Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T23:14:10.615Z Has data issue: false hasContentIssue false

Levels of modeling of mechanisms of visually guided behavior

Published online by Cambridge University Press:  04 February 2010

Michael A. Arbib
Affiliation:
Departments of Computer Science, Neurobiology, Physiology, and Biomedical Engineering, University of Southern California, Los Angeles, Calif. 90089

Abstract

Intermediate constructs are required as bridges between complex behaviors and realistic models of neural circuitry. For cognitive scientists in general, schemas are the appropriate functional units; brain theorists can work with neural layers as units intermediate between structures subserving schemas and small neural circuits.

After an account of different levels of analysis, we describe visuomotor coordination in terms of perceptual schemas and motor schemas. The interest of schemas to cognitive science in general is illustrated with the example of perceptual schemas in high-level vision and motor schemas in the control of dextrous hands.

Rana computatrix, the computational frog, is introduced to show how one constructs an evolving set of model families to mediate flexible cooperation between theory and experiment. Rana computatrix may be able to do for the study of the organizational principles of neural circuitry what Aplysia has done for the study of subcellular mechanisms of learning. Approach, avoidance, and detour behavior in frogs and toads are analyzed in terms of interacting schemas. Facilitation and prey recognition are implemented as tectal-pretectal interactions, with the tectum modeled by an array of tectal columns. We show how layered neural computation enters into models of stereopsis and how depth schemas may involve the interaction of accommodation and binocular cues in anurans.

Type
Target article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aertsen, A. M. H. J. & Johanncsma, P. I. M. (1981) The spectro-temporal receptive field: A functional characterization of auditory neurons. Biological Cybernetics 42:133–43. [PIMJ]CrossRefGoogle Scholar
Amari, S. & Arbib, M. A. (1977) Competition and cooperation in neural nets. In: Systems neuroscience, ed. Mctzler, J.. Academic Press. [arMAA]Google Scholar
an der Heiden, U. (1980) Analysis of neural networks. Srpinger-Verlag. [rMAA]CrossRefGoogle Scholar
Anderson, J. R. (1983) The architecture of cognition. Harvard University Press. [PL]Google Scholar
Antal, M., Matsumoto, N. & Székely, G. (1986) Tectal neurons of the frog: Intracellutar recording and labeling with cobalt electrodes. Journal of Comparative Neurology 246:238–53. [aMAA, NM, GS]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1970) On modelling the nervous system. In: Principles and practice of bionics, ed. Gierke, H. E. von, Keidel, W. D. & Oestereicher, H. L.. Technivision Services. [rMAA]Google Scholar
Arbib, M. A. (1972) The metaphorical brain. Wiley Interscience. [rMAA]Google Scholar
Arbib, M. A. (1975) Artificial intelligence and brain theory: Unities and diversities. Annals of Biomedical Engineering 3:238–74. [aMAA]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1981) Perceptual structures and distributed motor control. In: Handbook of physiology – the nervous system II. Motor control, ed. Brooks, V. B.. American Physiological Society. [arMAA]Google Scholar
Arbib, M. A. (1982a) Rana computatrix: An evolving model of visuomotor coordination in frog and toad. In: Machine intelligence 10, ed. Hayes, J. E., Michie, D. & Pao, Y. H.. Ellis Horwood. [aMAA]Google Scholar
