18. [CBS, taEAS, JV].CrossRefGoogle Scholar
Smith, C. B., Hollingsworth, P. J., Garcia-Sevilla, J. A. & Zis, A. P. (1983) Platelet alpha2 adrenoreceptors are decreased in number after antidepressant therapy. Progress in Neuro-Psychopharmacology and Biological Psychiatry 7, in press. [CBS]CrossRefGoogle Scholar
Smith, R. E. & Horwitz, B. A. (1969) Brown fat and thermnogenesis. Physiological Reviews 49:330425. [taEAS]CrossRefGoogle Scholar
Sokoloff, L. (1981) Relationships among local functional activity, energy, metabolism and blood flow in the central nervous system. Federation Proceedings 40:2311–16. [RMC]Google ScholarPubMed
Spyraki, C. & Fibiger, H. C. (1980) Functional evidence for subsensitivity of noradrenergic alpha2 receptors after chronic desipramine treatment. Life Sciences 27:1863–67. [JV]CrossRefGoogle Scholar
Spyraki, C. (1981) Behavioral evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. European journal of Pharmacology 74:195206. [rEAS]CrossRefGoogle ScholarPubMed
Stanford, S. C. & Nutt, D. J. (1982) Comparison of the effects of repeated electroconvulsive shock on α2- and β-adrenoceptors in different regions of rat brain. Neuroscience 7:1753–57. [CBS]CrossRefGoogle Scholar
Stanley, M., Virgilio, J. & Gershon, S. (1982) Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science 216:1337–39. [HSA]CrossRefGoogle ScholarPubMed
Stanton, H. C., Brenner, G. & Mayfield, E. D. (1969) Studies on isoproterenol-induced cardiomegaly in rats. American Heart Journal 77:7280. [taEAS]CrossRefGoogle ScholarPubMed
Starkman, M. N., Schteingart, D. E. & Schork, M. A. (1981) Depressed mood and other psychiatric manifestations of Cushing's Syndrome: Relationship to hormone levels. Psychosomatic Medicine 43:318. [taEAS]CrossRefGoogle ScholarPubMed
Stein, L., Wise, C. D. & Belluzi, J. D. (1977) Neuropharmacology of reward and punishment. In: handbook of psychopharmacology, vol. 8, pp. 2549. Plenum Press. [LJS]Google Scholar
Stone, E. A. (1975) Effects of stress on sulfated glycol metabolites of brain norepinephrine. Life Sciences 16:1725–30. [taEAS]CrossRefGoogle ScholarPubMed
Stone, E. A. (1978) Effect of stress on norepinephrine-stimulated accumulation of cyclic AMP in rat brain slices. Pharmacology Biochemistry and Brhavior 8:585–91. [taEAS]Google Scholar
Stone, E. A. (1979 a) Reduction by stress of norepinephrine-stimulated accumulation of cyclic AMP in rat cerebral cortex. Journal of Neurochemistry 32:1335–37. [taEAS]CrossRefGoogle ScholarPubMed
Stone, E. A. (1979 b) Subsensitivity to norepinephrine as a link between adaptation to stress and antidepressant therapy: An hypothesis. Research Communications in Psychology, Psychiatry and Behavior 4:241–55. [taEAS]Google Scholar
Stone, E. A. (1982) Noradrenergic function during stress and depression: An alternative view. Behavioral and Brain Sciences 5:122. [taEAS]CrossRefGoogle Scholar
Stone, E. A. & McCarty, R. (1983) Adaptation to stress: Tyrosine hydroxylase activity and catecholamine release. Neurosciences and Biobehavioral Reviews 7:2934. [rEAS]CrossRefGoogle ScholarPubMed
Stone, E. A. & Platt, J. E. (1982) Brain adrenergic receptors and resistance to stress. Brain Research 237:405–14. [taEAS]CrossRefGoogle ScholarPubMed
Stone, E. A., Platt, J. E., Trullas, R. & Slucky, A. V. (1983) Comparison of effects of stress and antidepressants on noradrenergic receptor function in rat brain. (abstract) Society for Neuroscience Abstracts, in press. [rEAS]Google Scholar
Su, Y. F., Cubeddu, L. & Perkins, J. P. (1976) Regulation of adenosine 3′: 5′- monophosphate content of human astrocytoma cells: Desensitization to catecholamines and prostaglandins. Journal of Cyclic Nucleotide Research 2:257–70. [taEAS]Google ScholarPubMed
Su, Y. F., Harden, T. K. & Perkins, J. P. (1980) Catecholamine-speciflc desensitization of adenylate cyclase. Journal of Biological Chemistry 255:7410–19. [IaEAS]CrossRefGoogle ScholarPubMed
Sugrue, M. G. (1980 a) Changes in rat brain monoamine turnover following chronic antidepressant administration. Life Sciences 26:423–29. [taEAS]CrossRefGoogle ScholarPubMed
