Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:45:33.653Z Has data issue: false hasContentIssue false

Origins of music in credible signaling

Published online by Cambridge University Press:  26 August 2020

Samuel A. Mehr
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138, [email protected]; https://[email protected]; https://projects.iq.harvard.edu/epl Data Science Initiative, Harvard University, Cambridge, MA02138 School of Psychology, Victoria University of Wellington, Wellington6012, New Zealand
Max M. Krasnow
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138, [email protected]; https://[email protected]; https://projects.iq.harvard.edu/epl
Gregory A. Bryant
Affiliation:
Department of Communication, University of California Los Angeles, Los Angeles, CA90095, [email protected]; https://gabryant.bol.ucla.edu Center for Behavior, Evolution, & Culture, University of California Los Angeles, Los Angeles, CA90095
Edward H. Hagen
Affiliation:
Department of Anthropology, Washington State University, Vancouver, WA98686, USA. [email protected]; https://anthro.vancouver.wsu.edu/people/hagen

Abstract

Music comprises a diverse category of cognitive phenomena that likely represent both the effects of psychological adaptations that are specific to music (e.g., rhythmic entrainment) and the effects of adaptations for non-musical functions (e.g., auditory scene analysis). How did music evolve? Here, we show that prevailing views on the evolution of music – that music is a byproduct of other evolved faculties, evolved for social bonding, or evolved to signal mate quality – are incomplete or wrong. We argue instead that music evolved as a credible signal in at least two contexts: coalitional interactions and infant care. Specifically, we propose that (1) the production and reception of coordinated, entrained rhythmic displays is a co-evolved system for credibly signaling coalition strength, size, and coordination ability; and (2) the production and reception of infant-directed song is a co-evolved system for credibly signaling parental attention to secondarily altricial infants. These proposals, supported by interdisciplinary evidence, suggest that basic features of music, such as melody and rhythm, result from adaptations in the proper domain of human music. The adaptations provide a foundation for the cultural evolution of music in its actual domain, yielding the diversity of musical forms and musical behaviors found worldwide.

Type
Target Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

All authors contributed to this paper and are listed in order of reverse seniority.

References

Alexander, R. D. (1974). The evolution of social behavior. Annual Review of Ecology and Systematics, 5(1), 325383.CrossRefGoogle Scholar
Andersson, M. B. (1994). Sexual selection. Princeton University Press.CrossRefGoogle Scholar
Anshel, A., & Kipper, D. A. (1988). The influence of group singing on trust and cooperation. Journal of Music Therapy, 25(3), 145155.CrossRefGoogle Scholar
Apicella, C. L., & Feinberg, D. R. (2009). Voice pitch alters mate-choice-relevant perception in hunter–gatherers. Proceedings of the Royal Society B: Biological Sciences, 276(1659), 10771082.CrossRefGoogle ScholarPubMed
Ariew, A. (2002). Platonic and Aristotelian roots of teleological arguments. In Ariew, A., Cummins, R., & Perlman, M. (Eds.) Functions: New essays in the philosophy of psychology and biology (pp. 732). Oxford University Press.Google Scholar
Askin, N., Mauskapf, M., Koppman, S., & Uzzi, B. (2020). Do women produce more novel work than men? Gender differences in musical creativity. Working Paper.Google Scholar
Atkinson, Q. D., Meade, A., Venditti, C., Greenhill, S. J., & Pagel, M. (2008). Languages evolve in punctuational bursts. Science (New York, N.Y.), 319(5863), 588.CrossRefGoogle ScholarPubMed
Atwood, S., Mehr, S., & Schachner, A. (2020). Expectancy effects threaten the inferential validity of synchrony-prosociality research. PsyArXiv. https://doi.org/10.31234/osf.io/zjy8u.CrossRefGoogle Scholar
Bainbridge, C. M., Bertolo, M., Youngers, J., Atwood, S., Yurdum, L., Simson, J., … Mehr, S. A. (2021). Infants relax in response to unfamiliar foreign lullabies. Nature Human Behaviour, 5(2), 256–64. doi: 10.1038/s41562-020-00963-z.CrossRefGoogle Scholar
Baker, M. C. (2001). The atoms of language. Basic Books.Google Scholar
Barham, L. S. (2002). Systematic pigment use in the middle pleistocene of South-Central Africa. Current Anthropology, 43(1), 181190.CrossRefGoogle Scholar
Barrett, H. C., Peterson, C. D., & Frankenhuis, W. E. (2016). Mapping the cultural learnability landscape of danger. Child Development, 87(3), 770781.CrossRefGoogle Scholar
Barrow, J. D. (2005). The artful universe expanded. Oxford University Press.Google Scholar
Barton, R. (1985). Grooming site preferences in primates and their functional implications. International Journal of Primatology, 6(5), 519532.CrossRefGoogle Scholar
Bates, B. C. (1970). Territorial behavior in primates: A review of recent field studies. Primates, 11(3), 271284.CrossRefGoogle Scholar
Beetz, A., Uvnäs-Moberg, K., Julius, H., & Kotrschal, K. (2012). Psychosocial and psychophysiological effects of human-animal interactions: The possible role of oxytocin. Frontiers in Psychology, 3, 234.CrossRefGoogle ScholarPubMed
Behr, O., von Helversen, O., Heckel, G., Nagy, M., Voigt, C. C., & Mayer, F. (2006). Territorial songs indicate male quality in the sac-winged bat Saccopteryx bilineata (Chiroptera, Emballonuridae). Behavioral Ecology, 17(5), 810817.CrossRefGoogle Scholar
Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., & Klapuri, A. (2013). Automatic music transcription: Challenges and future directions. Journal of Intelligent Information Systems, 41(3), 407434.CrossRefGoogle Scholar
Benton, T. G., Baguette, M., Clobert, J., Bullock, J. M., & Oxford University Press. (2017). Dispersal ecology and evolution. Oxford University Press.Google Scholar
Benzon, W. (2001). Beethoven's anvil: Music in mind and culture. Basic Books.Google Scholar
Bertolo, M., Singh, M., & Mehr, S. A. (2021). Sound-induced motion in chimpanzees does not imply shared ancestry for music or dance. Proceedings of the National Academy of Sciences, 118(2), e2015664118.CrossRefGoogle Scholar
Best, E. (1924). The Māori (Vol. 2). H.H. Tombs.Google Scholar
Biernaskie, J. M., Perry, J. C., & Grafen, A. (2018). A general model of biological signals, from cues to handicaps. Evolution Letters, 2(3), 201209.CrossRefGoogle ScholarPubMed
Blacking, J. (1973). How musical is man? University of Washington Press.Google Scholar
Bornstein, M. H., Putnick, D. L., Rigo, P., Esposito, G., Swain, J. E., Suwalsky, J. T. D., … Venuti, P. (2017). Neurobiology of culturally common maternal responses to infant cry. Proceedings of the National Academy of Sciences, 114(45), E9465E9473.CrossRefGoogle ScholarPubMed