Arbib, M. A. (1982b) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Competition and cooperation in neural nets, ed. Amari, S. & Arbib, M. A.. Lecture notes in biomathematics, vol. 45. Springer-Verlag. [aMAA]CrossRefGoogle Scholar
Arbib, M. A. (1982c) Perceptual-motor processes and the neural basis of language. In: Neural models of language processes, ed. Arbib, M. A., Caplan, D. & Marshall, J. C.Academic Press [rMAA]Google Scholar
Arbib, M. A. (1985) In search of the person: Philosophical explorations in cognitive science. University of Massachusetts Press. [arMAA]Google Scholar
Arbib, M. A. (1987) Brains, machines, and mathematics, 2nd ed.Springer-Verlag. [aMAA]CrossRefGoogle Scholar
Arbib, M. A. (1987a) Modularity and interaction of brain regions underlying visuo-motor coordination. In: Modularity in knowledge representation and natural language understanding, ed. Garfield, J. L.. MIT Press/Bradford Books. [rMAA]Google Scholar
Arbib, M. A. & Amari, S. (1985) Sensori-motor transformations in the brain (with a critique of the tensor theory of cerebellum). Journal of Theoretical Biology 112:123–55. [aMAA]CrossRefGoogle ScholarPubMed
Arbib, M. A., Boylls, C. C. & Dev, P. (1974) Neural models of spatial perception and the control of movement. In: Cybernetics and bionics, ed. Keidel, W. D., Handler, W. & Spreng, M.. Oldenbourg. [aMAA]Google Scholar
Arbib, M. A. & Caplan, D. (1979) Neurolinguistics must be computational. Behavioral and Brain Sciences 2:449–83. [rMAA]CrossRefGoogle Scholar
Arbib, M. A., Caplan, D. & Marshall, J. C., eds. (1982) Neural models of language processes. Academic Press. [rMAA]Google Scholar
Arbib, M. A., Conklin, E. J. & Hill, J. C. (1987) From schema theory to language. Oxford University Press. [arMAA]Google Scholar
Arbib, M. A. & Didday, R. L. (1975) Eye movements and visual perception: A “two visual systems” model. International Journal of Man-Machine Studies 7:547–69. [rMAA]Google Scholar
Arbib, M. A. & Hesse, M. B. (1986) The construction of reality. Cambridge University Press. [arMAA]CrossRefGoogle Scholar
Arbib, M. A. & House, D. (1987) Depth and detours: An essay on visually guided behavior. In: Vision, brain, and cooperative computation, ed. Arbib, M. A. & Hanson, A. R.. MIT Press/Bradford Books. [aMAA]CrossRefGoogle Scholar
Arbib, M. A., Iberall, T. & Lyons, D. (1985) Coordinated control programs for movements of the hand. Experimental Brain Research Supplement 10:111–29. [arMAA, HTAW]Google Scholar
Baird, B. (1986a) Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb. In: Proceedings of the Conference on Evolution, Cames and Learning, ed. Farmer, D., Packard, N., Lapedes, A. & Wendroff, B.. Physica 22D. North Holland. [rMAA, BB]Google Scholar
Baird, B. (1986b) Birurcation analysis of oscillating neural network model of pattern recognition in the rabbit olfactory bulb. In: Neural networks for computing, ed. Denker, John. American Institute of Physics Conference Proceedings 151. [rMAA, BB]Google Scholar
Barlow, H. (1953) Summation and inhibition in the frog's retina. Journal of Physiology (London) 119:6988. [aMAA]Google Scholar
Barlow, H. B., Blakemore, C. & Pettigrew, J. D. (1967) The neural mechanism of binocular depth discrimination. Journal of Physiology 193:327–42. [aMAA]CrossRefGoogle ScholarPubMed
Barnden, J. A. (1985) Diagrammatic short-term information processing by neural mechanisms. Cognition and Brain Theory 7:285328. [rMAA, JAB]Google Scholar
Barnden, J. A. (1986) Complex cognitive information processing: A computational architecture with a connectionist implementation. Technical Report 211, Computer Science Department, Indiana University, Bloomington. [rMAA, JAB]Google Scholar
Bartlett, F. C. (1932) Remembering. Cambridge University Press. [aMAA, AKM]Google Scholar
