Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T18:38:11.495Z Has data issue: false hasContentIssue false

Musical features emerging from a biocultural musicality

Published online by Cambridge University Press:  30 September 2021

Tudor Popescu
Affiliation:
Department of Behavioural and Cognitive Biology, University of Vienna, Althanstrasse 14, 1090Vienna, [email protected], tudorpopescu.com Department of Neurology, Medical University of Vienna, Spitalgasse 23, 1090Vienna, Austria
Nathan Oesch
Affiliation:
Department of Psychology, Western University, London, ONN6A 3K7, [email protected]
Bryony Buck
Affiliation:
Institute of Musicians' Medicine, Carl Maria von Weber University of Music, Wettiner Platz 13, 01067Dresden, Germany. [email protected]

Abstract

Savage et al. make a compelling case, Mehr et al. less so, for social bonding and credible signalling, respectively, as the main adaptive function of human musicality. We express general advocacy for the former thesis, highlighting: (1) overlap between the two; (2) direct versus derived biological functions, and (3) aspects of music embedded in cultural evolution, for example, departures from tonality.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowling, D. L., Hoeschele, M., Kamraan, Z. G., & Fitch, W. T. (2017). The nature and nurture of musical consonance. Music Perception, 35(1), 118121.10.1525/mp.2017.35.1.118CrossRefGoogle Scholar
Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112(36), 1115511160. https://doi.org/10.1073/pnas.1505768112.CrossRefGoogle ScholarPubMed
Bravo, F., Cross, I., Hopkins, C., Gonzalez, N., Docampo, J., Bruno, C., & Stamatakis, E. A. (2019). Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening. Human Brain Mapping, 41(1), 4666. https://doi.org/10.1002/hbm.24786.CrossRefGoogle ScholarPubMed
Catchpole, C. K., & Slater, P. J. (2008). Bird song: Biological themes and variations. Cambridge University Press.10.1017/CBO9780511754791CrossRefGoogle Scholar
Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11(3), 329364. https://doi.org/10.1016/j.plrev.2014.04.005.CrossRefGoogle Scholar
Fitch, W. T., Neubauer, J., & Herzel, H. (2002). Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behaviour, 63(3), 407418. https://doi.org/10.1006/anbe.2001.1912.CrossRefGoogle Scholar
Fitch, W. T., & Popescu, T. (2019). The world in a song. Science, 366(6468), 944945. https://doi.org/10.1126/science.aay2214.CrossRefGoogle Scholar
Gerl, E. J., & Morris, M. R. (2008). The causes and consequences of color vision. Evolution: Education and Outreach, 1(4), 476486.Google Scholar
Harrison, T. (1996). The emancipation of dissonance. University of California Press.Google Scholar
Huron, D. (2016). Voice leading: The science behind a musical art. MIT Press.10.7551/mitpress/9780262034852.001.0001CrossRefGoogle Scholar
Izumi, A. (2000). Japanese Monkeys perceive sensory consonance of chords. The Journal of the Acoustical Society of America, 108(6), 30733078.10.1121/1.1323461CrossRefGoogle ScholarPubMed
Johnson-Laird, P. N., Kang, O. E., & Leong, Y. C. (2012). On musical dissonance. Music Perception: An Interdisciplinary Journal, 30(1), 1935.10.1525/mp.2012.30.1.19CrossRefGoogle Scholar
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 6377. https://doi.org/10.1016/j.tics.2018.10.006.CrossRefGoogle ScholarPubMed
Masataka, N. (2006). Preference for consonance over dissonance by hearing newborns of deaf parents and of hearing parents. Developmental Science, 9(1), 4650. https://doi.org/10.1111/j.1467-7687.2005.00462.x.CrossRefGoogle ScholarPubMed
McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535(7613), 547550. https://doi.org/10.1038/nature18635.CrossRefGoogle ScholarPubMed
McPherson, M. J., Dolan, S. E., Ossandon, T., Valdes, J., Undurraga, E. A., Jacoby, N., Godoy, R., & McDermott, J. (2019). Perceptual fusion of musical notes suggests universal representations of dissonance despite culture-dependent aesthetic associations. The Journal of the Acoustical Society of America, 145(3), 17841784. https://doi.org/10.1121/1.5101526.CrossRefGoogle Scholar
Mehr, S. A., Singh, M., Knox, D., Ketter, D., Pickens-Jones, D., Atwood, S., …, & Glowacki, L. (2019). Universality and diversity in human song. Science, 366(970), 957970. https://doi.org/10.31234/osf.io/emq8r.CrossRefGoogle ScholarPubMed
Oesch, N. (2019). Music and language in social interaction: Synchrony, antiphony, and functional origins. Frontiers in Psychology, 10, article 1514, 113. https://doi.org/10.3389/fpsyg.2019.01514.CrossRefGoogle ScholarPubMed
Oesch, N. (2020). Evolutionary musicology. In Shackelford, T. K. & Weekes-Shackelford, V. A. (Eds.), Encyclopedia of evolutionary psychological science (pp. 16). Springer International Publishing. https://doi.org/10.1007/978-3-319-16999-6_2845-1.Google Scholar
Popescu, T., Neuser, M. P., Neuwirth, M., Bravo, F., Mende, W., Boneh, O., Moss, F. C., & Rohrmeier, M. (2019). The pleasantness of sensory dissonance is mediated by musical style and expertise. Scientific Reports, 9(1), 10701080. https://doi.org/10.1038/s41598-018-35873-8.CrossRefGoogle ScholarPubMed
Ridley, M. (2003). Evolution (3rd ed.). Wiley.Google Scholar
Schoenberg, A. (2010). Style and idea: Selected writings. University of California Press.Google Scholar
Sugimoto, T., Kobayashi, H., Nobuyoshi, N., Kiriyama, Y., Takeshita, H., Nakamura, T., & Hashiya, K. (2009). Preference for consonant music over dissonant music by an infant chimpanzee. Primates, 51(1), 7. https://doi.org/10.1007/s10329-009-0160-3.CrossRefGoogle Scholar
Trainor, L. J., Tsang, C. D., & Cheung, V. H. W. (2002). Preference for sensory consonance in 2- and 4-month-old infants. Music Perception: An Interdisciplinary Journal, 20(2), 187194. https://doi.org/10.1525/mp.2002.20.2.187.CrossRefGoogle Scholar
Watanabe, S., Uozumi, M., & Tanaka, N. (2005). Discrimination of consonance and dissonance in Java sparrows. Behavioural Processes, 70(2), 203208. https://doi.org/10.1016/j.beproc.2005.06.001.CrossRefGoogle ScholarPubMed
Whittingham, L. A., Kirkconnell, A., & Ratcliffe, L. M. (1997). The context and function of duet and solo songs in the red-shouldered blackbird. The Wilson Bulletin, 109, 279289.Google Scholar