Bossan, B., Hammerstein, P., & Koehncke, A. (2013). We were all young once: An intragenomic perspective on parent–offspring conflict. Proceedings of the Royal Society B: Biological Sciences, 280(1754), 20122637.CrossRefGoogle ScholarPubMed
Bouchet, H., Blois-Heulin, C., & Lemasson, A. (2013). Social complexity parallels vocal complexity: A comparison of three non-human primate species. Frontiers in Psychology, 4, 390.CrossRefGoogle ScholarPubMed
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews, 80(2), 205225.CrossRefGoogle ScholarPubMed
Boyd, R., & Richerson, P. J. (2004). The origin and evolution of cultures. Oxford University Press.Google Scholar
Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal communication. Sinauer Associates.Google Scholar
Bregman, M. R., Patel, A. D., & Gentner, T. Q. (2016). Songbirds use spectral shape, not pitch, for sound pattern recognition. Proceedings of the National Academy of Sciences, 113(6), 16661671.CrossRefGoogle Scholar
Brown, S. (2000a). Evolutionary models of music: From sexual selection to group selection. In Tonneau, F. & Thompson, N. S. (Eds.), Perspectives in ethology (Vol. 13, pp. 231281). Springer.CrossRefGoogle Scholar
Brown, S. (2000). The “Musilanguage” model of music evolution. In Wallin, N. L., Merker, B., & Brown, S. (Eds.), The origins of music (pp. 271300). MIT Press.Google Scholar
Bryant, G. A. (2013). Animal signals and emotion in music: Coordinating affect across groups. Frontiers in Psychology, 4, 990.CrossRefGoogle ScholarPubMed
Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behavioral and Brain Sciences, 12(1), 114.CrossRefGoogle Scholar
Cassidy, S. B., & Driscoll, D. J. (2008). Prader-Willi syndrome. European Journal of Human Genetics, 17(1), 313.CrossRefGoogle ScholarPubMed
Castellano, M. A., Bharucha, J. J., & Krumhansl, C. L. (1984). Tonal hierarchies in the music of north India. Journal of Experimental Psychology: General, 113(3), 394412.CrossRefGoogle ScholarPubMed
Catchpole, C., & Slater, P. J. B. (2018). Bird song: Biological themes and variations. Cambridge University Press.Google Scholar
Cattell, J. M. (1891). On the origin of music. Mind; A Quarterly Review of Psychology and Philosophy, 16(63), 375388.Google Scholar
Chapais, B. (2013). Monogamy, strongly bonded groups, and the evolution of human social structure. Evolutionary Anthropology: Issues, News, and Reviews, 22(2), 5265.CrossRefGoogle ScholarPubMed
Charlton, B. D. (2014). Menstrual cycle phase alters women's sexual preferences for composers of more complex music. Proceedings of the Royal Society B: Biological Sciences, 281(1784), 20140403.CrossRefGoogle ScholarPubMed
Charlton, B. D., Filippi, P., & Fitch, W. T. (2012). Do women prefer more complex music around ovulation? PLoS ONE, 7(4), e35626.CrossRefGoogle ScholarPubMed
Chen, Z., & Wiens, J. J. (2020). The origins of acoustic communication in vertebrates. Nature Communications, 11(1), 369.CrossRefGoogle ScholarPubMed
Chomsky, N. A. (1968). Language and mind. Harcourt, Brace and World.Google Scholar
Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences, 31(5), 489509.CrossRefGoogle ScholarPubMed
Chwe, M. S.-Y. (2001). Rational ritual: Culture, coordination, and common knowledge. Princeton University Press.Google Scholar
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 10031011.CrossRefGoogle ScholarPubMed
Coen, P., Xie, M., Clemens, J., & Murthy, M. (2016). Sensorimotor transformations underlying variability in song intensity during Drosophila courtship. Neuron, 89(3), 629644.CrossRefGoogle Scholar
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737740.CrossRefGoogle ScholarPubMed
Conroy-Beam, D., Buss, D. M., Pham, M. N., & Shackelford, T. K. (2015). How sexually dimorphic are human mate preferences? Personality and Social Psychology Bulletin, 41(8), 10821093.CrossRefGoogle ScholarPubMed
Cross, I. (2012). Cognitive science and the cultural nature of music. Topics in Cognitive Science, 4(4), 668677.CrossRefGoogle ScholarPubMed
Cross, I., & Morley, I. (2009). The evolution of music: Theories, definitions, and the nature of the evidence. In Malloch, S. & Trevarthen, C. (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 6181). Oxford University Press.Google Scholar
Cross, I., & Woodruff, G. E. (2009). Music as a communicative medium. In Botha, R. & Knight, C. (Eds.), The prehistory of language (Vol. 1, pp. 113144). Oxford University Press.Google Scholar
Cummings, M. E., & Endler, J. A. (2018). 25 Years of sensory drive: The evidence and its watery bias. Current Zoology, 64(4), 471484.CrossRefGoogle ScholarPubMed
Dale, J., Dey, C. J., Delhey, K., Kempenaers, B., & Valcu, M. (2015). The effects of life history and sexual selection on male and female plumage colouration. Nature, 527(7578), 367370.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the origin of species by means of natural selection. J. Murray.Google Scholar
Darwin, C. (1871). The descent of man. Watts & Co.Google Scholar
Delton, A. W., Krasnow, M. M., Cosmides, L., & Tooby, J. (2011). Evolution of direct reciprocity under uncertainty can explain human generosity in one-shot encounters. Proceedings of the National Academy of Sciences, 108(32), 1333513340.CrossRefGoogle ScholarPubMed
Delton, A. W., & Robertson, T. E. (2012). The social cognition of social foraging: Partner selection by underlying valuation. Evolution and Human Behavior, 33(6), 715725.CrossRefGoogle ScholarPubMed
Dickins, T. E., & Barton, R. A. (2013). Reciprocal causation and the proximate–ultimate distinction. Biology & Philosophy, 28(5), 747756.CrossRefGoogle Scholar
Dissanayake, E. (2000). Antecedents of the temporal arts in early mother-infant interaction. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 389410). MIT Press.Google Scholar
Dissanayake, E. (2008). If music is the food of love, what about survival and reproductive success? Musicae Scientiae, 12(1 Suppl.), 169195.CrossRefGoogle Scholar
Dissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In Malloch, S. & Trevarthen, C. (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 1730). Oxford University Press.Google Scholar
Dunbar, R. I. M. (1991). Functional significance of social grooming in primates. Folia Primatologica, 57(3), 121131.CrossRefGoogle Scholar
Dunbar, R. I. M. (1998). Grooming, gossip, and the evolution of language. Harvard University Press.Google Scholar
Dunbar, R. I. M. (2004). Language, music, and laughter in evolutionary perspective. In Oller, D. K. & Griebel, U. (Eds.), Evolution of communication systems: A comparative approach (pp. 257274). MIT Press.Google Scholar
Dunbar, R. I. M. (2012a). Bridging the bonding gap: The transition from primates to humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1597), 18371846.CrossRefGoogle Scholar