Barto, A. G. (1985) Learning by statistical cooperation of self-interested neuron-like computing elements. Human Neurobiology 4:22956. [rMAA]Google ScholarPubMed
Baynes, K., Holtzman, J. D. & Volpe, B. T. (1986) Components of visual attention. Brain 109:99114. [JCM]CrossRefGoogle ScholarPubMed
Berkinblit, M. B., Feldman, A. G. & Fukson, O. I. (1986) Adaptability of innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences 9:585638. [rMAA]CrossRefGoogle Scholar
Berti, A., Papagno, C. & Vallar, G. (1986) Balint syndrome: A case of prosopagnosia. talian Journal of Neurology 7:261–64. [JCM]Google Scholar
Bisiach, E. & Luzzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. [JCM]CrossRefGoogle ScholarPubMed
Bisiach, E., Perani, D., Vallar, G. & Berti, A. (1986) Unilateral neglect: Personal and extra-personal. Neuropsychologia 24:759–67. [JCM]CrossRefGoogle ScholarPubMed
Boylls, C. C. (1975) A theory of eerebellar function with applications to locomotion. I. The physiological role of climbing fiber inputs in anterior lobe operation. Technical Report 75C-6, Computer and Information Science Department, University of Massachusetts at Amherst. [arMAA]Google Scholar
Boylls, C. C. (1976) A theory of eerebellar function with applications to locomotion. II. The relation of anterior lobe climbing fiber function to locomotor behavior in the cat. Technical Report 76-1, Computer and Information Science Department, University of Massachusetts at Amherst. [arMAA]Google Scholar
Brachman, R. (1983) What Is-A is and isn't: An analysis of taxonomic links in semantic networks. IEEE Computer 16 (10):3O36. [rMAA; JKT]CrossRefGoogle Scholar
Brachman, R. (1985) I lied about the trees. AI Magazine 6(3):8093. [rMAA, JKT]Google Scholar
Brachman, R. & Levesque, H., eds. (1985) Readings in knowledge representation. Morgan Kaufrnann. [JKT]Google Scholar
Brady, M. & Paul, R. (1984) Robotics research. MIT Press. [JPW]Google Scholar
Braitenberg, V. (1965) Taxis, kinesis and decussation. In: Cybernetics of the nervous system, ed. Wiener, N. & Schadé, J. P.. Progress in Brain Research 17:210–22. [rMAA]Google ScholarPubMed
Braitenberg, V. (1984) Vehicles: Experiments in synthetic psychology. Bradford Books/MIT Press. [rMAA, DL]Google Scholar
Bullock, T. H. (1983) Implications for neuroethology from comparative neurology. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [J-PE]Google Scholar
Burghagen, H. (1979) Der Eiiifluβ von figuralen, visuellen Mustern auf das Beutefangverhalten verschiedener Anuren. Dissertation, University of Kassel. [J-PE]Google Scholar
Caine, H. S. & Gruberg, E. R. (1985) Ablation of nucleus isthmi leads to loss of specific visually elicited behaviors in the frog Rana Pipiens. Neuroscience Letters 54:307–12. [aMAA]CrossRefGoogle ScholarPubMed
Cajal, S. R. (1911) Histology du Systeme Nerveux de l'homme et des Vertebris, vol. 2. Paris: Maloine. [GS]Google Scholar
Cervantes-Perez, F. (1985) Modelling and analysis of neural networks in the visuomotor system of anuran amphibia. Ph.D. dissertation and Technical Report 85-27, Department of Computer and Information Science, University of Massachusetts at Amherst. [arMAA, J-PE, GS]Google Scholar
Cervantes-Perez, F., Lara, R. & Arbib, M. A. (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. Journal of Theoretical Biology. 113:117–52. [arMAA, GS]CrossRefGoogle ScholarPubMed
Chemiak, C. (1987) Logic and anatomy. Paper read at workshop for the Minnesota Center for Philosophy of Science. University of Minnesota. [KG]Google Scholar
Collett, T. (1977) Stereopsis in toads. Nature 267:349–51. [aMAA]CrossRefGoogle ScholarPubMed
