Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:13:45.196Z Has data issue: false hasContentIssue false

The origin and function of mirror neurons: The missing link

Published online by Cambridge University Press:  29 April 2014

Angelika Lingnau
Affiliation:
Center for Mind/Brain Sciences, University of Trento, 38100 Mattarello, Italy. [email protected]://www.cimec.unitn.it
Alfonso Caramazza
Affiliation:
Center for Mind/Brain Sciences, University of Trento, 38100 Mattarello, Italy. [email protected]://www.cimec.unitn.it Department of Psychology, Harvard University, Cambridge, MA 02138. [email protected]://www.wjh.harvard.edu/~caram/index.html

Abstract

We argue, by analogy to the neural organization of the object recognition system, that demonstration of modulation of mirror neurons by associative learning does not imply absence of genetic adaptation. Innate connectivity defines the types of processes mirror neurons can participate in while allowing for extensive local plasticity. However, the proper function of these neurons remains to be worked out.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borra, E., Belmalih, A., Calzavara, R., Gerbella, M., Murata, A., Rozzi, S. & Luppino, G. (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cerebral Cortex 18:1094–111.CrossRefGoogle ScholarPubMed
Buechel, C., Price, C., Frackowiak, R. S. J. & Friston, K. (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121:409–19.CrossRefGoogle Scholar
Luppino, G., Murata, A., Govoni, P. & Matelli, M. (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Experimental Brain Research 128:181–87.Google Scholar
Mahon, B. Z., Anzelotti, S., Schwarzbach, J., Zampini, M. & Caramazza, A. (2009) Category-specific organization in the human brain does not require visual experience. Neuron 63:397405.CrossRefGoogle Scholar
Mahon, B. Z. & Caramazza, A. (2011) What drives the organization of object knowledge in the brain? Trends in Cognitive Sciences 15:97103.Google Scholar
Matelli, M., Camarada, R., Glickstein, M. & Rizzolatti, G. (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. Journal of Comparative Neurology 251(3):281–98.Google Scholar
Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J. & Felleman, D. J. (1983) Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10:639–65.Google Scholar
Muakkassa, K. F. & Strick, P. L. (1979) Frontal lobe inputs to primate motor cortex. Evidence for four somatotopically organized “premotor” areas. Brain Research 177:176–82.CrossRefGoogle ScholarPubMed
Petrides, M. & Pandya, D. N. (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. Journal of Comparative Neurology 228:105–16.CrossRefGoogle Scholar
Webster, M. J., Bachevalier, J. & Ungerleider, L. G. (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cerebral Cortex 4:470–83.CrossRefGoogle ScholarPubMed
Wiesel, T. N. & Hubel, D. H. (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology 28:1029–40.CrossRefGoogle ScholarPubMed