Dunbar, R. I. M. (2012b). On the evolutionary function of song and dance. In Bannan, N. (Ed.), Music, language, and human evolution (pp. 201214). Oxford University Press.CrossRefGoogle Scholar
Dunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10(4), 688702.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M., Lehmann, J. (2013). Grooming and social cohesion in primates: A comment on Grueter et al. Evolution and Human Behavior, 34(6), 453455.CrossRefGoogle Scholar
Dunham, B. (2011). The role for signaling theory and receiver psychology in marketing. In Saad, G. (Ed.), Evolutionary psychology in the business sciences (pp. 225256). Springer Berlin Heidelberg.CrossRefGoogle Scholar
Dunn, M., Greenhill, S. J., Levinson, S. C., & Gray, R. D. (2011). Evolved structure of language shows lineage-specific trends in word-order universals. Nature, 473(7345), 7982.CrossRefGoogle ScholarPubMed
Duputié, A., & Massol, F. (2013). An empiricist's guide to theoretical predictions on the evolution of dispersal. Interface Focus, 3(6), 20130028.CrossRefGoogle ScholarPubMed
Dutton, D. (2009). The art instinct: Beauty, pleasure, & human evolution. Bloomsbury Press.Google Scholar
Feld, S. (1984). Sound structure as social structure. Ethnomusicology, 28(3), 383409.CrossRefGoogle Scholar
Fessler, D. M. T., & Holbrook, C. (2016). Synchronized behavior increases assessments of the formidability and cohesion of coalitions. Evolution and Human Behavior, 37(6), 502509.CrossRefGoogle Scholar
Fischer, J., Cheney, D. L., & Seyfarth, R. M. (2000). Development of infant baboons’ responses to graded bark variants. Proceedings of the Royal Society B: Biological Sciences, 267(1459), 23172321.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2006). Production of vocalizations in mammals. Visual Communication, 3, 145.Google Scholar
Fitch, W. T. (2017). Preface to the special issue on the biology and evolution of language. Psychonomic Bulletin & Review, 24(1), 12.CrossRefGoogle ScholarPubMed
Freeman, W. J. (2000). A neurobiological role of music in social bonding. In Wallin, N., Merkur, B. & Brown, S. (Eds.), The origins of music (pp. 411424). MIT Press.Google Scholar
Freitas, J. D., Thomas, K., DeScioli, P., & Pinker, S. (2019). Common knowledge, coordination, and strategic mentalizing in human social life. Proceedings of the National Academy of Sciences, 116(28), 1375113758.CrossRefGoogle ScholarPubMed
Fritz, T. H., Hardikar, S., Demoucron, M., Niessen, M., Demey, M., Giot, O., … Leman, M. (2013). Musical agency reduces perceived exertion during strenuous physical performance. Proceedings of the National Academy of Sciences, 110(44), 1778417789.CrossRefGoogle ScholarPubMed
Fürniss, S. (2017). Diversity in pygmy music: A family portrait. In Hewlett, B. S. (Ed.), Hunter-gatherers of the Congo basin: Cultures, histories, and biology of African pygmies (pp. 217248). Routledge.Google Scholar
Gangestad, S. W., Haselton, M. G., Welling, L. L. M., Gildersleeve, K., Pillsworth, E. G., Burriss, R., … Puts, D. A. (2016). How valid are assessments of conception probability in ovulatory cycle research? Evaluations, recommendations, and theoretical implications. Evolution and Human Behavior, 37(2), 8596.CrossRefGoogle Scholar
Geissmann, T. (2000). Gibbon songs and human music from an evolutionary perspective. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 103123). MIT Press.Google Scholar
Geist, V. (1978). Life strategies, human evolution, environmental design: Toward a biological theory of health. Springer-Verlag.CrossRefGoogle Scholar
Gelfand, M. J., Caluori, N., Jackson, J. C., & Taylor, M. K. (2020). The cultural evolutionary trade-off of ritualistic synchrony. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1805), 20190432.CrossRefGoogle ScholarPubMed
Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Belknap Press of Harvard University Press.Google Scholar
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A.-Y., & DeCasper, A. J. (2011). A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE, 6(2), e17304.CrossRefGoogle ScholarPubMed
Greenberg, D. M., Matz, S. C., Schwartz, H. A., & Fricke, K. R. (2020). The self-congruity effect of music. Journal of Personality and Social Psychology. doi: 10.1037/pspp0000293.Google ScholarPubMed
Grueter, C. C., Bissonnette, A., Isler, K., & van Schaik, C. P. (2013). Grooming and group cohesion in primates: Implications for the evolution of language. Evolution and Human Behavior, 34(1), 6168.CrossRefGoogle Scholar
Gustison, M. L., & Townsend, S. W. (2015). A survey of the context and structure of high- and low-amplitude calls in mammals. Animal Behaviour, 105, 281288.CrossRefGoogle Scholar
Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14(1), 2151.CrossRefGoogle ScholarPubMed
Hagen, E. H., & Hammerstein, P. (2009). Did Neanderthals and other early humans sing? Seeking the biological roots of music in the territorial advertisements of primates, lions, hyenas, and wolves. Musicae Scientiae, 13(2 Suppl.), 291320.CrossRefGoogle Scholar
Haig, D. (1993). Genetic conflicts in human pregnancy. The Quarterly Review of Biology, 68(4), 495532.CrossRefGoogle ScholarPubMed
Haig, D., & Wharton, R. (2003). Prader-Willi syndrome and the evolution of human childhood. American Journal of Human Biology, 15(3), 320329.CrossRefGoogle ScholarPubMed
Haig, D., & Wilkins, J. F. (2000). Genomic imprinting, sibling solidarity and the logic of collective action. Philosophical Transactions of the Royal Society B: Biological Sciences, 355(1403), 15931597.CrossRefGoogle Scholar
Hall, M. L., & Magrath, R. D. (2007). Temporal coordination signals coalition quality. Current Biology, 17(11), R406R407.CrossRefGoogle ScholarPubMed
Hamilton, M. J., Milne, B. T., Walker, R. S., Burger, O., & Brown, J. H. (2007). The complex structure of hunter–gatherer social networks. Proceedings of the Royal Society B: Biological Sciences, 274(1622), 21952203.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964). The genetical evolution of social behaviour. I & II. Journal of Theoretical Biology, 7(1), 116.CrossRefGoogle ScholarPubMed
Hammerstein, P., & Noë, R. (2016). Biological trade and markets. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1687), 20150101.CrossRefGoogle ScholarPubMed
Han, Y. J., Nunes, J. C., & Drèze, X. (2010). Signaling status with luxury goods: The role of brand prominence. Journal of Marketing, 74(4), 1530.CrossRefGoogle Scholar
Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11(11), 466472.CrossRefGoogle ScholarPubMed
Hargreaves, D. J., Comber, C., & Colley, A. (1995). Effects of age, gender, and training on musical preferences of British secondary school students. Journal of Research in Music Education, 43(3), 242250.CrossRefGoogle Scholar