Collett, T. (1982) Do toads plan routes? A study of the detour behaviour of Bufo viridis. Journal of Comparative Physiology 146:261–71. [aMAA]CrossRefGoogle Scholar
Collett, T. & Udin, S. (1983) The role of the toad's nucleus isthmi in preycatching behaviour. Proceedings of second workshop on visuomotor coordination in frog and toad: Models and experiments, ed. Lara, R. & Arbib, M. A.. COINS-Technical Report 83-19, University of Massachusetts at Amherst. [aMAA]Google Scholar
Collett, T. S., Udin, S. B. & Finch, D. J. (in press) A possible mechanism for stereopsis in anurans. [aMAA]Google Scholar
Craik, K.J.W. (1943) The nature of explanation. Cambridge University Press. [aMAA]Google Scholar
Crick, F. (1984) Function of the thalamic reticular nucleus: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81:4586–90. [rMAA]CrossRefGoogle ScholarPubMed
Dakin, G. A. & Arbib, M. A. (1986) The hierarchical control of skilled hand movements. COINS Technical Report 86-35, Department of Computer and Information Science, University of Massachusetts at Amherst. [rMAA]Google Scholar
Davis, L. S. & Rosenfeld, A. L. (1981) Cooperating processes for low-level vision. Artificial Intelligence, 17:245–63. [aMAA]CrossRefGoogle Scholar
Dennett, D. C. (1978a) Why not the whole iguana? Behavioral and Brain Sciences 1:103–4. [rMAA, DL]CrossRefGoogle Scholar
Dennett, D. C. (1978b) Brainstorms. MIT Press/Bradford Books. [rMAA, KG]Google Scholar
De Renzi, E. (1982) Disorders of space exploration and cognition. Wiley. [JCM]Google Scholar
Dev, P. (1975) Perception of depth surfaces in random-dot stereograms: A neural model. International Journal of Man-Machine Studies 7:511–28. [aMAA]CrossRefGoogle Scholar
Dewdney, A. K. (1987) Computer recreations. Scientific American 03, 256:1624. [rMAA]CrossRefGoogle Scholar
Didday, R. (1976) A Model of visiomotor mechanisms in the frog optic tectum. Mathematical Biosciences 30:169–80. [aMAA, JPW]CrossRefGoogle Scholar
Didday, R. L. & Arbib, M. A. (1975) Eye movements and visual perception: ‘two visual systems’ model. International Journal of Man-Machine Studies 7:547–69. [aMAA]CrossRefGoogle Scholar
Eggermont, J. J., Johannesma, P.I.M. & Aertsen, A.M.H.J. (1983) Reverse correlation methods in auditory research. Quarterly Review of Biophysics 16:341414. [PIMJ]CrossRefGoogle ScholarPubMed
Epstein, S. (1979) Vermin users manual. Unpublished project report, Department of Computer and Information Science, University of Massachusetts at Amherst. [aMAA]Google Scholar
Evarts, E. V. & Tanji, J. (1976) Reflex and intended responses in motor cortex pyramidal tract neurons in monkey Journal of Neurophysiology 39:1069–80. [rMAA]CrossRefGoogle ScholarPubMed
Ewert, J.-P. (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefangwendereaktion der Erdkröte (Bufo bufo L.). Pfliigers Archiv 306:210–18. [J-PE]CrossRefGoogle Scholar
Ewert, J.-P. (1974) The neural basis of visually guided behavior. Scientific American 230:3442. [aMAA]CrossRefGoogle ScholarPubMed
Ewert, J.-P. (1976) The visual system of the toad: Behavioural and physiological studies on a pattern recognition system. In: The amphibian visual system, ed. Fite, K.. Academic Press. [aMAA]Google Scholar
Ewert, J.-P. (1981) Neural coding of “worms” and “antiworms” in the brain of toads: The question of hardwired and softwired systems. In: Brain mechanisms of behavior in lower vertebrates, ed. Laming, P. R.. Cambridge University Press. [J-PE]Google Scholar
Ewert, J.-P. (1984) Tectal mechanisms that underlie prey-catching and avoidance behavior in toads. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum Press. [rMAA, NM]Google Scholar
