Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:31:44.792Z Has data issue: false hasContentIssue false

New concepts of molecular communication among neurons

Published online by Cambridge University Press:  19 May 2011

R. Key Dismukes
Affiliation:
Neurosciences Research Program, Massachusetts Institute of Technology, Boston, Mass. 02130

Abstract

Recently a number of complex electrophysiological responses to neurotransmitters have been observed that cannot be described as simple excitation or inhibition. These responses are often characterized as modulatory, although there is no consensus on what defines modulation. Morphological studies reveal certain neurotransmitters stored in what might be release sites without synaptic contact. There is no direct evidence for nonsynaptic release from CNS sites, although such release does occur in the periphery and in invertebrates. Nonsynaptic release might provide a basis for diffuse one-cell-to-many communication, but it might also simply be a means of sending the transmitter to a broader area of a single neuron than occurs in typical synapses. Several kinds of macromolecules have been found to be transported in a retrograde direction – and in some cases transsynaptically. There have been suggestions that some neurons may release more than one type of transmitter. Particularly intriguing is the possibility of release of substances that modulate actions of a primary transmitter. Taken together this range of evidence suggests that neurons may use a variety of forms of molecular communication in addition to traditionally described synaptic transmission.

Several authors have suggested modes of communication distinct from classical synaptic transmission and have classified released substances using terms such as neurohumor, neurohormone, neuroregulator, and modulator. These suggestions have the heuristic value of drawing together diverse kinds of data, but it remains to be established that the pieces fit together in that fashion – for example, that complex electrophysiological effects are associated with substances released nonsynaptically. In order to reduce confusion, a flexible, generic approach to nomenclature for substances released from neurons and for hypothetical modes of communication is recommended. Some behavioral implications of nonconventional transmission are considered.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ajika, K., and Hökfelt, T. (1973) Ultrastructural identification of catecholamine neurons in the hypothalamic periventricular-arcuate nucleus-median eminence complex with special reference to quantitative aspects. Brain Research 57: 97117. [RKD]CrossRefGoogle ScholarPubMed
Arch, S. (1976) Neuroendocrine regulation of egg laying In Aplysia californica. American Zoologist 16: 167–75. [SA]CrossRefGoogle Scholar
Arluison, M.; Agid, Y.; and Javoy, F. (1978a) Dopaminergic nerve endings in the neostriatum of the rat - 1. identification by intracerebral injections of 5-hydroxydopamine. Neuroscience 3: 657–73. [MA, RKD]CrossRefGoogle ScholarPubMed
Arluison, M.; Agid, Y.; and Javoy, F. (1978b) Dopaminergic nerve endings in the neostriatum of the rat – 2. Radioautographic study following local microinjections of tritiated dopamine. Neuroscience 3: 675–84. [RKD]CrossRefGoogle ScholarPubMed
Barber, R. P.; Vaughn, J. E.; Slemmon, R. J.; Salvaterra, P. M.; Roberts, E.; and Leeman, S. E. (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. Journal of Comparative Neurology 184: 331–52. [WDB]CrossRefGoogle ScholarPubMed
Barchas, J. D.; Akil, H.; Elliott, G. R.; Holman, R. B.; and Watson, S. J. (1978) Behavioral neurochemistry: neuroregulators and behavioral states. Science 200: 964–73. [AJD, RKD]CrossRefGoogle ScholarPubMed
Barker, J. L. (1977) Physiological roles of peptides in the nervous system, In: Gainer, H., (ed.), Peptides in neurobiology. New York: Plenum, pp. 295343. [RKD]CrossRefGoogle Scholar
Barker, J. L. (1978) Evidence for diverse cellular roles of peptides in neuronal function. In: Peptides and behavior: a critical analysis of research strategies. Neurosciences Research Program Bulletin 16(4):535–53. [AJD, RKD, BL]Google Scholar
Barker, J. L. and Gainer, H. (1974) Peptide regulation of bursting pacemaker activity in a molluscan neurosecretory cell. Science 184: 1371–73. [JLB, RKD]CrossRefGoogle Scholar
Barker, J. L. and Smith, T. G. (1976) Peptide regulation of neuronal membrane properties. Brain Research 103: 167–70. [JLB]CrossRefGoogle ScholarPubMed
Barker, J. L. (1977) Peptides as neurohormones. In: Cowan, W. M., andFerrendell, J. A. (eds.), Approaches to the cell biology of neurons. (Vol. 2, Society for Neuroscience Symposia), pp. 340–73. Bethesda: Society for Neuroscience. [JLB]Google Scholar
Gruol, D. L.; Huang, L. M.; Neale, J. H.; and Smith, T. G. (1978) Enkephalin: pharmacologie evidence for diverse functional roles in the nervous system using primary cultures of dissociated spinal neurons. In: Terenius, L. (ed.) Characteristics and function of Opioids. North-Holland: Elsevier, pp. 8798. [JLB]Google Scholar
Neale, J. H.; Smith, T. G.; and MacDonald, R. L. (1978) Opiate peptide modulation of amino acid responses on cultured neurons: evidence for a novel type of communication in the CNS. Science 199: 1451–53. [JLB]Google Scholar
Barrett, E. F., and Barrett, J. N. (1976) Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurons. Journal of Physiology (London) 255: 737–74. [FFW]CrossRefGoogle Scholar
Barry, J. (1954) Neurocrinie et synapses “neuroséerétoires.” Archives d'Anatomie microscopique et de Morphologie expérimentale 43: 310–20. [JJD]Google Scholar
Bastian, J. (1976) Frequency response characteristics of electroreceptors in weakly electric fish (Gymnotoidei) with a pulse discharge. Journal of Comparative Physiology 112: 165–80. [THB]CrossRefGoogle Scholar
Belcher, G., and Ryall, R. W. (1977) Substance P selectively blocks nicotinic receptors on Renshaw cells: a new concept of inhibitory synaptic interactions. Journal of Physiology (London) 272: 105–19. [LLI, RWR]CrossRefGoogle ScholarPubMed
Benowitz, L. I., and Shashoua, V. E. (1977) Localization of a brain protein metabolically linked with behavioral plasticity in the goldfish. Brain Research 136: 227–42. [DLW]CrossRefGoogle ScholarPubMed
Blakiston's (1972) Gould medical dictionary (3rd ed.) New York: McGraw-Hill. [RKD]Google Scholar