Harrington, F. H. (1989). Chorus howling by wolves: Acoustic structure, pack size and the Beau Geste effect. Bioacoustics, 2(2), 117136.CrossRefGoogle Scholar
Harrington, F. H., & Mech, L. D. (1979). Wolf howling and its role in territory maintenance. Behaviour, 68(3–4), 207249.CrossRefGoogle Scholar
Hayden, B. (2014). The power of feasts. Cambridge University Press.CrossRefGoogle Scholar
Hayden, B., & Villeneuve, S. (2011). A century of feasting studies. Annual Review of Anthropology, 40(1), 433449.CrossRefGoogle Scholar
Henrich, J., & Boyd, R. (2002). On modeling cognition and culture: Why cultural evolution does not require replication of representations. Journal of Cognition and Culture, 2(2), 87112.Google Scholar
Herdt, G., & McClintock, M. (2000). The magical age of 10. Archives of Sexual Behavior, 29(6), 587606.CrossRefGoogle ScholarPubMed
Hill, G. E. (1994). Trait elaboration via adaptive mate choice: Sexual conflict in the evolution of signals of male quality. Ethology Ecology & Evolution, 6(3), 351370.CrossRefGoogle Scholar
Hilton, C. B., Crowley, L., Yan, R., Martin, A., & Mehr, S. A. (2021). Children infer the behavioral contexts of unfamiliar foreign songs. PsyArXiv. https://doi.org/10.31234/osf.io/rz6qn.Google Scholar
Holm, V. A., Cassidy, S. B., Butler, M. G., Hanchett, J. M., Greenswag, L. R., Whitman, B. Y., & Greenberg, F. (1993). Prader-Willi syndrome: Consensus diagnostic criteria. Pediatrics, 91(2), 398402.CrossRefGoogle ScholarPubMed
Honing, H., Bouwer, F. L., Prado, L., & Merchant, H. (2018). Rhesus monkeys (Macaca mulatta) sense isochrony in rhythm, but not the beat: Additional support for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 12, 475. doi: 10.3389/fnins.2018.00475.CrossRefGoogle Scholar
Honing, H., & Ploeger, A. (2012). Cognition and the evolution of music: Pitfalls and prospects. Topics in Cognitive Science, 4(4), 513524.CrossRefGoogle ScholarPubMed
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Harvard University Press.Google Scholar
Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 4361.CrossRefGoogle ScholarPubMed
Jackendoff, R. (2009). Parallels and nonparallels between language and music. Music Perception: An Interdisciplinary Journal, 26(3), 195204.CrossRefGoogle Scholar
Jackendoff, R., & Lerdahl, F. (2006). The capacity for music: What is it, and what's special about it? Cognition, 100(1), 3372.CrossRefGoogle Scholar
Jacoby, N., & McDermott, J. H. (2017). Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Current Biology, 27(3), 359370.CrossRefGoogle ScholarPubMed
Jacoby, N., Undurraga, E. A., McPherson, M. J., Valdés, J., Ossandón, T., & McDermott, J. H. (2019). Universal and non-universal features of musical pitch perception revealed by singing. Current Biology, 29(19), 32293243.CrossRefGoogle ScholarPubMed
Jaeggi, A. V., Kramer, K. L., Hames, R., Kiely, E. J., Gomes, C., Kaplan, H., & Gurven, M. (2017). Human grooming in comparative perspective: People in six small-scale societies groom less but socialize just as much as expected for a typical primate. American Journal of Physical Anthropology, 162(4), 810816.CrossRefGoogle ScholarPubMed
James, W. (1890). The principles of psychology. H. Holt.Google Scholar
Jones, B. C., Hahn, A. C., & DeBruine, L. M. (2018). Ovulation, sex hormones, and women's mating psychology. Trends in Cognitive Sciences, 23(1), 5162.CrossRefGoogle ScholarPubMed
Jourdain, R. (1997). Music, the brain, and ecstasy: How music captures our imagination. W. Morrow.Google Scholar
Justus, T., & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of music: Assessing innateness and domain specificity. Music Perception: An Interdisciplinary Journal, 23(1), 127.CrossRefGoogle Scholar
Kaplan, H. S., & Gangestad, S. W. (2005). Life history theory and evolutionary psychology. In Buss, D. M. (Ed.), The handbook of evolutionary psychology (pp. 6895). John Wiley & Sons Inc.Google Scholar
Keller, P. E., König, R., & Novembre, G. (2017). Simultaneous cooperation and competition in the evolution of musical behavior: Sex-related modulations of the singer's formant in human chorusing. Frontiers in Psychology, 8, 1559.CrossRefGoogle ScholarPubMed
Kenrick, D. T., & Keefe, R. C. (1992). Age preferences in mates reflect sex differences in human reproductive strategies. Behavioral and Brain Sciences, 15(1), 7591.CrossRefGoogle Scholar
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences, 104(30), 1257712580.CrossRefGoogle ScholarPubMed
Kirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299314.CrossRefGoogle ScholarPubMed
Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354364.CrossRefGoogle Scholar
Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578584.CrossRefGoogle ScholarPubMed
Kogan, N. (1994). On aesthetics and its origins: Some psychobiological and evolutionary considerations. Social Research, 61(1), 139165.Google Scholar
Kokko, H. (1997). Evolutionarily stable strategies of age-dependent sexual advertisement. Behavioral Ecology and Sociobiology, 41(2), 99107.CrossRefGoogle Scholar
Kokko, H., Jennions, M. D., & Brooks, R. (2006). Unifying and testing models of sexual selection. Annual Review of Ecology, Evolution, and Systematics, 37, 4366.CrossRefGoogle Scholar
Kondo, N., & Watanabe, S. (2009). Contact calls: Information and social function. Japanese Psychological Research, 51(3), 197208.CrossRefGoogle Scholar
Kotler, J., Mehr, S. A., Egner, A., Haig, D., & Krasnow, M. M. (2019). Response to vocal music in Angelman syndrome contrasts with Prader-Willi syndrome. Evolution and Human Behavior, 40(5), 420426.CrossRefGoogle ScholarPubMed
Kotz, S. A., Ravignani, A., & Fitch, W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896910.CrossRefGoogle ScholarPubMed
Krause, B. L. (2012). The great animal orchestra: Finding the origins of music in the world's wild places (1st ed.). Little, Brown.Google Scholar
Krebs, J., & Dawkins, R. (1984). Animal signals: Mind-reading and manipulation. In Krebs, J. & Davies, N. (Eds.), Behavioural ecology: An evolutionary approach (pp. 380402). Blackwell.Google Scholar
Krebs, J. R. (1977). The significance of song repertoires: The Beau Geste hypothesis. Animal Behaviour, 25, 475478.CrossRefGoogle Scholar
Krumhansl, C. L. (2001). Cognitive foundations of musical pitch, Oxford University Press.CrossRefGoogle Scholar
Krumhansl, C. L., Toivanen, P., Eerola, T., Toiviainen, P., Järvinen, T., & Louhivuori, J. (2000). Cross-cultural music cognition: Cognitive methodology applied to North Sami yoiks. Cognition, 76(1), 1358.CrossRefGoogle ScholarPubMed
Kuhn, S. L. (2014). Signaling theory and technologies of communication in the Paleolithic. Biological Theory, 9(1), 4250.CrossRefGoogle Scholar
Kuhn, S. L., & Stiner, M. C. (2019). Hearth and home in the Middle Pleistocene. Journal of Anthropological Research, 75(3), 305327.CrossRefGoogle Scholar
