Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T13:49:48.587Z Has data issue: false hasContentIssue false

Motion perception during selfmotion: The direct versus inferential controversy revisited

Published online by Cambridge University Press:  04 February 2010

Alexander H. Wertheim
Affiliation:
TNO Institute for Human Factors, 3769 ZG Soesterberg, The Netherlands Electronic mail: [email protected]

Abstract

According to the traditional inferential theory of perception, percepts of object motion or stationarity stem from an evaluation of afferent retinal signals (which encode image motion) with the help of extraretinal signals (which encode eye movements). According to direct perception theory, on the other hand, the percepts derive from retinally conveyed information only. Neither view is compatible with a perceptual phenomenon that occurs during visually induced sensations of ego motion (vection). A modified version of inferential theory yields a model in which the concept of extraretinal signals is replaced by that of reference signals, which do not encode how the eyes move in their orbits but how they move in space. Hence reference signals are produced not only during eye movements but also during ego motion (i.e., in response to vestibular stimulation and to retinal image flow, which may induce vection). The present theory describes the interface between self-motion and object-motion percepts. An experimental paradigm that allows quantitative measurement of the magnitude and gain of reference signals and the size of the just noticeable difference (JND) between retinal and reference signals reveals that the distinction between direct and inferential theories largely depends on: (1) a mistaken belief that perceptual veridicality is evidence that extraretinal information is not involved, and (2) a failure to distinguish between (the perception of) absolute object motion in space and relative motion of objects with respect to each other. The model corrects these errors, and provides a new, unified framework for interpreting many phenomena in the field of motion perception.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algom, D. & Cohen-Raz, L. (1984) Visual velocity input-output functions: The integration of distance and duration onto subjective velocity. Journal of Experimental Psychology: Human Perception and Performance 4:486501. [aAHW]Google Scholar
Andersen, C. J. (1986) Perception of self-motion: Psychophysical and computational approaches. Psychological Bulletin 99:5265. [GJA]CrossRefGoogle ScholarPubMed
Andersen, C. J. (1990) Segregation of optic flow into object and self-motion components: Foundations of a general theory. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [aAHW]Google Scholar
Andersen, G. J. & Braunstein, M. L. (1985). Induced self-motion in central vision. Journal of Experimental Psychology: Human Perception and Performance 11:122–32. [XMS]Google ScholarPubMed
Angel, R. W. & Malenka, R. C. (1982) Velocity-dependent suppression of cutaneous sensitivity during movement. Experimental Neurology 77:266–74. [aAHW]CrossRefGoogle ScholarPubMed
Aubert, H. (1886) Die Bewegungsempfindung. Pflügers Archiv 39:347–70. [aAHW]CrossRefGoogle Scholar
Aubert, H. (1887) Die Bewegungsempfindung. Zweiter Mitteilung. Pflügers Archives 40:459–80. [aAHW]CrossRefGoogle Scholar
Barthélémy, J., Xerri, L., Borel, L. & Lacour, M. (1988) Neuronal coding of linear motion in the vestibular nuclei of the alert cat. II: Response characteristics to vertical optokinetic stimulation. Experimental Brain Research 70:287–98. [aAHW]CrossRefGoogle ScholarPubMed
Bedell, H., Klopfenstein, J. F. & Yuan, N. (1989) Extraretinal information about eye position during involuntary eye movement: Optokinetic afternystagmus. Perception & Psychophysics 46:579–86. [aAHW]CrossRefGoogle ScholarPubMed
Belopolsky, V. I. (1978) Stability of visual world during reduction of visual field size. In: Dvizhenie glaz i zritel'noe vospriiatie [Eye movement and visual perception], ed. Lomov, B. F., Mit'kin, A. A. & Vergiles, N. Yu.. Nauka. [VIB]Google Scholar
Belopolsky, V. I. (1985) Selective attention and eye movement control. Psichologicheskii Zhurnal [Soviet Journal of Psychology] 6(3):5673. [VIB]Google Scholar
Benson, A. J. (1990) Sensory functions and limitations of the vestibular system. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [aAHW]Google Scholar
Berthoz, A. (1981) Intersensory interaction in motion perception. In: Attention and performance IX, ed. Long, J. & Baddeley, A.. Erlbaum. [TP]Google Scholar
Berthoz, A. & Droulez, J. (1982) Linear self-motion perception. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [aAHW]Google Scholar
Berthoz, A. & Melville-Jones, G., eds. (1985) Adaptive mechanisms in gaze control. Elsevier. [aAHW]Google Scholar
Berthoz, A., Pavard, B. & Young, L. R. (1975) Perception of linear horizontal self-motion induced by peripheral vision (linear vection): Basic characteristics and visual-vestibular interactions. Experimental Brain Research 23:471–89. [aAHW, XMS]CrossRefGoogle Scholar
Berthoz, A., Yoshida, K. & Vidal, P. P. (1981) Horizontal eye movement signals in second-order vestibular nuclei neurons in the eat. In: Vestibular and oculomotor physiology: International meeting of the Barany Society, ed. B. Cohen. Annals of the New York Academy of Sciences 374:144–56. [aAHW]CrossRefGoogle Scholar
Bingham, G. P. (1987) Kinematic form and scaling: Further investigations on the visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance 13:155–77. [TAS]Google ScholarPubMed
Bischof, N. (1974) Optic-vestibular orientation to the vertical. In: Handbook of vestibular physiology. Vol. 6(2): Vestibular system ed. Komhuber, H. H.. Springer-Verlag. [WB]Google Scholar
Bischof, N. & Kramer, E. (1969) Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen [Investigations and considerations on perception of direction during voluntary saccadic eye movements]. Psychologische Forschung 32(3): 185218. [BMV]CrossRefGoogle Scholar
Bles, W. (1982) Stepping around: Circular vection and coriolis effects. In: Attention and performance IX, ed. Long, J. & Baddeley, A.. Erlbaum. [JJR]Google Scholar
Bles, W., Bos, J. E., Furrer, R., De Graaf, B., Hosman, R. J. A. W., Kortschot, H. W., Krol, J. R., Kuipers, A., Marcus, J. T., Messerschmid, E., Ockels, W. J., Oosterveld, W. J., Smit, J., Wertheim, A. H. & Wientjes, C. J. E. (1989) Space Adaptation Syndrome induced by a long duration +3Gx centrifuge run. Institute for Perception Technical Report, IZF-1989–25. TNO Institute for Perception, Soesterberg, The Netherlands. [aAHW]Google Scholar
Bles, W., Jelmorini, M., Bekkering, H. & De Graaf, B. (1994) Arthrokinetie information affects linear self-motion perception (submitted). [aAHW]CrossRefGoogle Scholar
Blouin, J., Bridgeman, B., Teasdale, N., Bard, C. & Fleury, M. (submitted) Visual stability with goal-directed eye and arm movements toward a target displaced during saccadic suppression. [BB]Google Scholar
Bonnet, C. (1982) Thresholds of motion perception. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [aAHW]Google Scholar
Borah, J., Young, L. R. & Curry, R. E. (1988) Optimal estimator model for human spatial orientation. In: Representation of three-dimensional space in the vestibular, oculomotor, and visual systems, ed. B. Cohen & V. Henn. Annals of the New York Academy of Sciences 545. [aAHW]CrossRefGoogle Scholar
Bötzel, K. & Grüsser, O. J. (1982) Horizontal and vertical circular vection and eye movements. Neuroscience Letters Supplement 10:8687. [UB]Google Scholar
Brain, W. R. (1941) Visual disorientation with special reference to lesions of the right cerebral hemisphere. Brain 64:244–72. [FHP]CrossRefGoogle Scholar
Brandt, T., Dichgans, J. & Büchele, W. (1974) Motion habituation: Inverted self-motion perception and optokinetic after-nystagmus. Experimental Brain Research 21:337–52. [UB]CrossRefGoogle ScholarPubMed
Brandt, T., Dichgans, J. & Koenig, E. (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experiment Brain Research 16:476–91. [aAHW, GJA, FHP]CrossRefGoogle Scholar
Brandt, T., Wist, E. R. & Dichgans, J. (1975) Foreground and background in dynamic spatial orientation. Perception & Psychophysics 17:497503. [FHP]CrossRefGoogle Scholar
Braunstein, M. L. (1976) Depth perception through motion. Academic Press. [aAHW]Google Scholar