Blankenship, J. (1979, in press) Physiological properties of peptide-secreting neuroendocrine cells in the marine mollusc Aplysia. Neuroscience Symposia. [SA, RKD]Google Scholar
Bloom, F. E. (1979, in press) Chemical integrative processes in the central nervous system. In: Schmitt, F. O., andWorden, F. G. (eas.) The neurosciences: a fourth intensive study program. Cambridge: MIT Press. [AJD, RKD, BHS]Google Scholar
Hoffer, B. J.; and Siggins, G. R. (1972) Norepinephrine mediated cerebellar synapses: A model system for neuropsychopharmacology. Biological Psychiatry 4: 157–77. [THB]Google Scholar
Bolton, T. B. (1975) Effects of stimulating the acetylcholine receptor on the current voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by microelectrode. Journal of Physiology 250: 175202. [JLB]CrossRefGoogle ScholarPubMed
Boulton, A. A. (1976a) Cerebral Aryl Alkyl Aminergic Mechanisms. In: Usdin, E., and Sandler, M. (eds.) Trace amines and the brain. New York: Marcel Dekker, Inc., pp. 2140. [AAB]Google Scholar
Boulton, A. A. (1976) Identification, distribution, metabolism, and function of meta and para tyramine, phenylethylamine, and tryptamine in brain. Advances in Biochemical Psychopharmacology 15: 5767. [RKD]Google ScholarPubMed
Boulton, A. A. (1978) The Tyramines: Functionally Significant Biogenic Amines or Metabolic Accidents. Life Science 23: 659–72. [AAB]CrossRefGoogle ScholarPubMed
Boulton, A. A. (1979) Trace Amines in the Central Nervous System. In: Tipton, K. F. (ed.) International Review of Biochemistry: Physiological and Pharmacological Biochemistry 26: 179206. [AAB]Google Scholar
Branton, W. D.; Arch, S.; Smock, T.; and Mayeri, E. (1978) Evidence for mediation of a neuronal interaction by a behaviorally active peptide. Proceedings of the National Academy of Science USA 75: 5732–36. [JLB, WDB]CrossRefGoogle ScholarPubMed
Branton, W. D.; Mayeri, E.; Brownell, P.; and Simon, S. B. (1978) Evidence for local hormonal communication between neurons In Aplysia. Nature 274: 7080. [JLB, RKD]CrossRefGoogle ScholarPubMed
Brodie, B., and Shore, P. A. (1957) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Annals of the New York Academy of Science 66: 631–42. [DVC]CrossRefGoogle ScholarPubMed
Brookhart, J. M., and Mountcastle, V. B. (eds.) (1977) The nervous system. Handbook of physiology, Vol. 1, Cellular biology of neurons, Part 2, Bethesda: Amer. Physiol. Soc. [JLB]Google Scholar
Brownell, P., and Mayeri, E. (1979) Prolonged inhibition of neurons by neuroendocrine cells In Aplysia. Science 204: 417–20. [JLB, WDB]CrossRefGoogle ScholarPubMed
Brownstein, M. J.; Saavedia, J. M.; Axelrod, J.; Zeman, G. H.; and Carpenter, D. O. (1974) Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proceedings of the National Academy of Science, USA 71: 4662–65. [RKD, PDE, NNO]CrossRefGoogle ScholarPubMed
Brunelli, M.; Castellucci, V.; and Kandel, E. R. (1976) Synaptic facilitation and behavioral sensitization In Aplysia: possible role of serotonin and cyclic AMP. Science 194: 1178–80. [IK]CrossRefGoogle ScholarPubMed
Buijs, R. M. (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell and Tissue Research 192: 423–35. [JJD]CrossRefGoogle ScholarPubMed
Bullock, T. E. (1974) Grass Foundation Lecture. Society for Neuroscience, Houston Chapter. [DLC]Google Scholar
Bullock, T. H. (1959) Neuron doctrine and electrophysiology, Science 129: 9971002. [RKD]CrossRefGoogle ScholarPubMed
Burnstock, G. (1975) Comparative studies of purinergic nerves. Journal of Experimental Zoology 194: 103–34. [RKD]CrossRefGoogle ScholarPubMed
Burnstock, G. (1976) Do some nerve cells release more than one transmitter? Neuroscience 1: 239–48. [RKD]CrossRefGoogle ScholarPubMed
Burnstock, G. and Costa, M. (1975) Adrenergic neurons, their organization, function, and development in the peripheral nervous system. New York: John Wiley and Sons. [RKD]Google Scholar
Busis, N. A., and Weight, F. F. (1976) Spike after-hyperpolarization of a sympathetic neurone is calcium sensitive and is potentiated by theophylline. Nature 263: 434–36. [FFW]CrossRefGoogle Scholar
Butcher, L. L., and Talbot, K. (1978) Chemical communication processes involving neurons: vocabulary and syntax. In: Butcher, L. L. (ed.) Cholinergic-monoaminergic interactions in the brain. New York: Academic Press, pp. 322. [LLB]CrossRefGoogle Scholar
Calas, A.; Alonso, G.; Arnauld, E.; and Vincent, J. D. (1974) Demonstration of indolaminergic fibers in the median eminence of the duck, rat, and monkey. Nature 250: 241–43. [RKD]CrossRefGoogle Scholar
Carew, T. J., and Kandel, E. R. (1977) Inking In Aplysia California. III. Two different synaptic conductance mechanisms for triggering central program for inking. Journal of Neurophysiology 40: 721–34. [FFW]CrossRefGoogle Scholar
Chan-Palay, V. (1976) Serotonin axons in the supra- and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity. Brain Research 102: 103–30. [RKD]CrossRefGoogle ScholarPubMed
Chan-Palay, V. (1977) Cerebellar dentate gyrus. Berlin: Springer-Verlag, pp. 418–25. [RKD]CrossRefGoogle Scholar
Chan-Palay, V. and Palay, S. L. (1977) Ultrastructural identification in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry. Proceedings of the National Academy of Science, USA 74: 4050–54. [RKD]CrossRefGoogle ScholarPubMed
Chan-Palay, V.; Jonsson, G.; and Palay, S. L. (1978) Serotonin and substance P coexist in neurons of the rat's central nervous system. Proceedings of the National Academy of Science, USA 75: 1582–86. [RKD]CrossRefGoogle ScholarPubMed
Chu, N-S., and Bloom, F. (1974) Activity patterns of catecholamine-containing neurons in the dorso-lateral tegmentum of unrestrained cats. Journal of Neurobiology 5: 527–44. [RF]CrossRefGoogle ScholarPubMed
Chute, D. L., and Wright, D. C. (1973) Retrograde state dependent learning. Science 180: 878–80. [DLC]CrossRefGoogle ScholarPubMed
Coggershall, R. E. (1978) A cytological analysis of the bag cell control of egg laying In Aplysia. Journal of Morphology 132: 461–85. [RKD]CrossRefGoogle Scholar
Cooper, J. R.; Bloom, F. E.; and Roth, R. H. (1978) Biochemical basis of neuropharmacology, 3rd ed.New York: Oxford University Press. [DLC]CrossRefGoogle Scholar
Cottrell, G. A. (1977) Identified amino-containing neurones and their synaptic connections. Neuroscience 2: 118. [RKD]CrossRefGoogle Scholar
Cragg, B. (1979) Overcoming the failure of electromicroscopy to preserve the brain's extracellular space. Trends in Neurosciences 2: 159–62. [THB]CrossRefGoogle Scholar