Ladich, F., & Winkler, H. (2017). Acoustic communication in terrestrial and aquatic vertebrates. Journal of Experimental Biology, 220(13), 23062317.CrossRefGoogle ScholarPubMed
Lafrance, M., Worcester, L., & Burns, L. (2011). Gender and the Billboard Top 40 charts between 1997 and 2007. Popular Music and Society, 34(5), 557570.CrossRefGoogle Scholar
Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayr's proximate-ultimate dichotomy still useful? Science (New York, N.Y.), 334(6062), 15121516.CrossRefGoogle ScholarPubMed
Larsson, M. (2014). Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities. Animal Cognition, 17(1), 114.CrossRefGoogle ScholarPubMed
Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory information. Current Opinion in Neurobiology, 11(4), 475480.CrossRefGoogle ScholarPubMed
Launay, J., Tarr, B., & Dunbar, R. I. M. (2016). Synchrony as an adaptive mechanism for large-scale human social bonding. Ethology, 122(10), 779789.CrossRefGoogle Scholar
Leighton, G. M. (2017). Cooperative breeding influences the number and type of vocalizations in avian lineages. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20171508.CrossRefGoogle ScholarPubMed
Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. MIT Press.Google Scholar
Lewis, J. (2013). A cross-cultural perspective on the significance of music and dance to culture and society. In Arbib, M. A. (Ed.), Language, music, and the brain (pp. 4566). MIT Press.Google Scholar
Lewis, J. (2017). Egalitarian social organization: The case of the Mbendjele BaYaka. In Hewlett, B. S. (Ed.), Hunter-Gatherers of the Congo basin (pp. 249274). Routledge.Google Scholar
Liberman, Z., Woodward, A. L., Sullivan, K. R., & Kinzler, K. D. (2016). Early emerging system for reasoning about the social nature of food. Proceedings of the National Academy of Sciences, 113(34), 94809485.CrossRefGoogle ScholarPubMed
Lindsay, W. R., Andersson, S., Bererhi, B., Höglund, J., Johnsen, A., Kvarnemo, C., … Edwards, S. V. (2019). Endless forms of sexual selection. PeerJ, 7, e7988.CrossRefGoogle ScholarPubMed
Livingstone, F. B. (1973). Did the australopithecines sing? Current Anthropology, 14(1/2), 2529.CrossRefGoogle Scholar
Livingstone, R. S., & Thompson, W. F. (2009). The emergence of music from the theory of mind. Musicae Scientiae, 13(2 Suppl.), 83115.CrossRefGoogle Scholar
Loersch, C., & Arbuckle, N. L. (2013). Unraveling the mystery of music: Music as an evolved group process. Journal of Personality and Social Psychology, 105(5), 777798.CrossRefGoogle ScholarPubMed
Lorenz, K. Z. (1966). Evolution of ritualization in the biological and cultural spheres. Philosophical Transactions of the Royal Society B: Biological Sciences, 251(772), 273284.Google Scholar
Madison, G., Holmquist, J., & Vestin, M. (2018). Musical improvisation skill in a prospective partner is associated with mate value and preferences, consistent with sexual selection and parental investment theory: Implications for the origin of music. Evolution and Human Behavior, 39(1), 120129.CrossRefGoogle Scholar
Maher, C. R., & Lott, D. F. (2000). A review of ecological determinants of territoriality within vertebrate species. The American Midland Naturalist, 143(1), 129.CrossRefGoogle Scholar
Maher, L. A., & Conkey, M. (2019). Homes for hunters? Exploring the concept of home at hunter-gatherer sites in Upper Paleolithic Europe and Epipaleolithic Southwest Asia. Current Anthropology, 60(1), 91137.CrossRefGoogle Scholar
Marcus, G. F. (2012). Musicality: Instinct or acquired skill? Topics in Cognitive Science, 4(4), 498512.CrossRefGoogle ScholarPubMed
Markham, A. C., Gesquiere, L. R., Alberts, S. C., & Altmann, J. (2015). Optimal group size in a highly social mammal. Proceedings of the National Academy of Sciences, 112(48), 1488214887.CrossRefGoogle Scholar
Marlowe, F. W. (2005). Hunter-gatherers and human evolution. Evolutionary Anthropology: Issues, News, and Reviews, 14(2), 5467.CrossRefGoogle Scholar
Martínez, I., Rosa, M., Arsuaga, J.-L., Jarabo, P., Quam, R., Lorenzo, C., … Carbonell, E. (2004). Auditory capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. Proceedings of the National Academy of Sciences of the USA, 101(27), 99769981.CrossRefGoogle Scholar
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699704.CrossRefGoogle ScholarPubMed
Maynard Smith, J., & Harper, D. (2003). Animal signals. Oxford University Press.Google Scholar
Mayr, E. (1961). Cause and effect in biology: Kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science (New York, N.Y.), 134(3489), 15011506.CrossRefGoogle Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47(2), 379387.CrossRefGoogle Scholar
McCoy, D. E., & Haig, D. (2020). Embryo selection and mate choice: Can “honest signals” be trusted? Trends in Ecology & Evolution, 35(4), 308318.CrossRefGoogle Scholar
McDermott, J., & Hauser, M. (2004). Are consonant intervals music to their ears? Spontaneous acoustic preferences in a nonhuman primate. Cognition, 94(2), B11B21.CrossRefGoogle Scholar
McDermott, J., & Hauser, M. (2005). The origins of music: Innateness, uniqueness, and evolution. Music Perception, 23(1), 2959.CrossRefGoogle Scholar
McDermott, J., & Hauser, M. (2007). Nonhuman primates prefer slow tempos but dislike music overall. Cognition, 104(3), 654668.CrossRefGoogle Scholar
McDermott, J. H. (2012). Auditory preferences and aesthetics: Music, voices and everyday sounds. In Neuroscience of preference and choice (pp. 227256). Elsevier.CrossRefGoogle Scholar
McKenna, J. J. (1978). Biosocial functions of grooming behavior among the common Indian langur monkey (Presbytis entellus). American Journal of Physical Anthropology, 48(4), 503509.CrossRefGoogle Scholar
McNeill, W. H. (1995). Keeping together in time: Dance and drill in human history. Harvard University Press.Google Scholar
Mehr, S. A., Kotler, J., Howard, R. M., Haig, D., & Krasnow, M. M. (2017). Genomic imprinting is implicated in the psychology of music. Psychological Science, 28(10), 14551467.CrossRefGoogle ScholarPubMed
Mehr, S. A., & Krasnow, M. M. (2017). Parent-offspring conflict and the evolution of infant-directed song. Evolution and Human Behavior, 38(5), 674684.CrossRefGoogle Scholar
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468), 957970.CrossRefGoogle ScholarPubMed
Mehr, S. A., Singh, M., York, H., Glowacki, L., & Krasnow, M. M. (2018). Form and function in human song. Current Biology, 28(3), 356368.CrossRefGoogle ScholarPubMed
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27(4), 486501.CrossRefGoogle ScholarPubMed
Mehr, S. A., & Spelke, E. S. (2017). Shared musical knowledge in 11-month-old infants. Developmental Science, 21(2), e12542.Google ScholarPubMed
Merker, B. (2000a). Synchronous chorusing and human origins. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 315327). MIT Press.Google Scholar