Bridgeman, B. & Graziano, J. A. (1989) Effect of context and efference copy on visual straight ahead. Vision Research 29(12):1729–36. [aAHW]CrossRefGoogle ScholarPubMed
Bridgeman, B., Hendry, D. & Stark, L. (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vision Research 15:719–22. [aAHW]CrossRefGoogle ScholarPubMed
Bridgeman, B. & Stark, L. (1991) Ocular proprioception and efference copy in registering visual direction. Vision Research 31:1903–13. [BB]CrossRefGoogle ScholarPubMed
Bruss, A. R. & Horn, B. K. P. (1983) Passive navigation. Computer Vision, Graphics and Image Processing 21:320. [IH, JRT]CrossRefGoogle Scholar
Büehele, W., Degner, D. & Brandt, T. (1980) Thresholds for object motion perception raised by concurrent head movements. Pflügers Archives Supplement 384:R33. [aAHW]Google Scholar
Buettner, U. W. & Büttner, U. (1979) Vestibular nuclei activity in the alert monkey during suppression of vestibular and optokinetic nystagmus. Experimental Brain Research 37:581–93. [UB]CrossRefGoogle ScholarPubMed
Büttner, U. & Buettner, U. W. (1978) Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Research 153:392–97. [aAHW, UB]CrossRefGoogle ScholarPubMed
Büttner, U. & Henn, V. (1981) Circularvection: Psychophysics and single-unit recordings in the monkey. Annals of the New York Academy of Sciences 374:274–83. [aAHW, UB, XMS]CrossRefGoogle ScholarPubMed
Cameron, E. L., Baker, C. L. Jr. & Boulton, J. C. (1992) Spatial frequency selective mechanisms underlying the motion aftereffect. Vision Research 32:561–68. [FHP]CrossRefGoogle ScholarPubMed
Cohen, B., ed. (1981) Vestibular and oculomotor physiology: International meeting of the Barany Society. Annals of the New York Academy of Sciences 374. [aAHW]Google Scholar
Cohen, B. & Henn, V., eds. (1988) Representation of three-dimensional space in the vestibular, oculomotor, and visual systems. Annals of the New York Academy of Sciences 545. [arAHW]CrossRefGoogle Scholar
Cohen, B., Matsuo, V. & Raphan, T. (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic afternystagmus. Journal of Physiology 270:321–44. [UB]CrossRefGoogle Scholar
Cohen, R. L. (1965) Adaptation effects and aftereffects of moving patterns viewed in the periphery of the visual field. Scandinavian Journal of Psychology 6:257–64. [aAHW]CrossRefGoogle Scholar
Collewijn, J. (1985) Integration of adaptive changes of the optokinetic reflex, pursuit and the vestibulo-ocular reflex. In: Adaptive mechanisms in gaze control, ed. Berthoz, A. & Melvill-Jones, G.. Elsevier. [AAS]Google Scholar
Collewijn, H. & Tamminga, E. P. (1984) Human smooth pursuit and saccadic eye movements during voluntary pursuit of different target motion on different background. Journal of Physiology 351:217–50. [HH]CrossRefGoogle Scholar
Coquery, J. M. (1978) Role of active movement in control of afferent input from skin in cat and man. In: Active touch, ed. Gordon, G.. Pergamon Press. [aAHW]Google Scholar
Coquery, J. M. (1981) Changes in somaesthetic evoked potentials during movement. Brain Research 31:361–78. [aAHW]Google Scholar
Coquery, J. M. & Amblard, B. (1973) Backward and forward masking in the perception of cutaneous stimuli. Perception & Psychophysics 13(2):161–63. [aAHW]CrossRefGoogle Scholar
Corbin, H. H. (1942) The perception of grouping and apparent movement in visual depth. Archives of Psychology 273:150. [BMV]Google Scholar
Cutting, J. E., Bruno, N., Brady, N. P. & Moore, C. (1992a) Selectivity, scope, and simplicity of models: A lesson from fitting judgments of perceived depth. Journal of Experimental Psychology: Ceneral 121(3):364–81. [BMV]CrossRefGoogle ScholarPubMed
Cutting, J. E., Springer, K., Braren, P. A. & Johnson, S. H. (1992b) Wayfinding on foot from information in retinal, not optical, flow. Journal of Experimental Psychology: Ceneral 121(1):4172. [aAHW]CrossRefGoogle Scholar
da Vitoria Lobo, N. (1992) Computation, egomotion, shape, and detecting independent motion from image motion. Ph.D. dissertation, Department of Computer Science, University of Toronto. [NDVL]Google Scholar
da Vitoria Lobo, N. & Tsotsos, J. K. (1991) Telling where one is heading and where things move independently. Proceedings of the Conference of the Cognitive Science Society, August, Chicago, IL. [NDVL]Google Scholar
De Graaf, B. & Wertheim, A. H. (1988) The perception of object motion during smooth pursuit eye movements: Adjacency is not a factor contributing to the Filehne illusion. Vision Research 28:497502. [arAHW]CrossRefGoogle ScholarPubMed
De Graaf, B., Wertheim, A. H., Bles, W. & Kremers, J. J. M. (1990) Angular velocity and not temporal frequency determines circular vection. Vision Research 30(4):637–46. [aAHW, XMS]CrossRefGoogle Scholar
Delorme, A. & Martin, C. (1986) Roles of retinal periphery and depth periphery in linear vection and visual control of standing in humans. Canadian Journal of Psychology 40:176–87. [FHP]CrossRefGoogle ScholarPubMed
Denton, G. G. (1977) Visual motion after effect induced by simulated rectilinear motion. Perception 6:711–18. [aAHW]CrossRefGoogle Scholar
Dichgans, J. & Brandt, T. (1972) Visual-vestibular interaction and motion perception. In: Cerebral control of eye movements, ed. Dichgans, J. & Bizzi, E.. Bibliotheca Opthalmologica, vol. 82. Kargel. [aAHW]Google Scholar
Dichgans, J. & Brandt, T. (1978) Visual-vestibular interaction: Effects on self-motion perception and postural control. In: Handbook of sensory physiology. Vol. 8: Perception. ed. Held, R., Leibowitz, H. W. & Teuber, H. -L.. Springer- Verlag. [arAHW, FHP, TP]Google Scholar
Dichgans, J., Korner, F. & Voigt, K. (1969) Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Liuearen Funktionen mit verschiedenen Ausstiegssteilkeit. Psychologische Forschung 32:277–95. [aAHW]CrossRefGoogle Scholar
Dichgans, J., Nauck, B. & Wolpert, E. (1973) The influence of attention, vigilance and stimulus area on optokinetic and vestibular nystagmus and voluntary saccades. In: The oculomotor system and brain function, ed. Zikmund, V.. Butterworth. [TP]Google Scholar
Dichgans, J., Schmidt, C. L. & Graf, W. (1973) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Experimental Brain Research 18:319–22. [aAHW]CrossRefGoogle ScholarPubMed
Dichgans, J., Wist, E., Diener, H. C. & Brandt, T. (1975) The Aubert-Fleischl phenomenon: A temporal frequency effect on perceived velocity in afferent motion perception. Experimental Brain Research 23:529–33. [aAHW]CrossRefGoogle ScholarPubMed
Diener, H. C., Wist, E. R., Dichgans, J. & Brandt, T. (1976) The spatial frequency effect on perceived velocity. Vision Research 16:169–76. [aAHW]CrossRefGoogle ScholarPubMed
DiZio, P. A. & Lackner, J. R. (1986) Perceived orientation, motion, and configuration of the body during viewing of an off-vertical, rotating surface. Perception & Psychophysics 39:3946. [TAS]CrossRefGoogle ScholarPubMed
Duncker, K. (1929) Über induzierte Bewegung [On induced motion]. Psychologische Forschung 12:180259. [aAHW, WB, AES, BMV]CrossRefGoogle Scholar
Dyhre-Poulsen, P. (1978) Perception of tactile stimuli before ballistic and during tracking movements. In: Active touch, ed. Gordon, G.. Pergamon Press. [aAHW]Google Scholar
Dzhafarov, E. N. (1992) Visual kinematics. Journal of Mathematical Psychology 36:471–97; 498–523; 524–46. [RAMG]CrossRefGoogle Scholar
Ehrenstein, W. H., Mateeff, S. & Hohnsbein, J. (1986a) Zeitliche Aspekte dor Ortskonstanz bei Augenfolgbewegungen. Paper presented at the 63rd annual meeting of the German Physiological Society, March, Berlin. [aAHW]Google Scholar
Ehrenstein, W. H., Mateeff, S. & Hohnsbein, J. (1986b) Temporal aspects of position constancy during ocular pursuit. Pflügers Archives 406:R15(no. 47). [aAHW]Google Scholar
Ehrenstein, W. H., Mateeff, S. & Hohnsbein, J. (1987) Influence of exposure duration on the strength of the Filehne illusion. Perception 16:A29. [aAHW, SM]Google Scholar
Einstein, A. & Infeld, L. (1938) The evolution of physics. Simon & Schuster. [TAS]Google Scholar
Elsner, W. (1971) Power laws for the perception of rotation and the oculogyral illusion. Perception & Psychophysics 9(5):418–20. [aAHW]CrossRefGoogle Scholar
Epstein, W. (1973) The process of “taking-into-accont” in visual perception. Perception 2:267–85. [SM]CrossRefGoogle Scholar