Dale, H. H. (1935) Pharmacology and nerve endings. Proceedings of the Royal Society of Medicine 28: 319–32. [RKD]CrossRefGoogle ScholarPubMed
Denavit-Saubié, M.; Champagnat, J.; and Zieglgänsburger, W. (1978) Effects of opiates and met-enkephalin on pontine and bulbar respiratory neurones of the cat. Brain Research 155: 5568. [RKD]CrossRefGoogle ScholarPubMed
Descarries, L.; Beaudet, A.; and Watkins, K. C. (1975) Serotonin nerve terminals in adult rat neocortex. Brain Research 100: 563–88. [DVC, RKD]CrossRefGoogle ScholarPubMed
Descarries, L.; Watkins, K. C.; and Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rat. lll. Topometric ultrastructural analysis. Brain Research 133: 197222. [RKD, PDE]CrossRefGoogle Scholar
de Wied, D. (1976) Behavioral effects of intraventricularly administered vasopressin fragments. Life Sciences 19: 685–90. [JJD]CrossRefGoogle ScholarPubMed
Bohus, B.; van Ree, J. M.; and Urban, I. (1978) Behavioral and eleetrophysiological effects of peptides related to lipotropin (β-LPH). Journal of Pharmacology and Eperimental Therapeutics 204: 570–80. [DLC]Google Scholar
Dismukes, R. K., and Mulder, A. H. (1976) Cyclic AMP and α-receptor mediated modulation of noradrenaline release from rat brain slices. European Journal of Pharmacology 39: 383–88. [RKD]CrossRefGoogle ScholarPubMed
Dogterom, J.; van Wimersma Greidanus, T. J. B.; and De Wied, D. (1978) Vasopressin in cerebrospinal fluid and plasma of man, dog and rat. American Journal of Physiology 234: E46367. [JJD]Google ScholarPubMed
Dun, N. J., and Nishi, S. (1974) Effects of dopamine on the superior cervical ganglion of the rabbit. Journal of Physiology (London) 239: 155–64. [BL]CrossRefGoogle ScholarPubMed
Dunlap, K., and Fischbach, G. D. (1978) Neurotransmitters decrease the calcium component of sensory neurone action potentials. Nature 276: 837–39. [JLB]CrossRefGoogle Scholar
Dunn, A. J. (1978) Commentary. In: Peptides and behavior: a critical analysis of research strategies. Neurosciences Research Program Bulletin 16: 554. [RKD, AJD]Google Scholar
Eccles, J. C. (1964) The physiology of synapses. Berlin: Springer-Verlag, pp. 110. Also, New York: Academic Press. [RKD, FFW]CrossRefGoogle Scholar
Eccles, J. C.Ito, M.; and Szentagothai, J. (1967) The Cerebellum as a Neuronal Machine. New York: Springer. [RF]CrossRefGoogle Scholar
Elde, R., and Hökfelt, T. (1979) Localization of hypophysiotropic peptides and other biologically active peptides within the brain. Annual Review of Physiology 41: 587602. [WDB]CrossRefGoogle ScholarPubMed
Emson, P. C. (1979 in press) Peptides as neurotransmitter candidates in the mammalian CNS. Progress in Neurobiology. [LLI]CrossRefGoogle Scholar
Evans, P. D. (1978a) Octopamine: a high-affinity uptake mechanism in the nervous system of the cockroach. Journal of Neurochemistry 30: 1015–22. [PDE]CrossRefGoogle ScholarPubMed
Evans, P. D. (1978b) Octopamine: from metabolic mistake to modulator. Trends in Neurosciences 1: 154–57. [PDE]CrossRefGoogle Scholar
Evans, P. D. and O'Shea, M. (1977) The identification of an oetopaminergic neurone which modulates neuromuscular transmission in the locust. Nature 270: 257–59. [PDE, GH]CrossRefGoogle Scholar
Evans, P. D. (1978) The identification of an oetopaminergic neurone and the modulation of a myogenic rhythm in the locust. Journal of Experimental Biology 73: 235–60. [PDE]CrossRefGoogle ScholarPubMed
Faber, D. S., and Korn, H. (1978) Neurobiology of the mauthner cell. New York: Raven Press. [THB]Google Scholar
Farnham, P. J.; Novak, R. A.; and McAdoo, D. J. (1978) A re-examination of the distribution of octopamine and phenylethanolamine In Aplysia nervous system. Journal of Neurochemistry 30: 1173–76. [NND]CrossRefGoogle ScholarPubMed
Fitsimons, J. T. (1971) The effect on drinking of peptide precursors and of short-chain peptide fragments of angiotension II injected into the rat's diencephalon. Journal of Physiology 214: 295303. [JLB]CrossRefGoogle Scholar
Flood, J. F.; Vidal, D.; Bennett, E. L.; Orme, A. E.; Vasquez, S.; and Jarvik, M. E. (1978) Memory facilitating and antiamnesic effects of corticosteroids. Pharmacology Biochemistry and Behavior 8: 8187. [DLC]CrossRefGoogle ScholarPubMed
Florey, E. (1960) Physiological evidence for naturally occurring inhibitory substances. In: Roberts, E.; Baxter, C. F.; van Harreveld, A.; Wiersma, C. A. G.; Adey, W. R.; andKillam, K. F. (eds.) Inhibitions of the Nervous System and Gamma-Aminobutyric Acid. Oxford, London, New York, Paris: Pergamon Press, pp. 7284. [EF]Google Scholar
Florey, E. (1967) Neurotransmitters and modulators in the animal kingdom. Federation Proceedings 26: 1164–78. [RKD, EF]Google ScholarPubMed
Foote, S. L.; Freedman, R.; and Oliver, A. P. (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Research 86: 229–42. [RF]CrossRefGoogle ScholarPubMed
Fox, I. H., and Kelley, W. N. (1978) The role of adenosine and 2'-deoxyadenosine in mammalian cells. Annual Review of Biochemistry 47: 655–86. [RKD]CrossRefGoogle ScholarPubMed
Freedman, R. (1977) Interactions of antipsychotic drugs with norepinephrine and cerebellar neuronal circuitry: implications for the psychobiology of psychosis. Biological Psychiatry 12: 181–97. [RF]Google ScholarPubMed
Hoffer, B. J., Woodward, D. J. and Puro, D. (1977) Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers. Experimental Neurology 55: 269–88. [RKD, RF, DJW]Google Scholar
Gainer, H. (1977) Peptides in neurobiology. New York: Plenum. [JLB]CrossRefGoogle Scholar
Gale, K.; Guidotti, A.; and Costa, E. (1977) Dopamine sensitive adenylate cyclase: location in substantia nigra. Science 195: 503–5. [RKD]CrossRefGoogle ScholarPubMed
Geffen, L. B.; Jessell, T. M.; Cuello, A. C.; and Iversen, L. L. (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260: 258–60. [RKD]CrossRefGoogle ScholarPubMed
Gerschenfeld, H. M. (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiological Reviews 53: 1119. [NNO]CrossRefGoogle ScholarPubMed
Gorski, J., and Gannon, F. (1976) Current models of steroid hormone action: a critique. Annual Review of Physiology 38: 425–50. [JWT]CrossRefGoogle Scholar
Grafstein, B. (1977) Axonal Transport: The Intracellular Traffic of the Neuron, Chapt. 19. In: Kandel, E. R. (ed.) Handbook of physiology, Section 1: The nervous system, Volume 1: Cellular Biology of Neurons, Part 1. Bethesda: American Physiological Society. [SO]Google Scholar