Merker, B. (2000b). Synchronous chorusing and the origins of music. Musicae Scientiae, 3(1 Suppl.), 5973.CrossRefGoogle Scholar
Merker, B., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 417.CrossRefGoogle ScholarPubMed
Miller, G. (2000a). Evolution of human music through sexual selection. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 329360). MIT Press.Google Scholar
Miller, G. F. (2000b). The mating mind: How sexual choice shaped the evolution of human nature. Doubleday.Google Scholar
Miranda, E. R., Kirby, S., & Todd, P. (2003). On computational models of the evolution of music: From the origins of musical taste to the emergence of grammars. Contemporary Music Review, 22(3), 91111.CrossRefGoogle Scholar
Mithen, S. (2005). The singing Neanderthals: The origins of music, language, mind and body. Weidenfeld Nicolson.Google Scholar
Monboddo, J. B. L. (1774). Of the origin and progress of language (Vol. 1, 2nd ed.). J. Balfour.Google Scholar
Morley, I. (2012). Hominin physiological evolution and the emergence of musical capacities. In Bannan, N. (Ed.), Music, language, and human evolution (pp. 109141). Oxford University Press.CrossRefGoogle Scholar
Moser, C. J., Lee-Rubin, H., Bainbridge, C. M., Atwood, S., Simson, J., Knox, D., … Mehr, S. A. (2020). Acoustic regularities in infant-directed vocalizations across cultures. BioRxiv. https://doi.org/10.1101/2020.04.09.032995.CrossRefGoogle Scholar
Mosing, M. A., Verweij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F. (2015). Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins. Evolution and Human Behavior, 36(5), 359366.CrossRefGoogle Scholar
Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE, 9(2), e89642.CrossRefGoogle ScholarPubMed
Musolf, K., Hoffmann, F., & Penn, D. J. (2010). Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Animal Behaviour, 79(3), 757764.CrossRefGoogle Scholar
Nettl, B. (2015). The study of ethnomusicology: Thirty-three discussions. University of Illinois Press.Google Scholar
Newman, J. D. (2007). Neural circuits underlying crying and cry responding in mammals. Behavioural Brain Research, 182(2), 155165.CrossRefGoogle ScholarPubMed
Niven, J. E. (2016). Neuronal energy consumption: Biophysics, efficiency and evolution. Current Opinion in Neurobiology, 41, 129135.CrossRefGoogle ScholarPubMed
Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211(11), 17921804.CrossRefGoogle ScholarPubMed
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88(6), 12811296.CrossRefGoogle ScholarPubMed
Norman-Haignere, S. V., Feather, J., Brunner, P., Ritaccio, A., McDermott, J. H., Schalk, G., & Kanwisher, N. (2019). Intracranial recordings from human auditory cortex reveal a neural population selective for musical song. bioRxiv. https://www.biorxiv.org/content/10.1101/696161v1.Google Scholar
Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science (New York, N.Y.), 314(5805), 15601563.CrossRefGoogle ScholarPubMed
O'Brien, D. M., Allen, C. E., Van Kleeck, M. J., Hone, D., Knell, R., Knapp, A., … Emlen, D. J. (2018). On the evolution of extreme structures: Static scaling and the function of sexually selected signals. Animal Behaviour, 144, 95108.CrossRefGoogle Scholar
Orians, G. H. (2014). Snakes, sunrises, and Shakespeare: How evolution shapes our loves and fears. The University of Chicago Press.CrossRefGoogle Scholar
Paley, W. (1803). Natural theology: Or, evidences of the existence and attributes of the deity, collected from the appearances of nature. R. Faulder.Google Scholar
Panksepp, J. (2009). The emotional antecedents to the evolution of music and language. Musicae Scientiae, 13(2 Suppl.), 229259.CrossRefGoogle Scholar
Patel, A. D. (2008). Music, language, and the brain. Oxford University Press.Google Scholar
Patel, A. D. (2017). Why doesn't a songbird (the European starling) use pitch to recognize tone sequences? The informational independence hypothesis. Comparative Cognition & Behavior Reviews, 12, 1932. Retrieved from http://comparative-cognition-and-behavior-reviews.org/2017/vol12_patel/.CrossRefGoogle Scholar
Pearce, E., Launay, J., & Dunbar, R. I. M. (2015). The ice-breaker effect: Singing mediates fast social bonding. Royal Society Open Science, 2(10), 150221.CrossRefGoogle ScholarPubMed
Pearce, E., Launay, J., MacCarron, P., & Dunbar, R. I. M. (2017). Tuning in to others: Exploring relational and collective bonding in singing and non-singing groups over time. Psychology of Music, 45(4), 496512.CrossRefGoogle Scholar
Pearce, E., Launay, J., van Duijn, M., Rotkirch, A., David-Barrett, T., & Dunbar, R. I. M. (2016). Singing together or apart: The effect of competitive and cooperative singing on social bonding within and between sub-groups of a university fraternity. Psychology of Music, 44(6), 12551273.CrossRefGoogle ScholarPubMed
Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1), 132.CrossRefGoogle ScholarPubMed
Peretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital amusia: A disorder of fine-grained pitch discrimination. Neuron, 33(2), 185191.CrossRefGoogle ScholarPubMed
Peretz, I., & Vuvan, D. T. (2017). Prevalence of congenital amusia. European Journal of Human Genetics, 25(5), 625630.CrossRefGoogle ScholarPubMed
Persons, W. S., & Currie, P. J. (2019). Feather evolution exemplifies sexually selected bridges across the adaptive landscape. Evolution, 73(9), 16861694.CrossRefGoogle ScholarPubMed
Peters, J. (2014). The role of genomic imprinting in biology and disease: An expanding view. Nature Reviews Genetics, 15(8), 517530.CrossRefGoogle Scholar
Phillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28(1), 314.CrossRefGoogle ScholarPubMed
Pinker, S. (1997). How the mind works. Norton.Google Scholar
Pinker, S. (2012). The false allure of group selection. Retrieved from http://edge.org/conversation/the-false-allure-of-group-selection.Google Scholar
Pinker, S., & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13(4), 707727.CrossRefGoogle Scholar
Pisor, A. C., & Surbeck, M. (2019). The evolution of intergroup tolerance in nonhuman primates and humans. Evolutionary Anthropology, 28, 210223.CrossRefGoogle ScholarPubMed
Podlipniak, P. (2017). The role of the Baldwin Effect in the evolution of human musicality. Frontiers in Neuroscience, 11, 452. doi: 10.3389/fnins.2017.00542.CrossRefGoogle ScholarPubMed
Port, M., Hildenbrandt, H., Pen, I., Schülke, O., Ostner, J., & Weissing, F. J. (2020). The evolution of social philopatry in female primates. American Journal of Physical Anthropology, 173, 397410. doi: 10.1002/ajpa.24123.CrossRefGoogle ScholarPubMed
Puts, D. A. (2010). Beauty and the beast: Mechanisms of sexual selection in humans. Evolution and Human Behavior, 31(3), 157175.CrossRefGoogle Scholar