Ewert, J.-P., Arend, B., Becker, V. & Borchers, H.-W. (1979) Invariants in configurational prey selection by Bufo bufo (L.). Brain, Behavior and Evolution 16:3851. [J-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P., Borchers, H.-W. & Wietersheim, A. von (1978) Question of prey feature detectors in the toad's Bufo bufo (L.) visual system: A correlation analysis. Journal of Comparative Physiology 126:4347. [JPE]CrossRefGoogle Scholar
Ewert, J.-P., Borchers, H.-W. & Wietersheim, A.von (1979) Directional sensitivity, invariance, and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L). Journal of Comparative Physiology 132:191201. [J-PE]CrossRefGoogle Scholar
Ewert, J.-P., Framing, E. M., Schiirg-Pfeiffer, E. & Weerasuriya, A. (submitted) Single neuron activity in the toad's medulla oblongata in response to visual and tactile stimuli: I. A functional approach toward tectal/bulbar spinal circuitry by extraellular methods. [rMAA, J-PE]Google Scholar
Ewert, J. P. & von Seelen, W. (1974) Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kroten. Kybernetik 14:167–83. [aMAA, J-PE]CrossRefGoogle Scholar
Finkenstädt, T. (1983) Influence of the optic tectum and prosencephalic structures on visually controlled prey-catching and avoidance behaviors in the fire salamander. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [J-PE]Google Scholar
Fodor, J. A. (1983) The modularity of mind. MIT Press/Bradford Books. [rMAA, JPW]CrossRefGoogle Scholar
Fodor, J. A. (1985) Précis of The Modularity of Mind. Behavioral and Brain Sciences 8:142. [rMAA, JPW]CrossRefGoogle Scholar
Freeman, W. J. (1975) Mass action in the nervous system. Academic Press. [BB]Google Scholar
Freeman, W. J. & Skarda, C. A. (1985) Spatial EEG patterns, non-linear dynamics and perception: The neo-Sherringtonian view. Brain Research Reviews 10:147–75. [rMAA]CrossRefGoogle Scholar
Fuster, J. M., ed. (1985) The temporal organization of behavior. Human Neurobiology 4:Whole Nos. 2 and 3. [rMAA]Google ScholarPubMed
Gibson, J. J. (1979) The ecological approach to visual perception. Houghton Mifflin. [rMAA, JPW]Google Scholar
Gielen, C.A.M. & van Zuylen, E. J. (1986) Coordination of arm muscles during flexion and supination: Application of the tensor analysis approach. Neuroscience 17:527–39. [aMAA]CrossRefGoogle ScholarPubMed
Gregory, R. L. (1969) On how so little information controls so much behaviour. In: Towards a theoretical biology, 2: Sketches, ed. Waddington, C. H.. Edinburgh University Press. [aMAA]Google Scholar
Guthrie, E. R. (1935, 1960) The psychology of learning. Peter Smith. [JPW]Google Scholar
Hamsher, K. de S. (1978) Stereopsis and the perception of anomalous contours. Neuropsychologia 16:453–59. [JCM]CrossRefGoogle ScholarPubMed
Hanson, A. R. & Riseman, E. M. (1978) VISIONS: A computer system for interpreting scenes. In: Computer vision systems, ed. Hanson, A. R. & Riseman, E. M.. Academic Press. [aMAA]Google Scholar
Havens, W. S. & Mackworth, A. K. (1983) Representing knowledge of the visual world. Computer 16:9096. [AKM]CrossRefGoogle Scholar
Hayes, P. (1974) Some problems and non-problems in representation theory. Proceedings of the Artificial Intelligence and Simulation of Behavior Conference, Essex University. [rMAA, JKT]Google Scholar
Hayes, P. (1979) The logic of frames. In: Frame conceptions and text understanding, ed. Metzing, D.. Walter de Gruyter. [rMAA, JKT]Google Scholar
Head, H. & Holmes, G. (1911) Sensory disturbances from cerebral les ions. Brain 34:102–54. [arMAA, AKM]CrossRefGoogle Scholar
Heinzel, H.-G. & Selverston, A. I. (1985) Proctolin modulation of the gastric oscillator in the lobster stomatogastrie ganglion. Society for Neuroscience Abstracts 11:146.6. [rMAA]Google Scholar