Green, J. D., and Maxwell, D. S. (1961) Hippocampal electrical activity. I. Morphological aspects. Electroencephalography and Clinical Neurophysiology 13: 837–46. [GIH]CrossRefGoogle Scholar
Greengard, P. (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260: 101–8. [RKD, FFW]CrossRefGoogle ScholarPubMed
Greengard, P. and Kebabian, J. W. (1974) Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Federation Proceedings 33: 1059–67. [BL]Google ScholarPubMed
Gregory, W. A., and Hatton, G. I. (1979) Ultrastructural effects of dehydration and rehydration on neurons of rat hypothalamic paraventricular nucleus. Anatomical Record 193: 554 (abstract). [GIH]Google Scholar
Groves, P. M.; Wilson, C. J.; Young, S. J.; and Rebec, G. V. (1975) Self-inhibition by dopaminergic neurons. Science 190: 522–29. [RKD]CrossRefGoogle ScholarPubMed
Hashiguchi, T.; Ushiyama, N. S.; Kobayashi, H.; and Libet, B. (1978) Does cyclic GMP mediate the slow excitatory synaptic potential in sympathetic ganglia? Nature 271: 267–68. [BL]CrossRefGoogle ScholarPubMed
Haskins, J. T.; Price, C. H.; and Blankenship, J. E. (1979) Anatomical and pharmacological investigations of neuroendocrine cells In Aplysia. Federation Proceedings 38: 1394. [WDB]Google Scholar
Hatton, G. I.; Armstrong, W. E.; and Gregory, W. A. (1978) Spontaneous and osmotically-stimulated activity in slices of rat hypothalamus. Brain Research Bulletin 3: 497508. [GIH]CrossRefGoogle ScholarPubMed
Hauswirth, O.; Noble, D.; and Tsien, R. W. (1968) Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje cells. Science 162: 916–17. [DAB]CrossRefGoogle Scholar
Hines, J. F., and Garwood, M. M. (1977) Release of protein from axons during rapid axonal transport: an in vitro preparation. Brain Research 125: 141–48. [DLW]CrossRefGoogle ScholarPubMed
Hobson, J. A., and Scheibel, A. B. (1979 in press) Integration and modulation in the brain stem. Neurosciences Research Program Bulletin. [RKD]Google Scholar
Hökfelt, T.; Elfvin, L. G.; Eide, R.; Schultezberg, M.; Goldstein, M.; arid Luft, R. (1977) Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proceedings of the National Academy of Science, USA 74: 3587–91. [RKD, LLI]CrossRefGoogle ScholarPubMed
Hökfelt, T.; Ljungdahl, A.; Steinbusch, H.; Verhofstad, A.; Nilsson, G.; Brodin, E.; Pernow, B.; and Goldstein, M. (1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience 3: 517–38. [LLI]CrossRefGoogle ScholarPubMed
Hopkins, C. D. (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotid fish. Journal of Comparative Physiology 111: 171207. [THB]CrossRefGoogle Scholar
Hoyle, G. (1975) Evidence that insect dorsal unpaired median (DUM) neurons are octopaminergic. Journal of Experimental Zoology 193: 425–31. [GH]CrossRefGoogle ScholarPubMed
Hoyle, G. (1978a) The dorsal unpaired median neurons of the locust metathoracic ganglion. Journal of Neurobiology 9: 4357. [GH]CrossRefGoogle ScholarPubMed
Hoyle, G. (1978b) Distribution of nerve and muscle fibre types in locust jumping muscle. Journal of Experimental Biology 73: 205–33. [GH]CrossRefGoogle ScholarPubMed
Hoyle, G. (1979 in press) Fine structure of an octopaminergic neuron and its terminals. Journal of Neurobiology. [GH]CrossRefGoogle Scholar
Dagan, D.; Moberly, B.; and Colquhoun, W.; (1974) Dorsal unpaired median insect neurons make neu rosee retory endings on skeletal muscle. Journal of Experimental Zoology 187: 159–65. [PDE]Google Scholar
Ito, M.; Nisimaru, N.; and Shibuki, K. (1979) Destruction of inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells. Nature 277: 568–69. [MI]CrossRefGoogle ScholarPubMed
Ito, M.; Orlov, I.; and Shimoyama, I. (1978) Reduction of the cerebellar stimulus effect on rat Deiters neurons after chemical destruction of the inferior olive. Experimental Brain Research 33: 143–45. [MI]CrossRefGoogle ScholarPubMed
Iversen, L. L. (1979 in press) Neurotransmitter interactions in the substantia nigra; a model for local circuit chemical interactions. In: Schmitt, F. O., andWorden, F. G. (eds.) The neurosciences: fourth study program. Cambridge, Mass.: MIT Press. [RKD]Google Scholar
Nicoll, R. A.; and Vale, W. W. (1978) Neurobiology of peptides. Neurosciences Research Program Bulletin 16:(2). [RKD]Google Scholar
Jan, Y. N.; Jan, L. Y.; and Kuffler, S. W. (1979) A peptide as a possible transmitter in sympathetic ganglia of the frog. Proceedings of the National Academy of Sciences, USA 76: 1501–05. [JJD, FFW]CrossRefGoogle ScholarPubMed
John, E. R., (1972) Switchboard verus statistical theories of learning and memory. Science 177: 850–64. [DLL]CrossRefGoogle Scholar
Kandel, E. R. (1976) Cellular basis of behavior. San Francisco: Freeman and Company, pp. 281342. [RKD]Google Scholar
Krasne, F. B.; Strumwasser, F.; and Truman, J. (1979 in press) The selection and modulation of behavior programs. Neurosciences Research Program Bulletin. [RKD]Google Scholar
Kandel, E. R., and Taue, L. (1965) Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion In Aplysia depilars. Journal of Physiology 181: 2847. [JLB]CrossRefGoogle Scholar
Kandel, E. R. (1978) A cell-biological approach to learning. Grass Lecture Monograph 1. Bethesda: Society for Neuroscience. [IK]Google Scholar
Kasamatsu, T., and Pettigrew, J. D. (1979a) Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6-hy-droxydopamine. Journal of Comparative Neurology 185: 139–61. [MI]CrossRefGoogle Scholar
Kasamatsu, T.; Pettigrew, J. D.; and Ary, M. (1979b) Restoration of visual cortical plasticity by local microperfusion of norepinephrine. Journal of Comparative Neurology 185: 163–81. [MI]CrossRefGoogle Scholar
Kasting, N. W.; Cooper, K. E.; and Veale, W. L. (1979) Antipyresis following perfusion of brain sites with vasopressin. Experientia 35: 208–9. [JJD]CrossRefGoogle ScholarPubMed
Katz, B. (1966) Nerve, muscle and synapse. New York: McGraw-Hill, pp. 4172. [JLB, RKD]Google Scholar
Katz, B. (1969) The Sherrington Lectures X, Liverpool: Liverpool Univ. Press. [AAB]Google Scholar
Katz, B. and Miledi, R. (1977) Transmitter leakage from motor nerve endings. Proceedings of the Royal Society, London B. 196: 5972. [DLW]Google Scholar
Kelly, J. S. (1975) Microiontophoretic application of drugs onto single neurones. In: Iversen, L. L.; Iversen, S. D.; andSnyder, S. (eds.) Handbook of psychopharmacology, Vol. 2: 2967. [RWR]Google Scholar