Puts, D. A., Apicella, C. L., & Cárdenas, R. A. (2011). Masculine voices signal men's threat potential in forager and industrial societies. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 601609.CrossRefGoogle ScholarPubMed
Quam, R. M., de Ruiter, D. J., Masali, M., Arsuaga, J.-L., Martínez, I., … Moggi-Cecchi, J. (2013). Early hominin auditory ossicles from South Africa. Proceedings of the National Academy of Sciences, 110(22), 88478851.CrossRefGoogle ScholarPubMed
Rand, D. G., Peysakhovich, A., Kraft-Todd, G. T., Newman, G. E., Wurzbacher, O., Nowak, M. A., & Greene, J. D. (2014). Social heuristics shape intuitive cooperation. Nature Communications, 5(1), 3677.CrossRefGoogle ScholarPubMed
Ravignani, A. (2018). Darwin, sexual selection, and the origins of music. Trends in Ecology & Evolution, 33(10), 716719.CrossRefGoogle ScholarPubMed
Rebout, N., De Marco, A., Lone, J.-C., Sanna, A., Cozzolino, R., Micheletta, J., … Thierry, B. (2020). Tolerant and intolerant macaques show different levels of structural complexity in their vocal communication. Proceedings of the Royal Society B: Biological Sciences, 287(1928), 20200439.CrossRefGoogle ScholarPubMed
Reddish, P., Fischer, R., & Bulbulia, J. (2013). Let's dance together: Synchrony, shared intentionality and cooperation. PLoS ONE, 8(8), e71182.CrossRefGoogle ScholarPubMed
Rendall, D., Cheney, D. L., & Seyfarth, R. M. (2000). Proximate factors mediating ‘contact’ calls in adult female baboons (Papio cynocephalus ursinus) and their infants. Journal of Comparative Psychology, 114(1), 3646.CrossRefGoogle ScholarPubMed
Richman, B. (1993). On the evolution of speech: Singing as the middle term. Current Anthropology, 34(5), 721722.CrossRefGoogle Scholar
Rodseth, L., Wrangham, R. W., Harrigan, A. M., Smuts, B. B., Dare, R., Fox, R., … Wolpoff, M. H. (1991). The human community as a primate society. Current Anthropology, 32(3), 221254.CrossRefGoogle Scholar
Roederer, J. G. (1984). The search for a survival value of music. Music Perception, 1(3), 350356.CrossRefGoogle Scholar
Roper, S. D., & Chaudhari, N. (2017). Taste buds: Cells, signals and synapses. Nature Reviews. Neuroscience, 18(8), 485497.CrossRefGoogle ScholarPubMed
Rousseau, J.-J. (1781). Essai sur l'origine des langues. (J. H. Moran, Trans.), F. Ungar.Google Scholar
Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112(29), 89878992.CrossRefGoogle ScholarPubMed
Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology, 19(10), 831836.CrossRefGoogle ScholarPubMed
Schellenberg, E. G., Corrigall, K. A., Dys, S. P., & Malti, T. (2015). Group music training and children's prosocial skills. PLOS ONE, 10(10), e0141449.CrossRefGoogle ScholarPubMed
Schoenemann, P. T. (2006). Evolution of the size and functional areas of the human brain. Annual Review of Anthropology, 35(1), 379406.CrossRefGoogle Scholar
Schruth, D., Templeton, C. N., & Holman, D. J. (2019). A definition of song from human music universals observed in primate calls. bioRxiv. Retrieved from https://www.biorxiv.org/content/10.1101/649459v1.Google Scholar
Schulkin, J. (2013). Reflections on the musical mind: An evolutionary perspective. Princeton University Press.Google Scholar
Schulkin, J., & Raglan, G. B. (2014). The evolution of music and human social capability. Frontiers in Neuroscience, 8, 292.CrossRefGoogle ScholarPubMed
Scott-Phillips, T. C., Dickins, T. E., & West, S. A. (2011). Evolutionary theory and the ultimate–proximate distinction in the human behavioral sciences. Perspectives on Psychological Science, 6(1), 3847.CrossRefGoogle ScholarPubMed
Searcy, W. A. (Ed.). (2019). Animal communication, cognition, and the evolution of language. Animal Behaviour, 151, 203205.CrossRefGoogle Scholar
Sell, A., Cosmides, L., Tooby, J., Sznycer, D., von Rueden, C., & Gurven, M. (2008). Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proceedings of the Royal Society B: Biological Sciences, 276(1656), 575584.CrossRefGoogle Scholar
Sergeant, D. C., & Himonides, E. (2019). Orchestrated sex: The representation of male and female musicians in world-class symphony orchestras. Frontiers in Psychology, 10, 1760.CrossRefGoogle ScholarPubMed
Seyfarth, R. M. (1977). A model of social grooming among adult female monkeys. Journal of Theoretical Biology, 65(4), 671698.CrossRefGoogle Scholar
Seyfarth, R. M., & Cheney, D. L. (1984). Grooming, alliances and reciprocal altruism in vervet monkeys. Nature, 308(5959), 541543.CrossRefGoogle ScholarPubMed
Shultz, S., Opie, C., & Atkinson, Q. D. (2011). Stepwise evolution of stable sociality in primates. Nature, 479(7372), 219222.CrossRefGoogle ScholarPubMed
Shuter-Dyson, R., & Gabriel, C. (1981). The psychology of musical ability (2nd ed.). Methuen.Google Scholar
Sievers, B., Polansky, L., Casey, M., & Wheatley, T. (2013). Music and movement share a dynamic structure that supports universal expressions of emotion. Proceedings of the National Academy of Sciences, 110(1), 7075.CrossRefGoogle Scholar
Silk, J. B., & Kappeler, J. M. (2017). Sociality in primates. In Rubenstein, D. R. & Abbot, P. (Eds.), Comparative social evolution (pp. 253–83). Cambridge University Press.Google Scholar
Singh, M. (2018). The cultural evolution of shamanism. Behavioral and Brain Sciences, 41, 162.CrossRefGoogle ScholarPubMed
Sluming, V. A., & Manning, J. T. (2000). Second to fourth digit ratio in elite musicians: Evidence for musical ability as an honest signal of male fitness. Evolution and Human Behavior, 21(1), 19.Google Scholar
Smith, D. R., & Dworkin, M. (1994). Territorial interactions between two Myxococcus species. Journal of Bacteriology, 176(4), 12011205.CrossRefGoogle ScholarPubMed
Smith, J. M., & Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427), 1518.CrossRefGoogle Scholar
Snowdon, C. T. (2017). Vocal communication in family-living and pair-bonded primates. In Quam, R., Ramsier, M., Fay, R. R. & Popper, A. N. (Eds.), Primate hearing and communication (Vol. 63, 1st ed., pp. 141174). Springer International Publishing.CrossRefGoogle Scholar
Soltis, J. (2004). The signal functions of early infant crying. Behavioral and Brain Sciences, 27(04), 443458.CrossRefGoogle ScholarPubMed
Sosis, R. (2000). Costly signaling and torch fishing on Ifaluk atoll. Evolution and Human Behavior, 21(4), 223244.CrossRefGoogle ScholarPubMed
Spence, M. (1973). Job market signaling. The Quarterly Journal of Economics, 87(3), 355374.CrossRefGoogle Scholar
Spencer, H. (1902). Facts and comments (two essays). D. Appleton and Co.CrossRefGoogle Scholar
Sperber, D. (1996). Explaining culture: A naturalistic approach. Blackwell.Google Scholar
Sperber, D., & Hirschfeld, L. A. (2004). The cognitive foundations of cultural stability and diversity. Trends in Cognitive Sciences, 8(1), 4046.CrossRefGoogle ScholarPubMed
Stiner, M. (2019). Human predators and prey mortality. Routledge.CrossRefGoogle Scholar
