Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T21:07:00.813Z Has data issue: false hasContentIssue false

From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony

Published online by Cambridge University Press:  04 February 2010

Lokendra Shastri
Affiliation:
Computer and Information Science Department, University of Pennsylvania, Philadelphia, PA 19104 Electronic mail: [email protected]
Venkat Ajjanagadde
Affiliation:
Wilhelm-Schickard-Institut, University of Tuebingen, Sand 13 W-7400 Tuebingen, Germany Electronic mail: [email protected]

Abstract

Human agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency – as though these inferences were a reflexive response of their cognitive apparatus. Furthermore, these inferences are drawn with reference to a large body of background knowledge. This remarkable human ability seems paradoxical given the complexity of reasoning reported by researchers in artificial intelligence. It also poses a challenge for cognitive science and computational neuroscience: How can a system of simple and slow neuronlike elements represent a large body of systemic knowledge and perform a range of inferences with such speed? We describe a computational model that takes a step toward addressing the cognitive science challenge and resolving the artificial intelligence paradox. We show how a connectionist network can encode millions of facts and rules involving n-ary predicates and variables and perform a class of inferences in a few hundred milliseconds. Efficient reasoning requires the rapid representation and propagation of dynamic bindings. Our model (which we refer to as SHRUTI) achieves this by representing (1) dynamic bindings as the synchronous firing of appropriate nodes, (2) rules as interconnection patterns that direct the propagation of rhythmic activity, and (3) long-term facts as temporal pattern-matching subnetworks. The model is consistent with recent neurophysiological evidence that synchronous activity occurs in the brain and may play a representational role in neural information processing. The model also makes specific psychologically significant predictions about the nature of reflexive reasoning. It identifies constraints on the form of rules that may participate in such reasoning and relates the capacity of the working memory underlying reflexive reasoning to biological parameters such as the lowest frequency at which nodes can sustain synchronous oscillations and the coarseness of synchronization.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J. (1991) Dynamic fact communication mechanism: A connectionist interface. Proceedings of the Thirteenth Conference of the Cognitive Science Society. Erlbaum. [aLS]Google Scholar
Abeles, M. (1982) Local cortical circuits: Studies of brain function, vol. 6. Springer. [arLS]CrossRefGoogle Scholar
Abeles, M. (1991) Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press. [aLS, WJF]CrossRefGoogle Scholar
Ajjanagadde, V. G. (1990) Reasoning with function symbols in a connectionist system. Proceedings of the Twelfth Conference of the Cognitive Science Society. Erlbaum. [aLS]Google Scholar
Ajjanagadde, V. G. (1991) Abductive reasoning in connectionist networks: Incorporating variables, background knowledge, and structured explananda. Technical Report WS1-91-7. Wilhelm-Schickard-Institute, University of Tubingen, Germany. [arLS, GH, DST]Google Scholar
Ajjanagadde, V. G. & Shastri, L. (1989) Efficient inference with multiplace predicates and variables in a connectionist system. Proceedings of the Eleventh Conference of the Cognitive Science Society.Erlbaum. [aLS]Google Scholar
Allen, J. F. (1987) Natural language understanding. Benjamin Cummings. [aLS]Google Scholar
Allen, J. F. & Perrault, C. R. (1980) Analyzing intention in utterances. Artificial Intelligence 15:143–78. [GH]CrossRefGoogle Scholar
Anderson, J. R. (1983) The architecture of cognition. Harvard University Press. [aLS]Google Scholar
Baddeley, A. (1986) Working memory. Clarendon Press. [arLS, SS]Google ScholarPubMed
Bair, W., Koch, C., Newsome, W., Britten, K. & Niebur, E. (1992) Power spectrum analysis of MT neurons from awake monkey. Society for Neuroscience Abstracts 18(1):11 12. [MPY]Google Scholar
Barnden, J. A. (1992) Connectionism, generalization and propositional attitudes: A catalogue of challenging issues. In: The symbolic and connectionist paradigms: Closing the gap, ed. Dinsmore, J.. Erlbaum. [JAB]Google Scholar
Barnden, J. A. & Srinivas, K. (1991) Encoding techniques for complex information structures in connectionist systems. Connection Science 3(3):263309. [aLS, JAB]CrossRefGoogle Scholar