Klein, M., and Kandel, E. R. (1978) Presynaptic modulation of voltage-dependent calcium current: mechanism for behavioral sensitization In Aplysia californica. Proceedings of the National Academy of Science 75: 3512–16. [JLB, IK]CrossRefGoogle ScholarPubMed
Kobayashi, H., and Libet, B. (1968) Generation of slow postsynaptic potentials without increases in ionic conductance. Proceedings of the National Academy of Sciences, U.S.A. 60: 1304–11. [BL]CrossRefGoogle ScholarPubMed
Kobayashi, H., and Libet, B. (1970) Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. Journal of Physiology (London) 208: 353–72. [BL]CrossRefGoogle Scholar
Kobayashi, H., and Libet, B. (1974) Is inactivation of potassium conductance involved in slow postsynaptic excitation of sympathetic ganglion cells? Effects of nicotine. Life Sciences 14: 1871–83. [RKD, BL]CrossRefGoogle ScholarPubMed
Kobayashi, H.; Hashiguchi, T.; and Ushiyama, N. S. (1978) Postsynaptic modulation of excitatory process in sympathetic ganglia by cyclic AMP. Nature 271: 268–70. [BL]CrossRefGoogle ScholarPubMed
Koda, L. Y.; Schulman, J. A.; and Bloom, F. E. (1978) Ultrastructural identification of noradrenergic terminals in rat hippocampus after unilateral destruction of the locus coeruleus with 6-hydroxydopamine. Brain Research 145: 190–95. [RKD]CrossRefGoogle Scholar
Koketsu, K. (1969) Cholinergic synaptic potentials and the underlying ionic mechanisms. Federation Proceedings 28: 101–12. [RKD, BL]Google Scholar
Kopin, I. J. (1967) The adrenergic synapse. In: Quarton, G. C.; Melnechuk, T.; Schmitt, F. O., (eds.) The neurosciences: a study program. New York: Rockefeller Univ. Press, pp. 427–32. [RKD]Google Scholar
Kravitz, E. A.; Battelle, B.-A.; Evans, P. D.; Talamo, B. R.; and Wallace, B. G. (1976) Octopamine neurons in lobsters. Neuroscience Symposia 1: 6781. [PDE]Google Scholar
Krnjevic, K.; Dumain, R.; and Renaud, L. (1971) The mechanisms of excitation by acetylcholine in the cerebral cortex. Journal of Physiology 215: 247–68. [RKD]CrossRefGoogle ScholarPubMed
Kuba, K. (1970) Effects of catecholamines on the neuromuscular junction in the rat diaphragm. Journal of Physiology 211: 551–70. [PDE]CrossRefGoogle ScholarPubMed
Kuba, K. and Koketsu, K. (1974) Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Brain Research 81: 338–62. [DAB]CrossRefGoogle ScholarPubMed
Kuba, K. (1976) The muscarinic effects of acetylcholine on the action potential of bullfrog sympathetic ganglion cells. Japanese Journal of Physiology 26: 703–16. [JLB]Google ScholarPubMed
Kupfermann, I. (1979) Modulatory actions of neurotransmitters. Annual Review of Neuroscience 2: 447–65. [EF, LLI, BL, JWT]CrossRefGoogle ScholarPubMed
Kupfermann, I., and Weiss, K. R. (1978) The command neuron concept. The Behavioral and Brain Sciences 1: 339. [SA, IK]CrossRefGoogle Scholar
Cohen, J. L.; Mandelbaum, D. E.; Schonberg, M.; Susswein, A. J.; and Weiss, K. R. (1979) Functional role of serotonergic neuromodulation In Aplysia. Federation Proceedings 38: 20952102. [IK]Google Scholar
Langer, S. F., and Pinto, J. E. B. (1976) Possible involvement of a transmitter different from norepinephrine in the residual responses to nerve stimulation of the cat nictitating membrane after pretreatment with reserpine. Journal of Pharmacology and Experimental Therapeutics 169: 697713. [RKD]Google Scholar
Lapierre, Y.; Beaudet, A.; Demianczuk, N.; and Descarries, L. (1973) Noradrenergic axon terminals in the cerebral cortex of rat. II. Quantitative data revealed by light and electron miscroscope radioautography of the frontal cortex. Brain Research 63: 175–82. [JWP]CrossRefGoogle Scholar
Laverty, R. (1978) Catecholamines: role in health and disease. Drugs 16: 418–40. [DLC]CrossRefGoogle ScholarPubMed
Lawrence, T. S.; Beers, W. H.; and Gilula, N. B. (1978) Transmission of hormonal stimulation by cell-to-cell communication. Nature 272: 501–6. [RKD]CrossRefGoogle Scholar
Libet, B. (1965) Slow synaptic responses in automatic ganglia. In: Studies in Physiology, Curtis, D. R. and McIntyre, A. K. (eds.) Berlin: Springer-Verlag, pp. 160–65. [BL]CrossRefGoogle Scholar
Libet, B. (1967) Long latent periods and further analysis of slow synaptic responses in sympathetic ganglia. Journal of Neurophysiology 30: 494514. [BL]CrossRefGoogle ScholarPubMed
Libet, B. (1970) Generation of slow inhibitory and excitatory postsynaptic potentials. Federation Proceedings 29: 1945–56. [THB, RKD, BL]Google ScholarPubMed
Libet, B. (1976) The SIF cell as a functional dopamine-releasing interneuron in the rabbit superior cervical ganglion. In: Eränkö, O. (ed.) SIF Cells: Structure and Function of the Small Intensely Fluorescent Sympathetic Cells. Washington, D.C.: U.S. Government Printing Office, pp. 163177. [BL]Google Scholar
Libet, B. (1979a) Which postsynaptic action of dopamine is mediated by cyclic AMP? Life Sciences 24: 1043–58. [BL]CrossRefGoogle Scholar
Libet, B. (1979b) Slow synaptic actions in ganglionic functions. In: Brooks, C. McC., Koizumi, K., andSato, A. (eds.) Integrative Functions of the Automatic Nervous System: An Analysis of the Interrelationships and Interaction of the Sympathetic and Parasympathetic Division of the Autonomie System in the Control of Body Function, Tokyo: Tokyo Univ. Press, pp. 197222. [BL]Google Scholar
Libet, B. (1979c in press) Dopaminergic synaptic processes in the superior cervical ganglion: Models for synaptic actions. In: Horn, A., Korf, J., and Westerink, B. H. C., (eds.) The Neurobiology of Dopamine. London: Academic Press. [BL]Google Scholar
Libet, B., and Kobayashi, H. (1974) Adrenergic mediation of the slow inhibitory post-synaptic potential in sympathetic ganglia of the frog. Journal of Neurophysiology 37: 805–14. [BL]CrossRefGoogle Scholar
Libet, B., and Kobayashi, H. and Tosaka, T. (1970) Dopamine as a synaptic transmitter and modulator in sympathetic ganglia; a different mode of synaptic action. Proceedings of the National Academy of Science, U.S.A. 67: 667–73. [JLB, BL]CrossRefGoogle ScholarPubMed
Kobayashi, H.; and Tanaka, T. (1975) Synaptic coupling into the production and storage of a neuronal memory trace. Nature 258: 155–57. [BL]Google Scholar
Liebeskind, J. C., and Dismukes, R. K. (1978) (eds.) Peptides and behavior: a critical analysis of research strategies, Neurosciences Research Program Bulletin 16:(4). [RKD]Google Scholar
Lipton, M. A.; Di Mascio, A.; and Killam, K. F. (eds.) (1978) Psychopharmacology: a generation of progress, New York: Raven Press. [RKD]Google Scholar