Sugrue, M. F. (1980 b) The inability of chronic mainserin to block central α2-adrenoceptors. European Journal of Pharmacology 68:377–80. [taEAS]CrossRefGoogle Scholar
Sugrue, M. F. (1981) Effects of acutely and chronically administered antidepressants on the clonidine-induced decrease in rat brain 3-methoxy-4-hydroxyphenylethylene glycol sulphate content. Life Sciences 28:377–84. [taEAS]CrossRefGoogle Scholar
Sugrue, M. F. (1982 a) Effect of chronic antidepressants on rat brain α2-adrenoceptor sensitivity. In: Typical and atypical antidepressants: Molecnhr mechanisms, ed. Costa, E. & Racagni, C., pp. 5562. Raven Press. [CBS, taEAS]Google Scholar
Sugrue, M. F. (1982 b) A study of the effects of chronic salbutamol on rat brain monoaminergic systems. journal of Pharmacy and Pharmacology 34:446–49. [taEAS]CrossRefGoogle ScholarPubMed
Sugrue, M. F. (1982 c) A study of the sensitivity of rat brain alpha2-adrenoceptors during chronic antidepressant treatments. Naunyn-Schmiedebergs Archives of Pharmacology 320:9096. [rEAS, JV]CrossRefGoogle Scholar
Sugrue, M. F. (1983) Do antidepressants possess a common mechanism of action? Biochemical Pharmacology, in press. [MFS]CrossRefGoogle Scholar
Sulser, F. (1978 a) Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: Molecular approaches to an understanding of affective disorders. Pharmakopsychiatrie-NeuroPsychopharmakologie 11:4352. [HA, tarEAS]CrossRefGoogle ScholarPubMed
Sulser, F. (1978 b) Tricyclic antidepressants: Animal pharmacology (biochemical and metabolic aspects). In: Handbook of psychopharmacology, ed. lversen, L. L., Iversen, S. D. & Snyder, S. H., pp. 157–98. Plenum Press. [AF]Google Scholar
Sulser, F. (1982) Antidepressant drug research: Its impact on neurobiology and psychobiology. In Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G., pp. 120. Raven Press. [taEAS]Google Scholar
Sulser, F., Vetulani, J. & Mobley, P. L. (1978) Mode of action of antidepressant drugs. Biochemical Pharmacology 27:257–61. [taEAS, MFS, JV]CrossRefGoogle ScholarPubMed
Svedmyr, N. L. V., Larsson, S. A. & Thiringen, G. K. (1976) Development of “resistance” in beta-adrenergic receptors of asthmatic patients. Chest 69:479–83. [taEAS]CrossRefGoogle ScholarPubMed
Svensson, T. H. (1980) Effect of chronic treatment with tricyclic antidepressant drugs on identified brain noradrenergic and serotoncrgic neurons. Acta Psychiatrica Scandinavica 61 (supp. 280):121–31. [taEAS]CrossRefGoogle ScholarPubMed
Svensson, T. H. & Usdin, T. (1978) Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: α-receptor mediation. Science 202:1089–91. [CBS, taEAS]CrossRefGoogle ScholarPubMed
Swanson, L. W. (1981) A direct projection from Ammon's horn to prefrontal cortex in the rat. Brain Research 217:150–54. [YHH]CrossRefGoogle ScholarPubMed
Swanson, L. W. & Cowan, W. M. (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. journal of Comparative Neurology 172:4984. [YHH]CrossRefGoogle ScholarPubMed
Swillens, S., Lefort, E., Barber, R., Butcher, R. W. & Dumont, J. E. (1980) Consequences of hormone induced desensitization of adenylate cyclase in intact cells. Biochemical Journal 188:169–74. [US, tarEAS]CrossRefGoogle ScholarPubMed
Takahashi, R., Tateishi, T., Yoshide, H. & Hironaka, I. (1982) Effect of chronic treatment with antidepressant drugs on scrotonergic receptor binding activity in normal and tetrabenazine depression rat, In: New vistas in depression, ed. Langer, S. Z., Takahasi, R., Segawa, T. & Briley, M., pp. 2936. Pergamon Press. [MHA]Google Scholar
Tang, S. W., Helmeste, D. M. & Stancer, H. C. (1978) The effect of acute and chronic desipramine and amitriptyline treatment on rat brain total 3- methoxy-4-hydroxyphenylglycol. Naunyn-Schmiedebergs Archives of Pharmacology 305:207–11. [taEAS]CrossRefGoogle Scholar
Taylor, M. A. (1982) Indications for electroconvulsive treatment. In: Elect roconvulsive therapy: Biological foundations amid clinical applications, ed. Abrams, R. & Essman, W. B., PP. 740. Spectrum Publications. [taEAS]Google Scholar