Barnes, D. & Hampson, P. J. (1992) Stimulus equivalence, relational frame theory and connectionism: Implications for behaviour analysis and cognitive science. Proceedings of the Fifteenth Symposium on Quantitative Analyses of Behavior. Harvard University Press. [PJH]Google Scholar
Bartlett, F. C. (1934) Remembering (2nd. ed. 1967). Cambridge University Press. [WJF]Google Scholar
Bibel, W. (1988) Advanced topics in automated deduction. In: Fundamentals of artificial intelligence II. ed. Nossum, R.. Springer. [SH]Google Scholar
Bienenstock, E. (1991) Notes on the growth of a “composition machine.” Presented at the Interdisciplinary Workshop on Compositionality in Cognition and Neural Networks, Abbaye de Royaumont, May. [aLS]Google Scholar
Bobrow, D. & Collins, A., eds. (1975) Representation and understanding. Academic Press. [aLS]Google Scholar
Bradski, G., Carpenter, G. A. & Grossberg, S. (1992a) Working memory networks for learning temporal order with application to 3-D visual object recognition. Neural Computation 4:270–86. [SG]CrossRefGoogle Scholar
Bradski, G., Carpenter, G. A. & Grossberg, S. (1992b) Working memories for storage and recall of arbitrary temporal sequences. Proceedings of the International joint Conferences on Neural Networks,Piscataway, NJ. [SG]Google Scholar
Braine, M. D. S. (1978) On the relationship between the natural logic of reasoning and standard logic. Psychological Review 85:121. [MO]CrossRefGoogle Scholar
Broadbent, D. E. (1958) Perception and communication. Pergamon. [MPY]CrossRefGoogle Scholar
Buchanan, B. C. & Shortliffe, E. F. (1984) Rule-based expert systems: The MYCIN experiments of the Stanford Heuristic Programming Project. Addison-Wesley. [aLS]Google Scholar
Bylander, T., Allemang, D., Tanner, M. C. & Josephson, J. R. (1991) The computational complexity of abduction. Artificial Intelligence 47(1–3):2560. [aLS]CrossRefGoogle Scholar
Cahill, A. & Mitchell, D. C. (1987) Plans and goals in story comprehension. In: Communication failure in dialogue and discourse, ed. Reilly, R.. Elsevier. [GH]Google Scholar
Carpenter, G. A. & Grossberg, S., eds. (1991) Pattern recognition by self-organizing neural networks. MIT Press. [SG]CrossRefGoogle Scholar
Carpenter, G. A. & Grossberg, S., eds. (1992) A self-organizing neural network for supervised learning, recognition, and prediction. IEEE Communications 30:3849. [SG]CrossRefGoogle Scholar
Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H. & Rosen, D. B. (1992) Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks 3:698713. [SG]CrossRefGoogle ScholarPubMed
Carpenter, G. A., Grossberg, S. & Reynolds, J. H. (1991) ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks 4:565–88. [SG]CrossRefGoogle Scholar
Carpenter, P. A. & Just, M. A. (1977) Reading comprehension as eyes see it. In: Cognitive processes in comprehension, ed. Just, M. A. & Carpenter, P. A.. Erlbaum. [aLS]Google Scholar
Celebrini, S., Thorpe, S., Trotter, Y. & Imbert, M. (1993) Dynamics of orientation coding in area VI of the awake primate. Visual Neuroscience (in press). [SJT]CrossRefGoogle Scholar
Chalmers, D. J. (1990) Syntactic transformations on distributed representations. Connection Science 1&2(2):5362. [GD, JWG]CrossRefGoogle Scholar
Charniak, E. (1976) Inference and knowledge (I and II). In: Computational semantics, ed. Charniak, E. & Wilks, Y.. North-Holland. [aLS]Google Scholar
Charniak, E. (1983) Passing markers: A theory of contextual influence in language comprehension. Cognitive Science 7:171–90. [aLS, GH]Google Scholar
Chater, N. & Oaksford, M. (1993) Logicism, mental models and everyday reasoning: Reply to Garnham. Mind & Language 8 (in press). [MO]CrossRefGoogle Scholar
Churchland, P. S., Koch, C. & Sejnowski, T. J. (1989) What is computational neuroscience? In: Computational neuroscience, ed. Schwartz, E.. MIT Press. [MO]Google Scholar
Clossman, G. (1988) A model of categorization and learning in a connectionist broadcast system. Ph.D. dissertation, Department of Computer Science, Indiana University. [aLS]Google Scholar
Cohen, P. R., Morgan, J. & Pollack, M. E., eds. (1990) Intentions in communication. MIT Press. [GH]CrossRefGoogle Scholar
Collins, A. & Michalski, R. (1989). The logic of plausible reasoning: A core theory. Cognitive Science 13(1):150. [rLS, DST]CrossRefGoogle Scholar
Cooke, N. J. (1992) Modeling human expertise in expert systems. In: The psychology of expertise: Cognitive research and empirical artificial intelligence, ed. Hoffman, R. R.. Springer. [GH]Google Scholar
Cooper, P. R. (1992) Structure recognition by connectionist relaxation: Formal analysis. Computational Intelligence 8(1):2544. [PRC]CrossRefGoogle Scholar
Cooper, P. R. & Swain, M. J. (1992) Arc consistency: Parallelism and domain dependence. Artificial Intelligence 58:207–35. [PRC]CrossRefGoogle Scholar