Lipton, P., and Heimbach, C. J. (1977) The effect of extracellular potassium concentration on protein synthesis in guinea pig hippocampal slices, journal of Neurochemistry 28: 1347–54. [GIH]CrossRefGoogle ScholarPubMed
Liu, A. Y-C., and Greengard, P. (1976) Regulation by steroid hormones of phosphorylation of specific protein common to several target organs. Proceedings of the National Academy of Science, USA 73: 568–72. [RKD]CrossRefGoogle ScholarPubMed
Llinas, R., and Hess, R. (1976) Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proceedings of the National Academy of Sciences 73: 2520–23. [RWR]CrossRefGoogle ScholarPubMed
Martin, A. R. (1977) Junctional transmission. II. Presynaptic mechanisms. In: Kandel, E. R. (ed.) Handbook of physiology; Section I. The nervous system, Volume 1, Bethesda, Md: Amer. Physiol. Soc., pp. 329–55. [FFW]Google Scholar
Mayeri, E., and Simon, S. (1975) Modulation of synaptic transmission and burster neuron activity after release of a neurohormone In Aplysia. Neuroscience Abstracts 1: 584. [WDB]Google Scholar
Mayeri, E.; Brownell, P.; Branton, W. D.; and Simon, S. B. (1979a in press) Multiple, prolonged actions of neuroendocrine bag cells on neurons In Aplysia. I. Effects on bursting pacemaker neurons, Journal of Neurophysiology 42: [WDB]Google ScholarPubMed
Mayeri, E.; Brownell, P.; and Branton, W. D. (1979b in press) Multiple prolonged actions of neuroendocrine bag cells on neurons In Aplysia. II. Effects on beating pacemaker and silent neurons. Journal of Neurophysiology 42: [WDB]Google ScholarPubMed
McCaman, M. W., and McCaman, R. E. (1975) Octopamine and phenylethanolamine In Aplysia ganglia and in individual neurons. Brain Research 141: 347–52. [PDE, NNO]CrossRefGoogle Scholar
McCarley, R., and Hobson, J. A. (1972) Simple spike-firing pattern of cat cerebellar Purkinje cells in sleep and waking. Electroencephalographic and Clinical Neurophysiology 33: 471–76. [RF]CrossRefGoogle ScholarPubMed
McEwen, B. S.; Davis, P. G.; Parsons, B.; and Pfaff, D. W. (1979) The brain as a target for steroid hormone action. Annual Review of Neuroscience 2: 65112. [JWT]CrossRefGoogle ScholarPubMed
Meech, R. W. (1978) Calcium-dependent potassium activation in nervous tissue. Annual Review of Biophysics and Bioengineering 7: 118. [FFW]CrossRefGoogle Scholar
Mitchell, J. F., and Silver, A. (1963) The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. Journal of Physiology 165: 117–29. [DLW]CrossRefGoogle ScholarPubMed
Moises, H. C. (1979). Norepinephrine modulation of the responses of the cerebellar Purkinje cell to iontophoresis of putative neurotransmitters and to afferent synaptic activity. Doctoral Dissertation, University of Rochester. [DJW]Google Scholar
Moises, H. C.; Woodward, D. J.; Hoffer, B. J.; and Freedman, R. (1979). Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Experimental Neurology. 64: 493515. [DJW]CrossRefGoogle Scholar
Moises, H. C. and Woodward, D. J. (1979). Potentiation of GABA inhibitory action in cerebellum by locus coeruleus stimulation. Brain Research, in press. [DJW]Google Scholar
Moises, H. C.; Waterhouse, B. D.; and Woodward, D. J. (1978). Locus coeruleus stimulation potentiates Purkinje cell responses to afferent synaptic inputs. Society for Neuroscience Abstracts. 4: 279. [DJW]Google Scholar
Moore, R. Y., and Bloom, F. E. (1978) Central catecholamine neuron systems: anatomy and physiology. Annual Review of Neuroscience 1: 129–70. [RKD]CrossRefGoogle ScholarPubMed
Mudge, A.; Leeman, S.; and Fischbach, G. D. (1978) Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proceedings of the National Academy of Science 76: 526–30. [JLB]CrossRefGoogle Scholar
Narumi, S.; Kimelberg, H. K.; and Bourke, R. S. (1978) Effects of norepinephrine on the morphology and some enzyme activities of primary monolayer cultures from rat brain. Journal of Neurochemistry 31: 1479–90. [JWP]CrossRefGoogle ScholarPubMed
Nicoll, R. A., and Barker, J. L. (1971) The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Research 35: 501–11. [JJD]CrossRefGoogle ScholarPubMed
Nieoullon, A.; Cheramy, A.; and Glowinski, J. (1977) Release of dopamine from substantia nigra in vivo. Nature 266: 375–77. [RKD]CrossRefGoogle ScholarPubMed
Nishi, S., and Koketsu, K. (1968) Early and late afterdischarges of amphibian sympathetic ganglion cells. Journal of Neurophysiology 31: 109–30. [BL]CrossRefGoogle Scholar
Nishi, S.; Soeda, H.; and Koketsu, K. (1969) Unusual nature of ganglionic slow EPSP studied by a voltage–clamp method. Life Sciences 8: 3342. [BL]CrossRefGoogle ScholarPubMed
Ochs, S., and Worth, R. M. (1978) Axoplasmic Transport in Normal and Pathological Systems. In: Waxman, S. G. (ed.) Physiology and pathobiology of axons. New York: Raven Press, pp. 251–64. [SO]Google Scholar
Ochs, S.; Erdman, J.; Jersild, R. A. Jr; and McAdoo, V. (1978) Routing of transported materials in the dorsal root and nerve fiber branches of the dorsal root ganglion. Journal of Neurobiology 9: 465–81. [SO]CrossRefGoogle ScholarPubMed
Orkand, R. K. (1977) Glial cells. In: Brookhart, J. M. and Mountcastle, V. B. (eds.) Handbook of Physiology, Section 1: The Nervous System. Bethesda: Amer. Physiol. Soc., pp. 855875. [GIH]Google Scholar
Osborne, N. N. (1977) Do snail neurons contain more than one neurotransmitter? Nature 270: 622–23. [RKD, NNO]CrossRefGoogle Scholar
Osborne, N. N. (1978) The neurobiology of a serotonergic neuron. In: Osborne, N. N., (ed.) Biochemistry of characterised neurons Oxford: Pergamon Press, pp. 4780. [NNO]CrossRefGoogle Scholar
Osborne, N. N. (1979) Is Dale's Principle valid? Trends in Neuroscience 2: 7375. [RKD, NNO]CrossRefGoogle Scholar
O'Shea, M., and Evans, P. D. (1979) Potentiation of neuromuscular transmission by an octopaminergic neurone in the locust. Journal of Experimental Biology 79: 169–90. [PDE]CrossRefGoogle Scholar
O'Malley, B. W., and Means, A. R. (1976) The mechanism of steroid hormone regulation of transcription of specific eukaryotic genes. Progress in Nucleic Acid Research and Molecular Biology 19: 403–19. [JWT]CrossRefGoogle ScholarPubMed
Pellet, J.; Dubroccard, S.; Harlay, F.; and Tarday, M. F. (1973) Changes in cerebellar responses evoked by primary sensorimotor cortex during sleep and wakefulness. In: Sleep: physiology, biochemistry, psychology, pharmacology, and clinical implications. Basel: Kargen, pp. 308–13. [RF]Google Scholar