Erickson, R. G. & Thier, P. (1991) A neuronal correlate of spatial stability during periods of self-induced visual motion. Experimental Brain Research 86:608–16. [PT]CrossRefGoogle ScholarPubMed
Erickson, R. G. & Thier, P. (1992) Responses of direction-selective neurons in monkey cortex to selfinduced visual motion. Annals of the New York Academy of Sciences 656:766–74. [PT]CrossRefGoogle ScholarPubMed
Favreau, O. E. (1976) Motion after effects: Evidence for parallel processing in motion perception. Vision Research 16:181–86. [aAHW]CrossRefGoogle Scholar
Filehne, W. (1922) Über das optische Wahrnehmen von Bewegungen. Zeitschrift für Sinnephysiologie 53:134–45. [aAHW, AES]Google Scholar
Fleischl, von E. (1882) Physiologisch-optische Notizen, 2. Mitteilung. Sitzung Wiener Bereich der Akademie der Wissenschaften 3(86):725. [aAHW]Google Scholar
Fletcher, W. A., Haiti, T. C. & Zee, D. S. (1990) Optokinetic nystagmus and afternystagmus in human beings: Relationship to nonlinear processing of information about retinal slip. Experimental Brain Research 81:4652. [aAHW]CrossRefGoogle ScholarPubMed
Fuchs, A. F. & Kim, J. (1975) Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. Journal of Neurophysiology 38:1140–61. [aAHW]CrossRefGoogle ScholarPubMed
Gibson, E. J. (1991) An odyssey in learning and perception. MIT Press. [GER]Google Scholar
Gibson, J. J. (1950) The perception of the visual world. Houghton-Mifflin. [AES]Google Scholar
Gibson, J. J. (1954) The visual perception of objective motion and subjective movement. Psychological Review 61(5):304–14. [AES]CrossRefGoogle ScholarPubMed
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton-Mifflin. [aAHW, N-GK, GER, WLS, JW, LY]Google Scholar
Gibson, J. J. (1968) What gives rise to the perception of motion? Psychological Review 75:335–45. [aAHW]CrossRefGoogle Scholar
Gibson, J. J. (1973) Direct visual perception: A reply to Gyr. Psychological Bulletin 79(6):396–97. [aAHW]CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979) The ecological approach to visual perception. Houghton Mifflin. [aAHW, VIB, N-GK, GER, BMV, JW, LY]Google Scholar
Gibson, J. J., Olum, P. & Rosenblatt, F. (1955) Parallax and perspective during aircraft landings. American Journal of Psychology 68:372–85. [JRT]CrossRefGoogle ScholarPubMed
Gibson, J. J., Smit, O. W., Steinschneider, A. & Johnson, C. W. (1957) The relative accuracy of visual perception of motion during fixation and pursuit. American Journal of Psychology 70:6468. [aAHW]CrossRefGoogle ScholarPubMed
Gogel, W. C. (1981) Perceived depth is a necessary factor in apparent motion concomitant with head motion: A reply to Shebilske and Proffitt. Perception & Psychophysics 29:173–77. [rAHW]CrossRefGoogle Scholar
Gogel, W. C. (1982) Analysis of the perception of retinal motion concomitant with a lateral motion of the head. Perception & Psychophysics 32:241–50. [MS]CrossRefGoogle Scholar
Gogel, W. C. (1990) A theory of phenomenal geometry and its applications. Perception & Psychophysics 48:105–23. [rAHW, MS]CrossRefGoogle ScholarPubMed
Gogel, W. C., Loomis, J. M., Newman, N. J. & Sharkey, T. J. (1985) Agreement between indirect measures of perceived distance. Perception & Psychophysics 37:1727. [MS]CrossRefGoogle ScholarPubMed
Gogel, W. C. & Sharkey, T. J. (1989) Measuring attention using induced motion. Perception 18:303–20. [SM]CrossRefGoogle ScholarPubMed
Gogel, W. C. & Tietz, J. D. (1992) Determinants of the perception of sagittal motion. Perception & Psychophysics 52:7596. [MS]CrossRefGoogle ScholarPubMed
Goodale, M. A. (1988) Modularity in visuomotor control: From input to output. In: Computational processes in human vision: An interdisciplinary perspective, ed. Pylyshyn, Z. W.. Ablex. [WLS]Google Scholar
Goodale, M. A. & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15:2025. [XMS]CrossRefGoogle ScholarPubMed
Grant, W. & Best, W. (1987) Otolith-organ mechanics: Lumped parameter model and dynamic response. Aviation Space and Environmental Medicine 58:970–76. [aAHW]Google ScholarPubMed
Graybiel, A. (1952) Oculogravic illusion. Archives of Ophthalmology 48:605. [TAS]CrossRefGoogle ScholarPubMed
Graybiel, A. & Brown, R. H. (1951) The delay in visual reorientation following exposure to a change in direction of resultant force on a human centrifuge. Journal of General Psychology 45:143–50. [HER]CrossRefGoogle Scholar
Graybiel, A. & Hupp, E. D. (1946) The oculogyral illusion: A form of apparent motion which may be observed following stimulation of the semi-circular canals. Journal of Aviation Medicine 17:327. [aAHW]Google Scholar
Graybiel, A. & Niven, J. (1951) The effect of a change in direction of resultant force on sound localization: The audiogravic illusion. Journal of Experimental Psychology 42:227–30. [TAS]CrossRefGoogle ScholarPubMed
Gregory, R. L. (1958) Eye movements and the stability of the visual world. Nature 182:1214–16. [HER, AES]CrossRefGoogle ScholarPubMed
Grüsser, O. -J. (1983) Multimodal structure of the extrapersonal space. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [FHP]Google Scholar
Grüsser, O. -J., Pause, M. & Schreiter, U. (1990a) Localization and responses of neurons in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). Journal of Physiology 430:537–57. [UB]CrossRefGoogle ScholarPubMed
Grüsser, O. -J., Pause, M. & Schreiter, U. (1990b) Vestibular neurons in the parieto-insular cortex of monkeys (Macaca fascicularis): Visual and neck receptor responses. Journal of Physiology 430:559–83. [UB]CrossRefGoogle ScholarPubMed
Guedry, F. E. (1974) Psychophysics of vestibular sensation. In: Handbook of sensory physiology, vol. 6/2, ed. Kornhuber, H. H.. Springer. [rAHW]Google Scholar
Guldin, W. O., Akbarian, S. & Grüsser, O. J. (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: A study in squirrel monkeys (Saimiri sciureus). Journal of Comparative Neurology 326:375401. [UB]CrossRefGoogle ScholarPubMed
Guldin, W., Mirring, S. & Grüsser, O. J. (1992) Monosynaptic input from the cerebral cortex to the vestibular brainstem nuclei in the rat. Society of Neuroscience Abstracts 18:510. [UB]Google Scholar
Gyr, J. W. (1972) Is a theory of direct visual perception adequate? Psychological Bulletin 77:246–61. [aAHW]CrossRefGoogle ScholarPubMed
Hadani, I., Ishai, G., Frisch, H. I. & Kononov, A. (1993) Two metric solutions to 3-D reconstruction for an eye in pure rotations. Journal of the Optical Society of America (in press). [IH]CrossRefGoogle Scholar
Hadani, I., Ishai, G. & Gur, M. (1980) Visual stability and space perception in monocular vision: Mathematical model. Journal of the Optical Society of America 1:6065. [IH]CrossRefGoogle Scholar
Hadani, I. & Kononov, A. (1993) Passive navigation for an eye in six degrees of freedom. Science (in preparation). [IH]Google Scholar
Hansen, R. H. (1979) Spatial localization during pursuit eye movements. Vision Research 19:1213–21. [rAHW, AAS]CrossRefGoogle ScholarPubMed
Hansen, R. H. & Skavenski, A. A. (1985) Accuracy of spatial localizations near the time of saccadic eye movements. Vision Research 25:1077–82. [rAHW, AAS]CrossRefGoogle ScholarPubMed
Heekmann, T. & Howard, I. P. (1991) Induced motion: Isolation and dissociation of egocentric and vection-entrained components. Perception 20:285305. [FHP]CrossRefGoogle Scholar
Heckmann, T. & Post, R. B. (1988) Induced motion and optokinetic afternystagmus: Parallel response dynamics with prolonged stimulation. Vision Research 28:681–94. [FHP]CrossRefGoogle ScholarPubMed
Helmholtz, H. (1910) Handbuch der physiologischen Optik, Vol. 3. Voss. [aAHW]Google Scholar
Henderson, D. C. (1971) The relationship among time, distance, and intensity as determinants of motion discrimination. Perception & Psychophysics 10:310–20. [aAHW]CrossRefGoogle Scholar
Henn, V., Cohen, B. & Young, L. R. (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosciences Research Program Bulletin 18 (4). MIT Press. [arAHW, TP]Google Scholar
Henn, V., Young, L. R. & Finley, C. (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Research 71:144–49. [aAHW]CrossRefGoogle ScholarPubMed
Hofstadter, D. R. (1980) Gödel, Escher Bach: An eternal golden braid. Vintage Press. [aAHW]Google Scholar
Hofstetter-Degen, K. (1988) Eine psychophysische Untersuchung zur visuell-vistibulären Interaktion. Beeinflussung der Objektbewegungswahrnehmung durch gleichzeitige Eigenbewegung. Ph.D. dissertation, University of Mainz. (Author's transl.: A psychophysical investigation of visual-vestibular interaction. Influence of object-motion perception by simultaneous self-motion.) [TP]Google Scholar