Stiner, M. C. (2013). An unshakable middle paleolithic? Trends versus conservatism in the predatory niche and their social ramifications. Current Anthropology, 54(S8), S288S304.CrossRefGoogle Scholar
Stiner, M. C. (2017). Love and death in the stone age: What constitutes first evidence of mortuary treatment of the human body? Biological Theory, 12(4), 248261.CrossRefGoogle Scholar
Swedell, L., & Plummer, T. (2019). Social evolution in Plio-Pleistocene hominins: Insights from hamadryas baboons and paleoecology. Journal of Human Evolution, 137, 102667.CrossRefGoogle ScholarPubMed
Tarr, B., Launay, J., Cohen, E., & Dunbar, R. I. M. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters, 11(10), 20150767.CrossRefGoogle ScholarPubMed
Tarr, B., Launay, J., & Dunbar, R. I. M. (2014). Music and social bonding: “self-other” merging and neurohormonal mechanisms. Frontiers in Psychology, 5(1096).CrossRefGoogle ScholarPubMed
Tarr, B., Launay, J., & Dunbar, R. I. M. (2016). Silent disco: Dancing in synchrony leads to elevated pain thresholds and social closeness. Evolution and Human Behavior, 37(5), 343349.CrossRefGoogle ScholarPubMed
Temperley, D. (2004). Communicative pressure and the evolution of musical styles. Music Perception, 21(3), 313337.CrossRefGoogle Scholar
Thompson, M. E. (2013). Reproductive ecology of female chimpanzees. American Journal of Primatology, 75(3), 222237.CrossRefGoogle ScholarPubMed
Tibbetts, E. A., Mullen, S. P., & Dale, J. (2017). Signal function drives phenotypic and genetic diversity: The effects of signalling individual identity, quality or behavioural strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1724), 20160347.CrossRefGoogle ScholarPubMed
Tierney, A. T., Russo, F. A., & Patel, A. D. (2011). The motor origins of human and avian song structure. Proceedings of the National Academy of Sciences, 108(37), 1551015515.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift Für Tierpsychologie, 20(4), 410433.CrossRefGoogle Scholar
Tobias, J. A., Sheard, C., Seddon, N., Meade, A., Cotton, A. J., & Nakagawa, S. (2016). Territoriality, social bonds, and the evolution of communal signaling in birds. Frontiers in Ecology and Evolution, 4, 74. doi: 10.3389/fevo.2016.00074.CrossRefGoogle Scholar
Todd, P. (2000). Simulating the evolution of musical behavior. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 361388). MIT Press.Google Scholar
Todd, P. M., & Werner, G. M. (1999). Frankensteinian methods for evolutionary music composition. In Griffith, N. & Todd, P. M. (Eds.), Musical networks: Parallel distributed perception and performance (pp. 313–339). MIT Press.Google Scholar
Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In The adapted mind: Evolutionary psychology and the generation of culture (pp. 19–136). Oxford University Press.Google Scholar
Trainor, L. J. (2015). The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140089.CrossRefGoogle ScholarPubMed
Trainor, L. J., Wu, L., & Tsang, C. D. (2004). Long-term memory for music: Infants remember tempo and timbre. Developmental Science, 7(3), 289296.CrossRefGoogle ScholarPubMed
Trehub, S. E. (2001). Musical predispositions in infancy. Annals of the New York Academy of Sciences, 930(1), 116.CrossRefGoogle ScholarPubMed
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993a). Adults identify infant-directed music across cultures. Infant Behavior and Development, 16(2), 193211.CrossRefGoogle Scholar
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993b). Maternal singing in cross-cultural perspective. Infant Behavior and Development, 16(3), 285295.CrossRefGoogle Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. G. (Ed.), Sexual selection and the descent of man (pp. 136179). Aldine.Google Scholar
Trivers, R. L. (1974). Parent-offspring conflict. American Zoologist, 14(1), 249264.CrossRefGoogle Scholar
Ubeda, F. (2008). Evolution of genomic imprinting with biparental care: Implications for Prader-Willi and Angelman syndromes. PLoS Biology, 6(8), 16781692.CrossRefGoogle ScholarPubMed
van den Broek, E. M. F., & Todd, P. M. (2009). Evolution of rhythm as an indicator of mate quality. Musicae Scientiae, 13(2 Suppl.), 369386.CrossRefGoogle Scholar
van Doorn, G. S., & Weissing, F. J. (2006). Sexual conflict and the evolution of female preferences for indicators of male quality. The American Naturalist, 168(6), 742757.CrossRefGoogle ScholarPubMed
Van Schaik, C. P. (1983). Why are diurnal primates living in groups? Behaviour, 87(1/2), 120144.CrossRefGoogle Scholar
Wallis, N. J., & Blessing, M. E. (2015). Big feasts and small scale foragers: Pit features as feast events in the American Southeast. Journal of Anthropological Archaeology, 39, 118.CrossRefGoogle Scholar
Weinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Singing and social bonding: Changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 37(2), 152158.CrossRefGoogle Scholar
Wertz, A. E. (2019). How plants shape the mind. Trends in Cognitive Sciences, 23(7), 528531.CrossRefGoogle ScholarPubMed
Wich, S. A., & Nunn, C. L. (2002). Do male “long-distance calls” function in mate defense? A comparative study of long-distance calls in primates. Behavioral Ecology and Sociobiology, 52(6), 474484.CrossRefGoogle Scholar
Wiessner, P., & Schiefenhövel, W. (1998). Food and the status quest: An interdisciplinary perspective. Berghahn Books.Google Scholar
Wiley, R. H., & Wiley, M. S. (1977). Recognition of neighbors’ duets by stripe-backed wrens Campylorhynchus nuchalis. Behaviour, 62(1/2), 1034.CrossRefGoogle Scholar
Willems, E. P., & van Schaik, C. P. (2015). Collective action and the intensity of between-group competition in nonhuman primates. Behavioral Ecology, 26(2), 625631.CrossRefGoogle Scholar
Williams, C. A., Beaudet, A. L., Clayton-Smith, J., Knoll, J. H., Kyllerman, M., Laan, L. A., … Wagstaff, J. (2006). Angelman syndrome 2005: Updated consensus for diagnostic criteria. American Journal of Medical Genetics, 140(5), 413418.CrossRefGoogle ScholarPubMed
Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press.Google Scholar
Wilson, D. E., & Reeder, D. M. (Eds.). (2005). Mammal species of the world: A taxonomic and geographic reference (Vols. 1–2, 3rd ed.). Johns Hopkins University Press.Google Scholar
Wilson, M., & Cook, P. F. (2016). Rhythmic entrainment: Why humans want to, fireflies can't help it, pet birds try, and sea lions have to be bribed. Psychonomic Bulletin & Review, 23(6), 16471659.CrossRefGoogle ScholarPubMed
Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Animal Behaviour, 61(6), 12031216.CrossRefGoogle Scholar
Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20(1), 15.CrossRefGoogle ScholarPubMed
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106(7), 24682471.CrossRefGoogle Scholar
Zahavi, A. (1975). Mate selection – a selection for a handicap. Journal of Theoretical Biology, 53(1), 205214.CrossRefGoogle ScholarPubMed