Phillis, J. W. (1977) The role of cyclic nucleotides in the CNS. Le Journal Canadien des Sciences Neurologiques 4: 151–93. [RKD]Google ScholarPubMed
Phillis, J. W. (1978) Overview of neurochemical and neurophysiological actions of taurine. In: Barbeau, A., andHuxtable, R. J. (eds.) Taurine and neurological disorders. New York: Raven Press, pp. 289303. [JWP]Google Scholar
Phillis, J. W. and Kostopoulos, G. K. (1977) Activation of a noradrenergic pathway from the brain stem to rat cerebral cortex. General Pharmacology 8: 207–11. [JWP]CrossRefGoogle ScholarPubMed
Rakic, P. (1975) Local circuit neurons. Neurosciences Research Program Bulletin 13:(3). [RKD]Google ScholarPubMed
Rall, W. (1970) Cable properties of dendrites and effects of synaptic location. In: Anderssen, P., Jansen, J. K. S. (eds.) Excitatory synaptic mechanisms. Oslo: Universitets-forlag, pp. 175–87. [RKD]Google Scholar
Reader, T. A.; De Champlain, J.; and Jasper, H. H. (1976) Catecholamines released from cerebral cortex in the cat, decrease during sensory stimulation. Brain Research 111: 95108. [RKD]CrossRefGoogle ScholarPubMed
Reichardt, L. F., and Patterson, P. H. (1977) Neurotransmitter synthesis and uptake by isolated sympathetic neurones in microcultures. Nature 270: 147–51. [RKD]CrossRefGoogle ScholarPubMed
Reichardt, W., and Poggio, T. (1979 in press) Theoretical Approaches in Neurobiology. Neurosciences Research Program Bulletin 17. [BHS]Google Scholar
Reubi, J.-C.; Iversen, L. L.; and Jessell, T. M. (1977) Dopamine selectively increases 3H-GABA release from slices of rat substantia nigra in vitro. Nature 268: 652–54. [RKD]CrossRefGoogle ScholarPubMed
Richards, J. G.; Lorez, H. P.; and Tranzer, J. P. (1973) Indolealkylamine nerveterminals in cerebral ventricles; identification by electron microscopy and fluorescence histochemistry. Brain Research 57: 277–88. [RKD]CrossRefGoogle Scholar
Russell, D. F., and Hartline, D. K. (1978) Bursting neural networks: a re-examination. Science 200: 453–56. [THB]CrossRefGoogle Scholar
Sastry, B. S. R., and Phillis, J. W. (1977) Antagonism of biogenic amine-induced depression of cerebral cortex neurons by Na+, K+-ATPase inhibitors. Canadian Journal of Physiology and Pharmacology 55: 170–79. [JWP]CrossRefGoogle Scholar
Scheibel, M. E., and Scheibel, A. B. (1969) Terminal patterns in cat spinal cord. III Primary afferent collaterals. Brain Research 13: 417–43. [RWR]CrossRefGoogle Scholar
Scheibel, M. E., and Scheibel, A. B. (1970) Organisation of spinal motoneuron dendrites in bundles. Experimental Neurology 28: 106–12. [RWR]CrossRefGoogle ScholarPubMed
Scheich, H., and Bullock, T. H. (1974) The detection of electric fields from electric organs. In: Fessard, A. (ed.) “Handbook of Sensory Physiology III/3.” New York: Springer-Verlag. [THB]Google Scholar
Schmitt, F. O.; Dev, P.; and Smith, B. H. (1976) Electronic processing of information by brain cells. Science 193: 114–20. [BHS]CrossRefGoogle Scholar
Schubert, P.; Lee, K.; West, M.; Deadwyler, S.; and Lynch, G. (1976) Stimulation-dependent release of 3H-adenosine derivatives from central axon terminals to target neurones. Nature 260: 541–42. [RKD]CrossRefGoogle ScholarPubMed
Schulman, J. A., and Weight, F. F. (1976) Synaptic transmission: longlasting potentiation by a postsynaptic mechanism. Science 194: 1437–39. [RKD, BL, FFW]CrossRefGoogle ScholarPubMed
Schwab, M. E., and Thoenen, H. (1977) Retrograde axonal and transsynaptic transport of macromolecules: physiological and pathophysiological importance. Agents and Actions. 361–68. [RKD]CrossRefGoogle ScholarPubMed
Schwartzkroin, P. A., and Prince, D. A. (1979) Recordings from presumed glial cells in the hippocampal slice. Brain Research 161: 533–38. [GIH]CrossRefGoogle ScholarPubMed
Sharrer, B. (1969) Neurohumors and neurohormones: definitions and terminology. Journal of Neuro-Visceral Relations. Supplement IX: 120. [RKD]Google Scholar
Shashoua, V. (1977) Brain protein metabolism and the acquisition of new patterns of behavior. Proceedings of the National Academy of Science U.S.A. 74: 1743–47. [DLW]CrossRefGoogle ScholarPubMed
Shepherd, G. M. (1974) The synoptic organization of the brain. London: Oxford Univ. Press. [RKD]Google Scholar
Sherrington, C. S. (1906) The integrative action of the nervous system. New Haven: Yale University Press. [RKD]Google Scholar
Shimahara, T., and Taue, L. (1975) Heterosynaptic facilitation in the giant cell of Aplysia. Journal of Physiology 247: 321–41. [JLB]CrossRefGoogle ScholarPubMed
Siggins, G. R.; Hoffer, B. J.; and Bloom, F. E. (1971) Studies on norepinephrine–containing afferents to Purkinje cells of rat cerebellum III. Evidence for mediation of norepinephrine effects by cyclic AMP. Brain Research 25: 535–53. [RKD]CrossRefGoogle Scholar
Sjöstrand, N. O., and Swedin, G. (1968) Potentiation by smooth muscle stimulants of the hypogastric nerve-vas deferens preparation from normal and castrated guinea-pigs. Acta Physiologica Scandinavica 74: 472–79. [LLB]CrossRefGoogle ScholarPubMed
Smith, B. H. (1978) Changing concepts of neuroglial function. Neurosurgery 2: 175–80. [RKD]CrossRefGoogle ScholarPubMed
Smith, B. H. and Kreutzberg, G. W. (1976) Neuron-target cell interactions. Neurosciences Research Program Bulletin 14:(3). [RKD, BHS]Google ScholarPubMed
Smith, P. A.; Weight, F. F.; and Lehne, R. A. (1979 Submitted) Potentiation of calcium dependent potassium activation by theophylline is independent of cyclic nucleotide elevation in sympathetic neurons. [FFW]CrossRefGoogle Scholar
Spano, P. F.; DiChiarro, G.; Tonon, G. L.; and Trabucchi, M. (1976) A dopamine-stimulated adenylate cyclase in rat substantia nigra. Journal of Neurochemistry 27: 1565–68. [RKD]CrossRefGoogle ScholarPubMed
Spira, M. E.; Yarom, T.; and Parnas, I. (1976) Modulation of spike frequency by regions of special axonal geometry and by synaptic inputs. Journal of Neurophysiology 39: 882–99. [THB]CrossRefGoogle ScholarPubMed
Starke, K.; Taube, H. D.; and Borowski, E. (1977) Presynaptic receptor systems in catecholaminergic transmission. Biochemical Pharmacology 26: 259–68. [LLB]CrossRefGoogle Scholar
Sutherland, E. W. (1972) Studies on the mechanism of hormone action Science 177: 401–8. [JWT]CrossRefGoogle ScholarPubMed
Swann, J. W.; Sinback, C. N.; and Carpenter, D. O. (1978) Dopamine-induced muscle contractions and modulation of neuromuscular transmission In Aplysia. Brain Research 157: 167–72. [PDE]CrossRefGoogle ScholarPubMed