Honda, H. (1990) The extraretinal signal from the pursuit-eye-movement system: Its role in the perceptual and the egocentric localization systems. Perception & Psychophysics 48:509–15. [HH]CrossRefGoogle ScholarPubMed
Howard, I. P. (1982) Human visual orientation. Wiley. [aAHW, VIB, DC]Google Scholar
Howard, I. P. & Heckmann, T. (1989) Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception 18:657–65. [XMS]CrossRefGoogle ScholarPubMed
Howard, I. P. & Marton, C. (1992) Visual pursuit over textured backgrounds in different depth planes. Experimental Brain Research 90:625–29. [FHP]CrossRefGoogle ScholarPubMed
Howard, I. P. & Templeton, W. B. (1966) Human spatial orientation. Wiley. [aAHW]Google Scholar
Hunzelmann, N. & Spillmann, L. (1984) Movement adaptation in the peripheral retina. Vision Research 24(12): 1765–69. [aAHW]CrossRefGoogle ScholarPubMed
Ilg, U. & Thier, P. (1993) Inability of visual area VI of the awake rhesus monkey to discriminate between self-induced and externally-induced retinal image slip. Society for Neuroscience Abstracts 19:629. [PT]Google Scholar
Ioannou, P. A. & Kokotovic, P. V. (1983) Adaptive systems with reduced models. Lecture notes in control and information sciences 47. Springer-Verlag. [RAMG]Google Scholar
Ito, M. (1982) Cerebellar control of the vestibulo-ocular reflex: Around the flocculus hypothesis. Annual Review of Neuroscience 5:275–96. [aAHW]CrossRefGoogle ScholarPubMed
Ito, M. (1987) Oculomotor system, mechanisms. In: Encyclopedia of neuroscience, vol. 2, ed. Adelman, G.. Birkhäuser. [TP]Google Scholar
Jeannerod, M., Kennedy, H. & Magnin, M. (1979) Corollary discharge: Its possible implications in visual and oculomotor interactions. Neuropsychologic 17:241–58. [aAHW]CrossRefGoogle ScholarPubMed
Johansson, G. (1982) Visual space perception through motion. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [AES]Google Scholar
Johnson, C. A. & Leibowitz, H. W. (1976) Velocity-time reciprocity in the perception of motion: Foveal and peripheral determinations. Vision Research 16:177–80. [aAHW]CrossRefGoogle ScholarPubMed
Johnstone, J. R. & Mark, R. F. (1970) Two classes of eye movement and their perceptual consequences. Proceedings of the Australian Physiological and Pharmacological Society 1(2):4647. [aAHW]Google Scholar
Johnstone, J. R. & Mark, R. F. (1971) The efference copy neurone. Journal of Experimental Biology 54:403–14. [aAHW]CrossRefGoogle ScholarPubMed
Johnstone, J. R. & Mark, R. F. (1973) Corollary discharge. Vision Research 13:1621. [aAHW]CrossRefGoogle ScholarPubMed
Jung, R. (1972) Neurophysiological and psychophysical correlates in visual research. In: Brain and human behavior, ed. Karczmar, A. G. & Eccles, J. C.. Springer. [VIB]Google Scholar
Kano, C. (1970) Changes of threshold of continuous visual movement by variation of phenomenal size with invariant retinal size. Psychological Research 33(3):242–53. [BMV]CrossRefGoogle Scholar
Kaufman, L. (1974) Sight and mind: An introduction to visual perception. Oxford University Press. [BMV]CrossRefGoogle Scholar
Kinchla, R. A. (1971) Visual movement perception: A comparison between absolute and relative movement discrimination. Perception & Psychophysics 9(2A):165–71. [aAHW]CrossRefGoogle Scholar
Koenderink, J. J. (1990) Some theoretical aspects of optic flow. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [aAHW]Google Scholar
Koenderink, J. J. & van Doorn, A. J. (1976) Local structure of movement parallax of the plane. Journal of the Optical Society of America 66:717–23. [GJA]CrossRefGoogle Scholar
Koenderink, J. J. & van Doorn, A. J. (1981) Exterospecific component of the motion parallax field. Journal of the Optical Society of America 71:953–57. [JRT]CrossRefGoogle ScholarPubMed
Koenderink, J. J. & van Doorn, A. J. (1987) Facts on optic flow. Biological Cybernetics 56:247–54. [aAHW, JRT]CrossRefGoogle ScholarPubMed
Koenderink, J. J. & van Doorn, A. J. (1991) Affine structure from motion. Journal of the Optical Society of America 8(2):377–85. [IH]CrossRefGoogle ScholarPubMed
Köhler, W. (1947) Cestalt psychology: An introduction to new concepts in modern psychology. Liveright. [BMV]Google Scholar
Kornhuber, H. H. (1974) Nystagmus and related phenomena in man: An outline of otoneurology. In: Handbook of sensory physiology. Vol. 6/2, Vestibular system, part 2, psychophysics. Applied aspects and general interpretations. Springer Verlag. [aAHW]Google Scholar
Lackner, J. R. (1992) Spatial orientation in weightless environments. Perception 21:803–12. [FHP]CrossRefGoogle ScholarPubMed
Lackner, J. & DiZio, P. (1984) Some efferent and somatosensory influences on body orientation and oculomotor control. In: Sensory experience, adaptation and perception: Festschrift for Ivo Kohler, ed. Spillman, L. & Wooten, B.. Erlbaum. [JJR]Google Scholar
Lackner, J. R. & Teixeira, R. A. (1977) Optokinetic motion sickness: Continuous head movements attenuate the visual induction of apparent self-rotation and symptoms of motion sickness. Aviation, Space and Environmental Medicine 48:248–53. [LY]Google ScholarPubMed
Lang, W., Büttner-Ennever, J. A. & Büttner, U. (1979) Vestibular projections to the monkey thalamus: An autoradiographic study. Brain Research 177:317. [UB]CrossRefGoogle Scholar
Larsen, A., Farrell, J. E. & Bundesen, C. (1983) Short- and long-range processes in visual apparent movement. Psychological Research 45:1118. [BMV]CrossRefGoogle Scholar
Lee, D. & Aronson, E. (1974) Visual proprioceptive control of standing in human infants. Perception & Psychophysics 15:529–32. [JJR]CrossRefGoogle Scholar
Lee, D. N. (1974) Visual information during locomotion. In: Perception: Essays in honour of James J. Cibson, ed. McLeod, R. B. & Pick, H.. Cornell University Press. [JRT]Google Scholar
Lee, D. N. (1990) Getting around with light and sound. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [rAHW]Google Scholar
Leibowitz, H. W., Post, R. B., Brandt, T. & Dichgans, J. (1982) Implications of recent developments in dynamic spatial orientation and visual resolution for vehicle guidance. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [aAHW]Google Scholar
Lisberger, S. G. & Fuchs, A. F. (1978a) Role of primate flocculus during rapid behavioral modification of vestibulo-ocular reflex I. Purkinje cell activity during visually guided horizontal smooth pursuit eye movements and passive head rotation. Journal of Neurophysiology 41(3):733–63. [aAHW]CrossRefGoogle Scholar
Lisberger, S. G. & Fuchs, A. F. (1978b) Role of primate flocculus during rapid behavioral modification of vestibulo-ocular reflex II. Mossy fiber firing patterns during horizontal head rotation and eye movement. Journal of Neurophysiology 41(3):764–77. [aAHW]CrossRefGoogle Scholar
Lishman, J. R. & Lee, D. N. (1973) The autonomy of visual kinaesthesis. Perception 2:287–94. [N-GK, JW]CrossRefGoogle ScholarPubMed
Lombardo, T. J. (1987) The reciprocity of perceiver and environment: The evolution of J. J. Gibson's ecological psychology. Erlbaum. [aAHW]Google Scholar
Longuet-Higgins, H. C. & Prazdny, K. (1980) The interpretation of a moving retinal image. Proceedings of the Royal Society of London (B) 208:385–97. [GJA, JRT]Google ScholarPubMed
Mack, A. (1978) Three modes of visual perception. In: Models of perceiving and processing information, ed. Pick, H. L. & Saltzman, E.. Erlbaum. [aAHW, AES]Google Scholar
Mack, A. (1986) Perceptual aspects of motion in the frontal plane. In: Handbook of perception and human performance. Vol. I: Sensory processes and perception, ed. Boff, K. R., Kaufman, L. & Thomas, J. P.. Wiley. [aAHW]Google Scholar
Mack, A. & Herman, E. (1972) A new illusion: The underestimation of distance during smooth pursuit eye movements. Perception of Psychophysics 12(6):471–73. [aAHW, HH]CrossRefGoogle Scholar
Mack, A. & Herman, E. (1973) Position constancy during pursuit eye movement: An investigation of the Filehne illusion. Quarterly Journal of Experimental Psychology 25:7184. [aAHW]CrossRefGoogle ScholarPubMed
Mack, A. & Herman, E. (1978) The loss of position constancy during pursuit eye movements. Vision Research 18:5562. [aAHW]CrossRefGoogle ScholarPubMed