Telner, J. I. & Singhal, R. F. (1981) Effects of nortriptyline treatment ois learned helplessness in the rat. Pharmiwcology Biochemistry and Behavior 14:823–26. [taEAS]CrossRefGoogle Scholar
Terry, L. C., Crowley, W. R., Lynch, C., Longserre, C. & Johnson, M. D. (1982) Role of central epinephrine in regulation of anterior pituitary hormone secretion. Peptides 3:311–18. [KAR]CrossRefGoogle ScholarPubMed
Thierry, A. M., Tassin, J. P., Blanc, G. & Glowinski, J. (1976) Selective activation of the mesocortical DA system by stress, Nature 263:242–44. [HA]CrossRefGoogle ScholarPubMed
Thoenen, H. & Oesch, F. (1973) New enzyme synthesis as a long-term adaptation to increased transmitter utilization. In: New concepts in neurotransmitter regulation, ed. Mandell, A. J., P. 3351. Plenum Press. [taEAS]CrossRefGoogle Scholar
Torda, T., Yamaguchi, I., Hirata, F., Kopin, I. J. & Axelrod, J. (1981 a) Mepacnne treatment prevents immobilization-induced desensitization of beta-adrenergic receptors in rat hypothalamus and brain stem. Brain Research 205:441–44. [taEAS]CrossRefGoogle ScholarPubMed
Torda, T., (1981 b) Quinacrine-blocked desensitization of adrenoceptors after immobilization stress or repeated injection of isoproterenol in rats. journal of Pharmacology and Experimental Therapeutics 216:334–38. [taEAS]Google ScholarPubMed
U'Prichard, D. C. (1983) Characteristics of adrenergic presynaptic receptors in neurons. Paper presented by Dr. Sidney Hess Symposium organized by the Biochemical Pharmacology Discussion Group and the Section of Biochemistry of the New York Academy of Sciences, 05 24, New York City. [rEAS]Google Scholar
U'Prichard, D. C., Bechtel, W. D., Rouot, B. R. & Snyder, S. H. (1979) Multiple apparent alpha-moradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Molecular Pharmacology 16:4760. [US]Google ScholarPubMed
U'Prichard, D. C. & Kvetnansky, R. (1980) Central and peripheral adrenergic receptors in acute and repeated immobilization stress. In: Second international symposium on catecholamines and stress, ed. Usdin, E., Kvetnansky, B. & Kopin, I., pp. 299308. Elsevier/North Holland. [tarEAS]Google Scholar
Valzelli, L. & Garattini, S. (1968) Biogenic amines in discrete brain areas after treatment with monoamine oxidase inhibitor, journal of Neurochemistry 45:259–61. [WBE]CrossRefGoogle Scholar
Vetulani, J. (1982) Adaptive changes as the mode of action of antidepressant treatments. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, C., pp. 2736. Raven Press. [CBS, JV]Google Scholar
Vetulani, J. (1983) Changes in responses of central aminergic structures after chronic ECS. In: Basic mechanisms of ECT action, ed. Lerer, B., Weiner, R. D. & Belmaker, R. H.. Libbey Co. [JV]Google Scholar
Vetulani, J., Antkiewmcz-Michaluk, L., Golembiowska-Nikitin, K., Michaluk, J., Pilc, A. & Rokosz, A. (1980) The effect of multiple imipramine administration on monoaminergic systems of the rat brain. Polish Journal of Pharmacology and Pharmacy 32:523–30. [JV]Google ScholarPubMed
Vetulani, J. & Pilc, A. (1982) Postdecapitation convulsions in the rat measured with an animex motility meter: Relation to central α-adrenoceptors. European Journal of Pharmacology 85:269–75. [JV]CrossRefGoogle ScholarPubMed
Vetulani, J., Stawarz, R. J., Dingell, J. W. & Sulser, F. (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedebergs Archives of Pharmacology 239:109–14. [YHH, LJS, taEAS]CrossRefGoogle Scholar
Vetulani, J., Stawarz, R. J. & Sulser, F. (1976) Adaptive mechanisms of the noradrenergic cyclic AMP generating system in the limbic forebrain of the rat: Adaptation to persistent changes in the availability of norepinephrine (NE). Journal of Neurochemistry 27:661–66. [JV]CrossRefGoogle ScholarPubMed
Vetulani, J. & Sulser, F. (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature 275:495–96.[JV]CrossRefGoogle Scholar
von, Voigtlander P. F., Triezenberg, H. J. & Losey, E. G. (1978) Interaction between clonidine and antidepressant drugs: A method for identifying antidepressant-like agents. Ncuropharmacology 17:375–81. [rEAS, JV]Google Scholar