Talbot, K. (1978) Dale's law reexamined: neuroscientists debate validity of one neuron, one transmitter concept. Brain Research institute Bulletin 2: 45. [LLB]Google Scholar
Tanaka, C.; Inagaki, C.; and Fujiwara, H. (1976) Labelled noradrenaline release from rat cerebral cortex following electrical stimulation of locus coeruleus. Brain Research 106: 384–89. [RKD]CrossRefGoogle ScholarPubMed
Tennyson, V. M.; Heikkila, R.; Mytilineau, C.; Coté, L.; and Cohen, G. (1974) 5-hydroxydopamine “tagged” neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane. Brain Research 82: 341–48. [RKD]CrossRefGoogle ScholarPubMed
Tsein, R. (1974) Effects of epinephrine on the potassium pacemaker current of cardiac Purkinje fibers. Journal of General Physiology 64: 293305. [JLB]CrossRefGoogle Scholar
Tweedle, C. D.; and Hatton, G. I. (1976) Ultrastructural comparisons of neurons of supraoptic and circularis nuclei in normal and dehydrated rats. Brain Research Bulletin 1: 103–21. [GIH]CrossRefGoogle ScholarPubMed
Tweedle, C. D.; and Hatton, G. I. (1977) Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell and Tissue Research 181: 5972. [GIH]CrossRefGoogle ScholarPubMed
Tweedle, C. D.; and Hatton, G. I. (1979a) Neurohypophysial hormone release: dynamic interactions between glial cells and neurosecretory endings. Anatomical Record 193: 707 (abstract). [GIH]Google Scholar
Tweedle, C. D.; and Hatton, G. I. (1979b, in press) Does glial cell enclosure of neural lobe neurosecretory endings inhibit hormone release? Society for Neuroscience Abstracts 5. [GIH]Google Scholar
Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiological Scandinavica Suppl. 367: 148. [RF]Google ScholarPubMed
Viancour, T. A. (1978) Electroreceptors of a weakly electric fish. Ph.D. Thesis, University of California, San Diego. [THB]Google Scholar
Tweedle, C. D.; and Hatton, G. I. (1979 in press) Peripheral electrosense physiology: a review of recent findings. Journal of Physiology. Paris. [THB]Google Scholar
Villiger, J. W., and Chute, D. L. (1979) Papaverine facilitates passive avoidance in mice. Society for Neuroscience Abstracts. [DLC]Google Scholar
Vizi, E. S., and Vyskocil, F. (1979) Changes in total and quantal release of acetylcholine in the mouse diaphragm during activation and inhibition of membrane ATPase. Journal of Physiology 286: 114. [DLW]CrossRefGoogle ScholarPubMed
Vincent, J. D., and Barker, J. L. (1979 in press) Substance P: evidence for diverse roles in neuronal function. Science. [JLB]CrossRefGoogle Scholar
Waterhouse, B. D. and Woodward, D. J. (1979, in press) Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Experimental Neurology. [DJW]CrossRefGoogle Scholar
Waterhouse, B. D.; Moises, H. C.: and Woodward, D. J. (1978) Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters. Society for Neuroscience Abstracts. 4: 286. [DJW]Google Scholar
Watson, S. J.; Richard, C. W. III; and Barchas, J. D. (1978) Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons. Science 200: 1180–82. [DLC]CrossRefGoogle ScholarPubMed
Weight, F. F. (1974a) Synaptic potentials resulting from conductance decreases. In: Bennett, M. V. L. (ed.) Synaptic transmission and neuronal interaction. New York: Raven Press, pp. 141–52. [FFW]Google Scholar
Weight, F. F. (1974b) Physiological mechanisms of synaptic modulation. In: Schmitt, F. O., andWorden, F. G. (eds.) The neurosciences: third study program. Cambridge, MA: MIT Press, pp. 929–41. [THB, RKD, BL, FFW]Google Scholar
Weight, F. F. (1979 in press) Modulation of synaptic excitability. Federation Proceedings 38. [FFW]Google ScholarPubMed
Schulman, J. A.; Smith, P. A.; and Busis, N. A. (1979 in press) Long-lasting synaptic potentials and the modulation of synaptic transmission. Federation Proceedings 38. [FFW]Google Scholar
Weiss, K. R.; Cohen, J.; and Kupfermann, I. (1975) Potentiation of muscle contraction: a possible modulatory function of an identified serotonergic cell In Aplysia. Brain Research 99: 381–86. [PDE]CrossRefGoogle ScholarPubMed
Weiss, K. R.; Cohen, J.; and Kupfermann, I. (1978) Modulatory control of buccal musculature by a serotonergic neuron (metacerebral cell) In Aplysia. Journal of Neurophysiology 41: 181203. [JLB, PDE, IK]CrossRefGoogle ScholarPubMed
Weiss, K. R.; Mandelbaum, D. E.; Schonberg, M.; and Kupfermann, I. (1979 in press) Modulation of buccal muscle contractility by serotonergic metacerebral cells In Aplysia: evidence for a role of cyclic adenosine monophosphate. Journal of Neurophysiology [JK]CrossRefGoogle Scholar
Werman, R. (1966) Criteria for identification of a central nervous system transmitter. Comparative Biochemical Physiology 18: 745–66. [RKD, BL, DJW]CrossRefGoogle ScholarPubMed
Wilson, C. J.; Groves, P. M.; and Fifková, E. (1977) Monoaminergic synapses, including dendro-dendritic synapses in the rat substantia nigra. Experimental Brain Research 30: 161–74. [RKD]Google ScholarPubMed
Wilson, W. A., and Wachtel, H. (1978) Prolonged inhibition in bursting firing neurons: synaptic inactivation of the slow regenerative inward current. Science 202: 772–75. [JLB]CrossRefGoogle ScholarPubMed
Woodward, D. J.; Moises, H. C.; Waterhouse, B. D.; Hoffer, B. J.; and Freedman, R. (1979) Modulatory actions of norepinephrine in the central nervous system. Federation Proceedings. 38: 21092116. [DJW]Google ScholarPubMed
Woody, C. D., and Black-Cleworth, P. (1973) Differences in excitability of cortical neurons as a function of motor projection in conditioned cats. Journal of Neurophysiology 36: 1104–16. [FFW]CrossRefGoogle ScholarPubMed
Woollacott, M. H., and Hoyle, G. (1976) Membrane resistance charges associated with single identified neuron learning. Society for Neuroscience Abstracts. 2: 339. [FFW]Google Scholar
Wu, P. H., and Phillis, J. W. (1978) Effects of α − and β-adrenergic blocking agents on the biogenic amine stimulated (Na+-K+)ATPase of rat cerebral cortical synaptosomal membrane. General Pharmacology 9: 421–24. [JWP]CrossRefGoogle ScholarPubMed
Zaborszky, L.; Leranth, C.; and Palkovits, M. (1979) Light and electron microscopic identification of monoaminergic terminals in the central nervous system. Brain Research Bulletin 4: 99117. [DVC]CrossRefGoogle ScholarPubMed
Zieglgänsberger, W., and Bayerl, H. (1976) The mechanism of inhibition of neuronal activity by opiates in the spinal cord of cat. Brain Research 115: 111–28. [RKD]CrossRefGoogle ScholarPubMed