MacKay, D. M. (1972) Voluntary eye movements as questions. In: Cerebral control of eye movements, ed. Dichgans, J. & Bizzi, E.. Bibliotheca Opthalmologica, vol. 82. Kargel. [aAHW]Google Scholar
MacKay, D. M. (1973) Visual stability and voluntary eye movements. In: Handbook of sensory physiology, vol. 7 (3A), ed. Jung, R.. Springer. [aAHW, VIB]Google Scholar
MacKay, D. M. (1982) Anomalous perception of extrafoveal motion. Perception 11:359–60. [aAHW]CrossRefGoogle ScholarPubMed
Maioli, M. G., Squatrito, S. & Domeniconi, R. (1989) Projections from visual cortical areas of the superior temporal sulcus to the lateral terminal nucleus of the accessory optic system in macaque monkeys. Brain Research 498:389–92. [XMS]CrossRefGoogle Scholar
Marcus, J. T. (1992) Vestibulo-ocular responses in man to gravito-inertial forces. Ph. D. dissertation. TNO Institute for Perception, Soesterberg. [aAHW]Google Scholar
Marendaz, C., Stivalet, P., Barraclough, L. & Walkowiac, P. (1993) Effect of gravitational cues on visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance 19(6): 1266–77. [LY]Google ScholarPubMed
Mark, L. M. (1987) Eye-height-scaled information about affordanees: A study of sitting and stair-climbing, Journal of Experimental Psychology: Human Perception and Performance 13:683783. [TAS]Google ScholarPubMed
Massaro, D. & Cohen, M. M. (1993) The paradigm and the fuzzy logical model of perception are alive and well. Journal of Experimental Psychology: General 122(1): 115–24. [BMV]CrossRefGoogle ScholarPubMed
Mateeff, S. (1980) Visual perception of movement patterns during smooth eye tracking. Acta Physiologica et Pharmacologica Bulgarica 6:8289. [SM]Google ScholarPubMed
Mateeff, S., Ehrenstein, W. H. & Hohnsbein, J. (1987) Constancy of visual direction requires time to develop. Perception 16:A29. [SM]Google Scholar
Mateeff, S., Yakimoff, N., Hohnsbein, J. & Ehrenstein, W. H. (1991) Perceptual constancy during ocular pursuit: A quantitative estimation procedure. Perception & Psychophysics 49(4):390–92. [aAHW]CrossRefGoogle ScholarPubMed
Matin, L. (1982) Visual localization and eye movements. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [arAHW]Google Scholar
Matin, L. (1986) Visual localization and eye movements. In: Handbook of perception and human performance. Vol. I: Sensory processes and perception, ed. Boff, K. R., Kaufman, L. & Thomas, J. P.. Wiley. [arAHW]Google Scholar
Matin, L., Matin, E. & Pearce, D. (1969) Visual perception of direction when voluntary saccades occur. I. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented during the saccade. Perception & Psychophysics 5:6580. [arAHW, AAS]CrossRefGoogle Scholar
McConkie, A. B. & Farber, J. M. (1979) Relation between perceived depth and perceived motion in uniform flow fields. Journal of Experimental Psychology: Human Perception and Performance 5:501–8. [GJA]Google ScholarPubMed
McCrea, R. A., Yoshida, K., Evinger, C. & Berthoz, A. (1981) The location, axonal arborization and termination sites of eye movement-related secondary vestibular neurons demonstrated by intra-axonal HRP injection in the alert cat. In: Progress in oculomotor research, ed. Fuchs, A. F. & Becker, W.. Elsevier North-Holland. [aAHW]Google Scholar
Mergner, T. & Becker, W. (1990) Perception of horizontal self-rotation: Multisensory and cognitive aspects. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [arAHW, WB, N-GK, SM, FHP]Google Scholar
Mergner, T., Rottler, G., Kimmig, H. & Becker, W. (1992) Role of vestibular and neck inputs for the perception of object motion in space. Experimental Brain Research 89:655–68. [WB]CrossRefGoogle ScholarPubMed
Mergner, T., Siebold, C., Schweigart, G. & Becker, W. (1991) Human perception of horizontal head and trunk rotation in space during vestibular and neck stimulation. Experimental Brain Research 85:389404. [WB]CrossRefGoogle ScholarPubMed
Metzger, W. (1941) Psychologie [Psychology]. Steinkopf. [BMV]CrossRefGoogle Scholar
Miller, J. (1980) Information used by the perceptual and oculomotor systems regarding the amplitude of saccadic and pursuit eye movements. Vision Research 20:5968. [HH]CrossRefGoogle ScholarPubMed
Mittelstaedt, H. (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–81. [LY]CrossRefGoogle Scholar
Mittelstaedt, H. (1990) Basic solutions to the problem of head-centric visual localization. In: Perception and control of self-motion, ed. R. Warren & A. H. Wertheim. [aAHW]Google Scholar
Moulden, B. (1975) Eye movements and the movement after effect. Vision Research 15:1169–70. [aAHW]CrossRefGoogle ScholarPubMed
Murphy, B. J. (1978) Pattern thresholds for moving and stationary gratings during smooth pursuit eye movement. Vision Research 18:521–30. [aAHW]CrossRefGoogle Scholar
Nagao, S. (1988) Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits. Experimental Brain Research 73:489–97. [aAHW]CrossRefGoogle ScholarPubMed
Nakayama, K. (1981) Differential motion hyperacuity under conditions of common image motion. Vision Research 21:1475–82. [aAHW]CrossRefGoogle ScholarPubMed
Neisser, U. (1976) Cognition and reality. W. H. Freeman. [GER]Google Scholar
Noda, H. (1986) Mossy fibers sending retinal-slip, eye, and head velocity signals to the flocculus of the monkey. Journal of Physiology 379:3960. [aAHW]CrossRefGoogle Scholar
Ockels, W. J., Furrer, R. & Messerschmid, E. (1989) Space sickness on earth. Nature 340(August):681–82. [aAHW]CrossRefGoogle ScholarPubMed
Ockels, W. J., Furrer, R. & Messerschmid, E. (1990) Space sickness on earth. Experimental Brain Research 79(3):661–63. [aAHW]Google ScholarPubMed
Ohmi, M., Howard, I. P. & Landolt, J. P. (1987) Circular vection as a function of foreground-background relationships. Perception 16:1722. [N-CK, FHP, LY]CrossRefGoogle ScholarPubMed
Oman, C. M. (1988) The role of static visual orientation cues in the etiology of space motion sickness. In: Proceedings of the Symposium on Vestibular Organs and Altered Force Environment, ed. Igarashi, M. & Nute, K. G.. National Aeronautics and Space Administration. [FHP]Google Scholar
Ono, M. E., Rivest, J. & Ono, H. (1986) Depth perception as a function of motion parallax and absolute-distance information. Journal of Experimental Psychology: Human Perception & Performance 12:331–37. [MS]Google ScholarPubMed
Owen, D. H. (1990) Perception and control of changes in self-motion: A functional approach to the study of information and skill. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [aAHW]Google Scholar
Paillard, J., Brouchon-Viton, M. & Jordan, P. (1978) Differential encoding of location cues by active and passive touch. In: Active touch, ed. Gordon, G.. Pergamon Press. [aAHW]Google Scholar
Pavard, B. & Berthoz, A. (1977) Linear acceleration modifies the perception of a moving visual scene. Perception 6:529–40. [aAHW]CrossRefGoogle ScholarPubMed
Post, R. B. & Leibowitz, H. W. (1985) A revised analysis of the role of efference in motion perception. Perception 14:631–43. [arAHW, SM, AAS]CrossRefGoogle ScholarPubMed
Post, R. B., Leibowitz, H. W. & Shoehy, J. B. (1986) Efference, perceived movement, and illusory displacement. Acta Psychologica 63(1–3):2334. [BMV]Google Scholar
Precht, W. (1982) Anatomical and functional organization of optokinetic pathways. In: Functional basis of ocular motility disorders, ed. Lennestrand, G., Lee, D. S. & Keller, E. L.. Pergamon Press. [aAHW]Google Scholar
Previc, F. H. & Donnelly, M. (1993) The effects of visual depth and eccentricity on manual bias, induced motion, and vection. Perception 22. [FHP]CrossRefGoogle Scholar
Previc, F. H., Varner, D. C. & Gillingham, K. K. (1992) Visual scene effects on the somatogravic illusion. Aviation, Space, and Environmental Medicine 63:1060–64. [FHP]Google ScholarPubMed
Probst, T. (1983) Beeinflussung der Objektbewegungswahrnehmung durch gleichzeitige Eigenbewegungsempfindung. Psychophysische Grundlagen und angewandte Aspekte bei der Fahrzeugsteuerung. Ph.D. dissertation, University of Essen. (Author's transl.: Influence of object-motion detection by concurrent self-motion perception. Basic psychophysics and applied aspects for vehicle guidance.) [TP]Google Scholar
Probst, T. (1991) Intersensorische Interaktion beim Menschen. Psychophysikalische und elektrophysiologische Untersuchungen. Waxmann Münster. (Author's transl.: Intersensory interaction in humans. Psychophysical and electrophysiological investigations.) [TP]Google Scholar