Himstedt, W. (1982) Prey-selection in salamanders. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R.J.W., MIT Press. [J-PE]Google Scholar
Hinton, G. E. (1981) Implementing semantic networks in parallel hardware. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [rMAA, JAB]Google Scholar
Hinton, G. E. & Lang, K. J. (1985) Shape recognition and illusory conjunctions. Proceedings of the 9th International Joint Conference on Artificial Intelligence. Morgan Kaufmann. [JAB]Google Scholar
Holland, J. H. (1975) Adaptation in natural and artificial systems. University of Michigan Press. [rMAA, BB]Google Scholar
Hopfield, J. & Tank, D. (1986) Computing with neural circuits. Science 233:625–33. [rMAA]CrossRefGoogle ScholarPubMed
Horn, B.K.P. (1985) Robot vision. MIT Press. [JPW]Google Scholar
House, D. (1982) The frog/toad depth perception system - A cooperative/competitive model. In: Proceedings of the workshop on visuomotor coordination in frog and toad: Models and Experiments, ed. Arbib, M. A.. COINS Technical Report 82-16,University of Massachusetts at Amherst. [aMAA]Google Scholar
House, D. (1984) Neural models of depth perception in frog and toad. Ph.D. dissertation, Department of Computer and Information Science, University of Massachusetts at Amherst. [aMAA]Google Scholar
Humphreys, G. W. & Riddoch, M. J. (1987) To see but not to see: A case study of visual agnosia. Erlbaum. [JCM]Google Scholar
Iberall, T., Bingham, G. & Arbib, M. A. (1986) Opposition space as a structuring concept for the analysis of skilled hand movements. Experimental Brain Research Series 15:158–73. [arMAA]Google Scholar
Indurkhya, B. (1986) Constrained semantic transference: A formal theory of metaphors. Synthese 68:515–51. [rMAA]CrossRefGoogle Scholar
Ingle, D. (1968) Visual releasers of prey catching behaviour in frogs and toads. Brain, Behavior, and Evolution 1:500–18. [aMAA]CrossRefGoogle Scholar
Ingle, D. (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180:422–24. [aMAA]CrossRefGoogle ScholarPubMed
Ingle, D. (1975) Focal attention in the frog: Behavioural and physiological correlates. Science 188:1033–35. [aMAA]CrossRefGoogle ScholarPubMed
Ingle, D. (1976) Spatial visions in anurans. In: The amphibian visual system, ed. Fite, K.. Academic Press. [aMAA]Google Scholar
Ingle, D. (1982) Visual mechanisms of optic tectum and pretectum related to stimulus localization in frogs and toads. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [aMAA]Google Scholar
Jeannerod, M. (1981) Le controle de I'oeil sur le geste. La Recherche 12(120). [aMAA]Google Scholar
Joanette, Y., Brouchon, M., Gauthier, L. & Samson, M. (1986) Pointing with left vs right hand in left visual field neglect. Neuropsychologia 24:391–96. [JCM]CrossRefGoogle ScholarPubMed
Johannesma, P.I.M. (1981) Neural representation of sensory stimuli and sensory interpretation of neural activity: Neural communication and control. Advances in Physiological Science 30:103125. [PIMJ]Google Scholar
Johannesma, P.I.M. & Aertsen, A.M.H.J. (1982) Statistical and dimensional analysis of the neural representation of the acoustic biotope of the frog. Journal of Medical Systetns 6(4):399421. [PIMJ]CrossRefGoogle ScholarPubMed
Johannesma, P.I.M., Aertsen, A.M.H.J., Boogaard, H. van den, Eggermont, J. & Epping, W. (1986) From synchrony to harmony: Ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Brain theory, ed. Palm, G. & Aertsen, A.. Springer-Verlag. [PIMJ]Google Scholar
Johannesma, P.I.M. & Eggermont, J. (1983) Receptive fields of auditory neurons in the midbrain of the frog as functional elements of acoustic communication. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capraniea, R. R. & Ingle, D. J.. Plenum. [PIMJ]Google Scholar