Von, Zersseis D. & Doerr, P. (1980) The role of the hypothalamo-pituitary-adrenal cortical system in psychiatric disorders. Advances in Biological Psychiatry 5:85106. [AF]Google Scholar
WaaI, H. J. (1967) Propranolol-induced depression. British Medical Journal 2:50. [taEAS]Google Scholar
Waldmeier, P. C. (1981) Noradrenergic transmission in depression: Under or over function? Pharmakopsychiatry 14:39. [taEAS]CrossRefGoogle ScholarPubMed
Waterhouse, B. D., Moises, H. C., Yeh, H. H. & Woodward, D. J. (1982) Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex; Mediation by beta adrenergic receptors. journal of Pharmacology and Experimental Therapeutics 221:495506. [taEAS]Google ScholarPubMed
Weiss, B., Heydorn, W. & Frazer, A. (1982) Modulation of the beta-adrenergic receptor-adenylate cyclase system following acute and repeated treatment with antidepressant. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G., pp. 3753. Raven Press. [AF]Google Scholar
Welch, J., Kim, H., Fallon, S., Liebman, J., Chiodo, L. A. & Antelman, S. M. (1982) Do antidepressants induce dopamine autoreceptor subsensitivity? Nature 298:301–3. [rEAS]CrossRefGoogle Scholar
Wells, H. (1962) Submandibular salivary gland weight increase by administration of isoproterenol to rats. American Journal of Physiology 202:423–28. [taEAS]CrossRefGoogle ScholarPubMed
Wells, H. & Peronace, A. A. V. (1967) Functional hypertrophy and atrophy of the salivary glands in rats. American Journal of Physiology 212:247–51. [taEAS]CrossRefGoogle Scholar
Vheatley, D. (1972) Potentiation of amitriptyline by thyroid hormone. Archives of General Psychiatry 26:229–33. [taEAS]Google Scholar
Whybrow, P. C. & Prange, A. J. (1981) A hypothesis of thyroid-catecholamine-receptor interaction. Archives of General Psychiatry 38:106–13. [taEAS]CrossRefGoogle ScholarPubMed
Widlocher, D., Lecrubier, Y., Jouvent, R., Puech, A. J. & Simon, P. (1977) Antidepressant effect of salbutamol. Lancet 2:767–68.[taEAS]CrossRefGoogle ScholarPubMed
Wielosz, M. (1981) Increased sensitivity to dopaminergic agonists after repeated electroconvulsive shock (ECS) in rats. Neuropharmacology 20:941–45. [tsEAS]CrossRefGoogle ScholarPubMed
Williams, L. T., Lefkowitz, R. J., Hathaway, D. R., Watanabe, A. M. & Besch, H. R. (1977) Thyroid hormone regulation of beta-adrenergic receptor number. Journal of Biological Chemistry 252:2787–89. [rEAS]CrossRefGoogle ScholarPubMed
Williams, R. S. (1980) Physical conditioning and membrane receptors for cardioregulatory hormones. Cardiovascular Research 14:177–82. [taEAS]CrossRefGoogle ScholarPubMed
Wode-Helgodt, B., Fyro, B., Cullberg, B. & Sedvall, G. (1977) Effect of chlorpromazine treatment on monoamine metabolite levels in cerebrospinal fluid of psychotic patients. Acta Psychiatrica Scandinavica 56:129–42. [taEAS]CrossRefGoogle ScholarPubMed
Wolfe, B. B., Harden, T. K., Sporn, J. B. & Molinoff, P. B. (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. Journal of Pharmacology and Experimental Therapeutics 207:446–57. [WBE, taEAS, Jv]Google ScholarPubMed
Wolfe, B. B., Minneman, K. P. & Molinoff, P. B. (1982) Selective increases in the density of cerebellar β1-adrenergic receptors. Brain Research 234:474–79. [WBE]CrossRefGoogle Scholar
Woodward, D. J., Moises, H. C., Waterhouse, B. D., Hoffer, B. J. & Freedman, R. (1979) Modulatory actions of norepinephrine in the central nervous system. Federation Proceedings 38:2109–16. [taEAS]Google ScholarPubMed
Yamaguchi, I., Torda, T., Hirata, F. & Kopin, I. J., (1981) Adrenoceptor desensitization after immobilization stress or repeated injection of isoproterenol. American Journal of Physiology 240:H691–96. [taEAS]Google ScholarPubMed
Zacharko, R. M., Bowers, W., Kokkinidis, L. & Anisman, H. (1983) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: Possible effects on reward processes. Behavioral Brain Research, in press. [HA]CrossRefGoogle Scholar
Zelnik, T. C., Carcia-Sevilla, J. A., Cameron, O. C. & Smith, C. B. (1982) Clinical response to clonidine and imipramine, and platelet α2- adrenoreceptors in a case of agoraphobia with panic attacks. Biological Psychiatry 17:761–66. [CBS]Google Scholar