Probst, T., Brandt, T. & Degner, D. (1986) Object-motion detection affected by concurrent self-motion perception: Psychophysics of a new phenomenon. Behavioural Brain Research 22:111. [aAHW, TP]CrossRefGoogle ScholarPubMed
Probst, T., Degner, D. & Brandt, T. (1980) Object motion perception affected by concurrent self-motion. Paper presented at the third European Conference on Visual Perception. August, Brighton, UK. [aAHW]Google Scholar
Probst, T., Krafezyk, S., Brandt, T. & Wist, E. R. (1984) Interaction between perceived self-motion and object-motion impairs vehicle guidance. Science 225:536–38. [aAHW]CrossRefGoogle ScholarPubMed
Probst, T., Straube, A. & Bles, W. (1985) Differential effects of ambient visual-vestibular-somatosensory stimulation on the perception of self-motion. Behavioural Brain Research 16:7179. [aAHW]CrossRefGoogle Scholar
Puckett, J. W. & Steinman, R. M. (1969) Tracking eye movements with and without saccadie correction. Vision Research 9:695703. [HH]CrossRefGoogle ScholarPubMed
Rapban, T., Cohen, D. & Matsuo, V. (1977) A velocity storage mechanism responsible for OKN, OKAN and vestibular nystagmus. In: Control of gaze by brainstem neurons. Developments in neuroscience, vol. I, ed. Baker, R. & Berthoz, A.. Elsevier North Holland, Biomedical Press. [aAHW]Google Scholar
Ranch, R., Angel, R. W. & Boylls, C. C. (1985) Velocity-dependent suppression of somatosensory evoked potentials during movement. Encephalography and Clinical Neurophysiology 62:421–25. [aAHW]Google Scholar
Raymond, J. W., Shapiro, K. L. & Rose, D. J. (1984) Optokinetic backgrounds affect perceived velocity during ocular tracking. Perception & Psychophysics 36(3):221–24. [aAHW]CrossRefGoogle ScholarPubMed
Reinhardt-Rutland, A. H. (1992) Does the type of eye motion determine whether induced motion is diminished or enhanced? Perceptual and Motor Skills 74:882. [aAHW]CrossRefGoogle ScholarPubMed
Riccio, G. E. (1993a) Information in movement variability about the qualitative dynamics of posture and orientation. In: Variability and motor control, ed. Newell, K. M. & Corcos, D. M.. Human Kinetics. [GER]Google Scholar
Riccio, G. E. (1993b) Multimodal perception and multicriterion control of nested systems: Self-motion in real and virtual environments (UIUC-BI-HPP-93-02). Beckman Institute for Advanced Science and Technology, University of Illinois. [GER]Google Scholar
Riccio, G. E., Martin, E. J. & Stoffregen, T. A. (1992) The role of balance dynamics in the active perception of orientation. Journal of Experimental Psychology: Human Perception & Performance 18:624–44. [TAS]Google ScholarPubMed
Riccio, G. E. & Stoffregen, T. A. (1990) Gravitoinertial force versus the direction of balance in the perception and control of orientation. Psychological Review 97:135–37. [TAS]CrossRefGoogle ScholarPubMed
Rieser, J. J., Ashmead, D. A., Talor, C. & Youngquist, G. (1991) Visual perception and the guidance of locomotion without vision to previously seen targets. Perception 19:675–89. [JJR]CrossRefGoogle Scholar
Rieser, J., Garing, A. & Young, M. (1994) Imagery, action and young children's spatial orientation: It's not being there that counts, it's what one has in mind. Child Development (in press). [JJR]CrossRefGoogle Scholar
Rieser, J., Pick, H., Ashmead, D. & Garing, A. (submitted) The calibration of human locomotion and models of perceptual-motor organization. [JJR]Google Scholar
Rock, I. (1977) In defense of unconscious inference. In: Stability and constancy in visual perception: Mechanisms and processes, ed. Epstein, W.. Wiley. [SM, AES]Google Scholar
Rock, I. (1983) The logic of perception. MIT Press. [SM]Google Scholar
Rogers, B. & Graham, M. (1979) Motion parallax as an independent cue for depth perception. Perception 8:125–34. [MS]CrossRefGoogle ScholarPubMed
Rosengren, K. S., Pick, H. & von Hofsten, C. (1988) The role of visual information in ball catching. Journal of Motor Behaviour 20:150–64. [JRT]CrossRefGoogle ScholarPubMed
Ross, H. E. (1974) Behaviour and perception in strange environments. Allen & Unwin. [aAHW, HER]Google Scholar
Ross, H. E. (1976) The direction of apparent movement during transient pressure vertigo. Undersea Biomedical Research 3:403–10. [HER]Google ScholarPubMed
Ross, H. E. (1990) Orientation and movement in divers. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [HER]Google Scholar
Ross, H. E. & Lennie, P. (1968) Visual stability during bodily movement underwater. Underwater Association Report 3:5557. [HER]Google Scholar
Runeson, S. (1988) The distorted room illusion, equivalent configurations, and the specificity of static optic arrays. Journal of Experimental Psychology: Human Perception and Performance 14:295304. [LY]Google ScholarPubMed
Sauvan, X. M. & Bonnet, C. (1988) Thresholds and variations of the forward rectilinear and curvilinear vections in man. In: Proceedings of the European Brain and Behaviour Society WorkshopVisual processing of form and motion,” March, Tübingen, Germany. [XMS]Google Scholar
Sauvan, X. M. & Bonnet, C. (1989) Les sensations de déplacement curvilinéaire générées visuellement. Psychologie Française 34:1924. [XMS]Google Scholar
Sauvan, X. M. & Bonnet, C. (1993) Properties of curvilinear vection. Perception & Psychophysics 53:429–35. [TAS, XMS]CrossRefGoogle ScholarPubMed
Schöne, H. (1984) Spatial orientation: The spatial control of behavior in animals and man (trans. Strausfeld, C.). Princeton University Press. [TAS]CrossRefGoogle Scholar
Schoppmann, A. (1981) Projections from areas 17 and 18 of the visual cortex to the nucleus of the optic tract. Brain Research 223:117. [TP]CrossRefGoogle Scholar
Sekuler, A. B. (1990) Motion segregation from speed differences: Evidence for nonlinear processing. Vision Research 30(5):785–95. [aAHW]CrossRefGoogle ScholarPubMed
Sekuler, R. R., Ball, K., Tynan, P. & Machamer, J. (1982) Psychophysics of motion perception. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [aAHW]Google Scholar
Shaffer, O. & Wallach, H. (1966) Extent-of-motion thresholds under subject-relative and object-relative conditions. Perception & Psychophysics 1:447–51. [aAHW]CrossRefGoogle Scholar
Shaw, R. E., Kadar, E., Sim, M. & Repperger, D. W. (1992) The intentional spring: A strategy for modeling systems that learn to perform intentional acts. Motor Behavior 24:328. [GER]CrossRefGoogle Scholar
Shebilske, W. L. (1977) Visuomotor coordination in visual direction and position constancies. In: Stability and constancy in visual perception: Mechanisms and processes, ed. Epstein, W.. Wiley. [WLS]Google Scholar
Shebilske, W. L. (1984) Efferent factors in cognition and perception. In: Cognition and motor processes, ed. Prinz, W. & Sanders, A. F.. Plenum Press. [WLS]Google Scholar
Shebilske, W. L. (1987a) An ecological efference mediation theory of natural event perception. In: Perspectives on perception and action, ed. W. Prinz & A. F. Sanders. Erlbaum. [WLS]Google Scholar
Shebilske, W. L. (1987b) Baseball batters support an ecological efference mediation theory of natural event perception. In: Sensorimotor interactions in space perception and action, ed. Bouwhuis, D. G., Bridgeman, B., Owens, D. A., Shebilske, W. L. & Wolff, P.. North Holland. [WLS]Google Scholar
Shebilske, W. L. (1990) Visuomotor modularity, ontogeny, and training high-performance skills with spatial display instruments. In: Spatial displays and spatial instruments, ed. Ellis, S. R. & Kaiser, M. K.. Erlbaum. [WLS]Google Scholar
Shebilske, W. L. & Peters, P. (in press) Perception, action, and constancy. In: Handbook of perception, ed. W. Prinz & B. Bridgeman. Springer-Verlag. [WLS]Google Scholar
Shebilske, W. L., Proffitt, D. R. & Fisher, S. K. (1984) Efferent factors in natural event perception can be rationalized and verified: A reply to Turvey and Solomon. Journal of Experimental Psychology: Human Perception and Performance 10:455–60. [WLS]Google ScholarPubMed
Shulman, P. H. (1979) Eye movements do not cause induced motion. Perception & Psychophysics 26:381–83. [aAHW]CrossRefGoogle Scholar
Simpson, J. & Graf, W. (1985) The selection of reference frames by nature and its investigators. In: Adaptive mechanisms in gaze control, ed. Berthoz, A. & Melvill-Jones, G.. Elsevier. [AAS]Google Scholar
Skavenski, A. A. (1972) Inflow as a source of extraretinal eye position information. Vision Research 12:221–29. [aAHW]CrossRefGoogle ScholarPubMed