Julesz, B. (1971) Foundations of Cyclopean perception. University of Chicago Press. [aMAA]Google Scholar
Kandel, E. R. (1978) A cell-biological approach to learning. Society for Neuroscience. [aMAA]Google Scholar
Kase, C. S., Troncoso, J. F., Court, J. E., Tapia, J. F. & Mohr, J. P. (1977) Global spatial disorientation: Clinico-pathological correlations. Journal of the Neurological Sciences 34:267–78. [JCM]CrossRefGoogle Scholar
Kelso, J. A. S. & Scholz, J. P. (1985) Cooperative phenomena in biological motion. In: Synergetics of complex systems in physics, chemistry and biology, ed. Haken, H.. Springer-Verlag. [rMAA, HTAW]Google Scholar
Kilmer, W. L., McCulloch, W. S. & Blum, J. (1969) A model of the vertebrate central command system. International Journal for Man Machine Studies 1:279309. [rMAA]CrossRefGoogle Scholar
Klahr, D., Langley, P. & Neehes, R., eds. (1987) Production system models of learning and development. MIT Press. [PL]CrossRefGoogle Scholar
Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4:219–27. [rMAA]Google ScholarPubMed
Kohonen, T. (1984) Self-organization and associative memory. Springer-Verlag. [rMAA]Google Scholar
Kugler, P. N. (1986) A morphological perspective on the origin and evolution of movement patterns. In: Motor development in children: Aspects of coordination and control, ed. Wade, M. G. & Whiting, H. T. A.. Martinus Nijhoff. [rMAA, HTAW]Google Scholar
Landis, T., Cummings, J. L., Benson, D. F. & Palmer, E. P. (1986) Loss of topographic familiarity: An environmental agnosia. Archives of Neurology 43:132–36. [JCM]CrossRefGoogle ScholarPubMed
Lara, R. & Arbib, M. A. (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biological Cybernetics 51:223–37. [aMAA]CrossRefGoogle Scholar
Lara, R., Arbib, M. A. & Cromarty, A. S. (1982) The role of the tectal column in facilitation of amphibian prey-catching behaviour: A neural model. Journal of Neuroscience 2:521–30. [aMAA]CrossRefGoogle ScholarPubMed
Lara, R., Carmona, M., Daza, F. & Cruz, A. (1984) A global model of the neural mechanisms responsible for visuomotor coordination in toads. Journal of Theoretical Biology 110:587618. [arMAA]CrossRefGoogle ScholarPubMed
Lázár, G. (1984) Structure and connections of the frog optic tectum. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum Press. [rMAA, GS]Google Scholar
Lázár, G., Tóth, P., Csank, G. & Kicliter, E. (1983) Morphology and location of tectal projection neurons in frogs: A study with HRP and cobalt filling. Journal of Comparative Neurology 215:108–20. [aMAA]CrossRefGoogle ScholarPubMed
Lee, V. (1986) A neural network model of frog retina: A discrete time-space approach. Technical Report TR-86-219, Department of Computer Science, University of Southern California. [aMAA]Google Scholar
Lettvin, J. Y., Maturana, H., McCulloch, W. S. & Pitts, W. H. (1959) What the frog's eye tells the frog brain. Proceedings of the Institute of Radio Engineers 47:1940–51. [aMAA]Google Scholar
Levesque, H. (1986) Knowledge representation and reasoning. Annual Reviews of Computer Science 1:255–87. [JKT]CrossRefGoogle Scholar
Lieblich, I. & Arbib, M. A. (1982) Multiple representations of space underlying behavior. Behavioral and Brain Sciences 5:627–59. [rMAA]CrossRefGoogle Scholar
Lloyd, D. (1987) Mental representation from the bottom up. Synthese 70:2378. [rMAA, DL]CrossRefGoogle Scholar
Lorenz, K. (1943) Die angeborenen Formen möglicher Erfahrung. Zeitschrift für Tierpsychologie 5:235409. [J-PE]CrossRefGoogle Scholar
Luria, A. R. (1959) Disorders of “simultaneous perception” in a case of bilateral occipitoparietal brain injury. Brain 82:437–49. [JCM]CrossRefGoogle Scholar