Skavenski, A. A. (1990) Eye movement and visual localization of objects in space. In: Eye movements and their role in visual and cognitive processes, ed. Kowler, E.. Elsevier. [rAHW, AAS]Google Scholar
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology 43:482–89. [aAHW]CrossRefGoogle ScholarPubMed
Stark, L. & Bridgeman, B. (1983) Role of corollary discharge in space constancy. Perception & Psychophysics 34(4):371–80. [aAHW]CrossRefGoogle ScholarPubMed
Steinbach, M. J. (1987) Proprioceptive knowledge of eye position. Vision Research 27(10): 1737–44. [aAHW]CrossRefGoogle ScholarPubMed
Stern, L. D. & Emelity, D. (1978) Evidence for frames of reference based on pursuit eye movements. Perception & Psychophysics 24:521–28. [rAHW, SM, AS]CrossRefGoogle ScholarPubMed
Stoffregen, T. A. (1985) Flow structure versus retinal location in the optical control of stance. Journal of Experimental Psychology: Human Perception and Performance 11:554–65. [TAS]Google ScholarPubMed
Stoffregen, T. A. (1986) The role of optical velocity in the control of stance. Perception & Psychophysics 39:355–60. [TAS]CrossRefGoogle ScholarPubMed
Stoffregen, T. A. (1990) Multiple sources of information: For what? Newsletter of the International Society for Ecological Psychology 4:58. [TAS]Google Scholar
Stoffregen, T. A. & Riccio, G. E. (1988) An ecological theory of orientation and the vestibular system. Psychological Review 95:314. [aAHW, TAS, LY]CrossRefGoogle ScholarPubMed
Stoffregen, T. A. & Riccio, G. E. (1990) Responses to optical looming in the retinal center and periphery. Ecological Psychology 2:251–74. [TAS]CrossRefGoogle Scholar
Stoffregen, T. A. & Riccio, G. E. (1991) An ecological critique of the sensory conflict theory of motion sickness. Ecological Psychology 3:159–94. [TAS]CrossRefGoogle Scholar
Stone, L. S. & Lisberger, S. G. (1990a) Visual responses of Purkinje cells in the cerebellar flocculus during smooth pursuit eye movements in monkeys. I: Simple spikes; II: Complex spikes. Journal of Neurophysiology 63(5):1241–75. [aAHW]CrossRefGoogle ScholarPubMed
Stone, L. S. & Lisberger, S. G. (1990b) Synergistic action of complex and simple spikes in the monkey flocculus in the control of smooth pursuit eye movement. Experimental Brain Research 17: 299312. [aAHW]Google Scholar
Stoper, A. (1967) Vision during ptirsuit eye movement: The role of oculomotor information. Ph.D. dissertation, Brandeis University. University Microfilms, No. 67–16, 579. [AES]Google Scholar
Stoper, A. (1973) Apparent motion of stimuli presented stroboscopically during pursuit movement of the eye. Perception & Psychophysics 23:201–11. [AES]CrossRefGoogle Scholar
Straube, A. & Brandt, T. (1987) Importance of the visual and vestibular cortex for self-motion perception in man (circularvection). Human Neurobiology 6:211–18. [aAHW, UB, TP]Google ScholarPubMed
Straube, A., Paulus, W. & Brandt, T. (1990) Influence of visual blue on object-motion detection, self-motion detection and postural balance. Behavioural Brain Research 40:16. [UB]CrossRefGoogle Scholar
Suzuki, D. A. & Keller, E. L. (1988) The role of the posterior vermis of monkey cerebellum in smooth pursuit eye movement control. II. Target velocity-related Purkinje cell activity. Journal of Neurophysiology 59:1940. [UB]CrossRefGoogle ScholarPubMed
Swanston, M. T. & Wade, N. J. (1988) The perception of visual motion during movements of the eyes and of the head. Perception & Psychophysics 43:559–66. [aAHW, MS]CrossRefGoogle ScholarPubMed
Swanston, M. T. & Wade, N. J. (1992a) The interaction of perceived distance with the perceived direction of visual motion during movements of the eyes and of the head. Perception & Psychophysics 52:705–13. [MS]CrossRefGoogle Scholar
Swanston, M. T. & Wade, N. J. (1992b) Motion over the retina and the motion aftereffect. Perception 21:569–82. [MS]CrossRefGoogle ScholarPubMed
Swanston, M. T., Wade, N. J. & Day, R. H. (1987) The representation of uniform motion in vision. Perception 16:143–60. [aAHW, MS]CrossRefGoogle ScholarPubMed
Swanston, M. T., Wade, N. J. & Ono, H. (1990) The binocular representation of uniform motion. Perception 19:2934. [MS]CrossRefGoogle ScholarPubMed
Tanaka, K., Hikosaka, K., Saito, H. -A., Yukie, M., Fukada, Y. & Iwai, E. (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience 6:134–44. [FT]CrossRefGoogle ScholarPubMed
Telford, L., Spratley, J. & Frost, B. J. (1992) Linear vection in the central visual field facilitated by kinetic depth cues. Perception 21:337–49. [XMS]CrossRefGoogle ScholarPubMed
Thompson, S. P. (1879) Some new optical illusions. Journal of Science 9:373–74. [HER]Google Scholar
Tsai, R. Y. & Huang, T. S. (1985) Uniqueness and estimation of 3-D motion parameters and surface structures of rigid objects. In: Image understanding, ed. Richards, W. & Ullman, S.. Albex. [IH]Google Scholar
Turvey, M. T. (1992) Affordances and prospective control: An outline of the ontology. Ecological Psychology 4:173–88. [GER]CrossRefGoogle Scholar
Tyler, C. W. & Foley, J. M. (1974) Stereomovement suppression for transient disparity changes. Perception 3(3):287–96. [BMV]CrossRefGoogle ScholarPubMed
Ullman, S. (1980) Against direct perception. Behavioral and Brain Sciences 3:373415. [arAHW, JRT]CrossRefGoogle Scholar
Van de Grind, W. A., Koenderink, J. J. & van Doorn, A. J. (1992) Viewing-distance invariance of movement detection. Experimental Brain Research 91:135–50. [rAHW]CrossRefGoogle ScholarPubMed
Velichkovsky, B. M. (1971) Autokincticheskaja illusia i intermodalnije otnoshenija v zritel'nom vosprijatii dvizhenija [Autokinetic illusion and intermodal relationships in visual perception of motion]. Ergonomika 2:182–96. [BMV]Google Scholar
Velichkovsky, B. M. (1973) O roll prostranstveimykh system otscheta v vosprijatii sobstvennugo i objectnogo dvizhenija [On the role of spatial frames of reference in perception of self-motion and object's motion]. Voprosy Psykhologii 18(2):1526. [BMV]Google Scholar
Velichkovsky, B. M. (1982) Funktional'naja struktura perceptivnikh processov [Functional structure of perceptual processes]. In: Osnovy psykhologii: Poznavatel'nije processy, ed. Smirnov, A. A.. Pedagogika. [BMV]Google Scholar
Von Holst, E. (1954) Relations between the central nervous system and peripheral organs. British Journal of Animal Behaviour 2:8994. [aAHW]CrossRefGoogle Scholar
Von Holst, E. & Mittelstaedt, H. (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–76. [aAHW, TP]CrossRefGoogle Scholar
Von Kries, J. (1910/1962) Notes on the perception of depth. In: H. von Helmholtz, Treatise on physiological optics, vol. 3, ed. and trans., J. P. C. Southall. Dover. (Original work published in German, 1867; in English, 1925.) [GJA]Google Scholar
Wade, N. J. & Swanston, M. T. (1987) The representation of non-uniform motion: Induced movement. Perception 16:143–60. [MS]CrossRefGoogle Scholar
Waespe, W., Büttner, U. & Henn, V. (1981) Visual-vestibular interaction in the flocculus of the alert monkey I. Input activity. Experimental Brain Research 43:336–48. [aAHW]Google ScholarPubMed
Waespe, W. & Henn, V. (1979) The velocity response of vestibular nucleus neurons during vestibular, visual and combined angular acceleration. Experimental Brain Research 37:337–47. [aAHW]CrossRefGoogle ScholarPubMed
Waespe, W. & Henn, V. (1981) Visual-vestibular interaction in the flocculus of the alert monkey II. Purkinje cell activity. Experimental Brain Research 43:349–60. [aAHW]CrossRefGoogle ScholarPubMed
Waespe, W. & Henn, V. (1987) Gaze stabilization in the primate. The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit. Review of Physiology, Biochemistry and Pharmacology 106:37125. [UB]CrossRefGoogle ScholarPubMed
Wallach, H. (1959) The perception of motion. Scientific American 201:5660. [arAHW]CrossRefGoogle ScholarPubMed
Wallach, H. (1982) Eye movement and motion perception. In: Tutorials on motion perception, ed. Wertheim, A. H., Wagenaar, W. A. & Leibowitz, H. W.. Plenum Press. [aAHW]Google Scholar
Wallach, H. (1985) Perceiving a stable environment. Scientific American 252(4):9298. [aAHW]CrossRefGoogle Scholar
Wallach, H. (1987) Perceiving a stable environment when one moves. Annual Review of Psychology 38:127. [aAHW]CrossRefGoogle ScholarPubMed
Wallach, H., Becklen, R. & Nitzberg, D. (1985) The perception of motion during collinear eye movements. Perception & Psychophysics 38:1822. [aAHW]CrossRefGoogle Scholar
Wallach, H. & Kravitz, J. H. (1965) The measurement of the constancy of visual direction and of its adaptation. Psychonomic Science 2:217–18. [aAHW]CrossRefGoogle Scholar
Wallach, H. & Lewis, C. (1965) The effect of abnormal displacements of the retinal image during eye movements. Perception & Psychophysics 1:2529. [AES]CrossRefGoogle Scholar
Wallach, H. & O'Connell, D. N. (1953) The kinetic depth effect. Journal of Experimental Psychology 45:205–17. [aAHW]CrossRefGoogle ScholarPubMed
Wallach, H., O'Leary, A. & McMahon, M. L. (1982) Three stimuli for visual motion perception compared. Perception & Psychophysics 32(1):16. [aAHW]CrossRefGoogle ScholarPubMed
Walter, E. (1982) Identifiability of state space models. Lecture Notes in Biomathematics 46. Springer-Verlag. [RAMG]Google Scholar
Warren, R. (1990) Preliminary questions for the study of ego-motion. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [aAHW]Google Scholar
Warren, R. & Wertheim, A. H., eds. (1990) Perception and control of self-motion. Erlbaum. [TP]Google Scholar
Warren, W. H., Blackwell, A. W., Kurtz, K. J., Hatsopoulos, N. G. & Kalish, M. L. (1991) On the sufficiency of the velocity field for perception of heading. Biological Cybernetics 65:311–20. [N-GK]CrossRefGoogle ScholarPubMed
Warren, W. H. & Hannon, D. J. (1988) Direction of self-motion is perceived from optical flow. Nature 336:162–63. [N-GK]CrossRefGoogle Scholar
Warren, W. H. Jr., & Kurtz, K. J. (1992) The role of central and peripheral vision in perceiving the direction of self-motion. Perception & Psychophysics 51:443–54. [TAS]CrossRefGoogle ScholarPubMed
Watanabe, E. (1984) Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Research 297:169–74. [aAHW]CrossRefGoogle ScholarPubMed
Weleh, R. B. (1986) Adaptation of space perception. In: Handbook of perception and human performance. Vol. 1: Sensory processes and perception, ed. Boff, K., Kaufman, L. & Thomas, J.. Wiley. [RH]Google Scholar
Wertheim, A. H. (1981) On the relativity of perceived motion. Acta Psychologica 48 (special volume on the perception of motion): 97110. [aAHW]CrossRefGoogle Scholar
Wertheim, A. H. (1985) How extraretinal is extraretinal? Perception 14(1):A8. [aAHW]Google Scholar
Wertheim, A. H. (1987) Retinal and extraretinal information in movement perception: How to invert the Filehne illusion. Perception 16(3):277414. [arAHW, HH]CrossRefGoogle ScholarPubMed
Wertheim, A. H. (1990) Visual, vestibular, and oculomotor interactions in the perception of object motion during ogomotion. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [TP]Google Scholar
Wertheim, A. H. (1992a) A psychophysical method to assess the gain of the otolith response. Paper presented at the satellite symposium of the 17th meeting of the Barany Society: “Vestibular-proprioceptive interaction for body orientation in space,” June, Smolenice, Czechoslovakia. [aAHW]Google Scholar
Wertheim, A. H. (1992b) Motion perception during ego-motion: Measuring the otolith response. Perception 21(supp. 2):4950. [aAHW]Google Scholar
Wertheim, A. H. (1993) Pilot studies on object motion perception during linear self-motion after long duration centrifugation of human subjects. Institute for Perception Technical Report IZF-1993-B-3. TNO Institute for Perception, Soesterberg, The Netherlands. [aAHW]Google Scholar
Wertheim, A. H. & Bekkering, H. (1991) The Filehne illusion is age dependent. Perception 20(1):8586. [aAHW]Google Scholar
Wertheim, A. H. & Bekkering, H. (1992) Motion thresholds of briefly visible stimuli increase asymmetrically with age. Vision Research 32(12):2379–84. [aAHW]CrossRefGoogle ScholarPubMed
Wertheim, A. H. & Bles, W. (1984) A reevaluation of cancellation theory: Visual, vestibular and oculomotor contributions to perceived object motion. Institute for Perception Technical Report IZF-1984–8. TNO Institute for Perception, Soesterberg, The Netherlands. [aAHW, HH]Google Scholar
Wertheim, A. H., Hosman, R. J. A. W., de Graaf, B., Bles, W. & Krol, J. R. (1989) Visual motion perception during simulated space sickness on earth. Proceedings of the 15th annual meeting of the European Undersea Biomedical Society, Eilat, Israel. [aAHW]Google Scholar
Wertheim, A. H. & Mesland, B. (1993) Motion perception during linear ego-motion. Institute for Perception Technical Report 1ZF-1993–3. TNO Institute for Perception, Soesterberg, The Netherlands. [aAHW]Google Scholar
Wertheim, A. H. & Niessen, M. W. (1986) The perception of relative motion between objects during pursuit eye movements. Perception 15(1):49. [aAHW]Google Scholar
Wertheim, A. H. & Van Gelder, P. (1990) An acceleration illusion caused by underestimation of stimulus velocity during pursuit eye movements: The Aubert-Fleischl phenomenon revisited. Perception 19(4):471–82 (erratum in: Perception 19(5):700. [aAHW]CrossRefGoogle Scholar
Wertheim, A. H., Van Gelder, P., Lautin, A., Peselow, E. & Cohen, N. (1985) High thresholds for motion perception in schizophrenia may indicate extraneous noise levels of central vestibular activity. Biological Psychiatry 20:11971210. [arAHW]CrossRefGoogle ScholarPubMed
Whiteside, T. C. D., Graybiel, A. & Niven, J. I. (1965) Visual illusions of movement. Brain 88:13210. [aAHW]CrossRefGoogle ScholarPubMed
Wist, E. R., Diener, H. C. & Dichgans, J. (1976) Motion constancy dependent upon perceived distance and spatial frequency of the stimulus pattern. Perception & Psychophysics 19(6):485–91. [rAHW]CrossRefGoogle Scholar
Wist, E. R., Diener, H. C., Dichgans, J. & Brandt, T. (1975) Perceived distance and the perceived speed of self-motion: Linear versus angular velocity? Perception & Psychophysics 17:545–54. [UB]CrossRefGoogle Scholar
Wolpert, L. (1990) Field-of-view information for self-motion perception. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [aAHW]Google Scholar
Wong, S. C. P. & Frost, B. F. (1978) Subjective motion and acceleration induced by the movement of the observer's entire visual field. Perception & Psychophysics 24(2):115–20. [aAHW]CrossRefGoogle ScholarPubMed
Wurtz, R. H. (1969) Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. Journal of Neurophysiology 32:987–94. [PT]CrossRefGoogle ScholarPubMed
Wurtz, R. H. & Duffy, C. J. (1992) Neuronal correlates of optic flow stimulation. Annals of the New York Academy of Sciences 656:205–19. [XMS]CrossRefGoogle ScholarPubMed
Xerri, C., Barthélémy, F., Borel, L. & Lacour, M. (1988) Neuronal coding of linear motion in the vestibular nuclei of the alert cat. III: Dynamic characteristics of visual-otolith interactions. Experimental Brain Research 70:299309. [aAHW]CrossRefGoogle ScholarPubMed
Xerri, C., Barthélémy, F., Harlay, F., Borel, L. & Lacour, M. (1987) Neuronal coding of linear motion in the vestibular nuclei of the alert cat. I: Response characteristics to vertical otolith stimulation. Experimental Brain Research 65:569–81. [aAHW]CrossRefGoogle ScholarPubMed
Yardley, L. (1992) Motion sickness and perception: A reappraisal of the sensory conflict approach. British Journal of Psychology 83:449–71. [LY]CrossRefGoogle ScholarPubMed
Yoshida, K., Berthoz, A., Vidal, P. P. & McCrea, R. (1981) Eye movement-related activity of identified second order vestibular neurons in the cat. In: Progress in oculomotor research, ed. Fuchs, A. F. & Becker, W.. Elsevier, North-Holland. [aAHW]Google Scholar
Young, L. (1985) Adaptation to modified otolith input. In: Adaptive mechanisms in gaze control, ed. Berthoz, A. & Melvill-Jones, G.. Elsevier. [AAS]Google Scholar
Young, L. R. & Shelhamer, M. (1990) Weightlessness enhances the relative contribution of visually-induced self-motion. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [HER]Google Scholar
Zacharias, G. L. & Young, L. R. (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Experimental Brain Research 41:159–71. [WB]CrossRefGoogle ScholarPubMed
Zeppenfeldt, P. (1991) Bepaling van de drempelwaarden voor het waarnemen van verschillen tussen visuele en vestibulaire stimulatie tijdens eigenbeweging [Determination of thresholds for the detection of differences between visual and vestibular stimulation]. Thesis, Technical University of Delft, The Netherlands. [aAHW]Google Scholar
Zinchenko, V. P. & Vergiles, N. Yu. (1972) Formation of visual images: Studies of stabilized images. Consultants Bureau, Plenum Press. [VIB]Google Scholar