Corriveau, J. (1991) Time-constrained memory for reader-based text comprehension. Technical Report CSRI-246. Ph.D. dissertation, Computer Science Research Institute, University of Toronto. [aLS]Google Scholar
Cottrell, G. (1985) Parallelism in inheritance hierarchies with exceptions. Proceedings of the Eighth International Joint Conference on Artificial Intelligence,Los Angeles, CA. [GWC]Google Scholar
Cottrell, G. (1989) A connectionist approach to word sense disambiguation. Pitman. [GWC]Google Scholar
Creutzfeldt, O., Ojemann, G. & Lettich, E. (1989) Neuronal activity in the human lateral temporal lobe. 1. Responses to speech. Experimental Brain Research 77:451–75. [SJT]CrossRefGoogle Scholar
Crick, F. (1984) Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences 81:4586–90. [aLS]CrossRefGoogle ScholarPubMed
Crick, F. & Koch, C. (1990a) Towards a neurobiological theory of consciousness Seminars in Neurosciences 2:263–75. [aLS]Google Scholar
Crick, F. & Koch, C. (1990b) Some reflections on visual awareness Cold Spring Harbor Symposium on Quantitative Biology 55:953–62. [SG]CrossRefGoogle ScholarPubMed
Damasio, A. R. (1989) Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition 33:2562. [aLS]CrossRefGoogle ScholarPubMed
Davis, P. (1990) Application of optical chaos to temporal pattern search in a nonlinear optical resonator. Japanese Journal of Applied Physics 29:L1238-40. [IT]CrossRefGoogle Scholar
Dawson, M. R. W. & Schopflocher, D. P. (1992) Autonomous processing in parallel distributed processing networks. Philosophical Psychology 5:199219. [MRWD]CrossRefGoogle Scholar
Dehaene, S. & Changeux, J-P. (1991) The Wisconsin card sorting test: Theoretical analysis and modeling in a neuronal network. Cerebral Cortex 1:6279. [MO]CrossRefGoogle Scholar
Diederich, J. (1992) Inkrementelles Konnektionistisches Lernen. Forthcoming habilitation thesis, Department of Computer Science, University of Hamburg. [JD]Google Scholar
Dietz, P., Krizanc, D., Rajasekaran, S. & Shastri, L. (1993) A lower bound result for the common element problem and its implication for reflexive reasoning. Technical Report, Department of Computer and Information Science, University of Pennsylvania (forthcoming). [rLS]Google Scholar
Dolan, C. P. & Smolensky, P. (1989) Tensor product production system: A modular architecture and representation. Connection Science 1:5368. [aLS, GSH, RR]CrossRefGoogle Scholar
Dorffner, G. & Rotter, M. (1992) On the virtues of functional connectionist compositionality. Proceedings of the Tenth European Conference on Artificial Intelligence, ed. Neumann, B.. Wiley. [GD]Google Scholar
Dosher, B. A. & Corbett, A. T. (1982) Instrument inferences and verb schemata. Memory and Cognition 10(6):531–39. [GH]CrossRefGoogle Scholar
Douglas, R. J., Martin, K .A. C. & Whitteridge, D. (1991) An intracellular analysis of the visual responses of neurons in cat visual cortex. Journal of Physiology 440:659–96. [RE]CrossRefGoogle ScholarPubMed
Downing, P. (1977) On the creation and use of English compound nouns. Language 53(4):810–42. [GH]CrossRefGoogle Scholar
Dwork, C., Kannelakis, P. C. & Mitchell, J. C. (1984) On the sequential nature of unification. Journal of Logic Programming 1:3550. [SH]CrossRefGoogle Scholar
Dyer, M. (1983) In-depth understanding: A computer model of integrated processing for narrative comprehension. MIT Press. [aLS]CrossRefGoogle Scholar
Eckhorn, R. (1991) Stimulus-specific synchronizations in the visual cortex: Linking of local features into global figures? In: Neuronal cooperativity, ed. Kruger, J.. Springer. [SJT]Google Scholar
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H. J. (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biological Cybernetics 60:121–30. [aLS, RE, WJF, IT, SJT]CrossRefGoogle ScholarPubMed
Eckhorn, R., Gruesser, O.-J., Kroeller, J., Pellnitz, K. & Poepel, B. (1976) Efficiency of different neural codes: Information transfer calculations for three different neural systems. Biological Cybernetics 22:4960. [RE]CrossRefGoogle Scholar
Eckhorn, R. & Poepel, B. (1975) Rigorous and extended application of information theory to the afferent visual system of the cat. Biological Cybernetics 17:717. [RE]CrossRefGoogle Scholar
Eckhorn, R., Reitboeck, H. J., Arndt, M. & Dicke, P. (1990) Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Computation 2:293307. [aLS, RE]CrossRefGoogle Scholar
Eichenbaum, H., Wiener, S. I., Shapiro, M. L. & Cohen, N. J. (1989) The organization of spatial coding in the hippocampus: A study of neural ensemble activity. Journal of Neuroscience 9:2764–75. [GWS]CrossRefGoogle ScholarPubMed
Elman, J. (1991) Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 7:195225. [JWG]CrossRefGoogle Scholar
Engel, A. K., Koenig, P., Gray, C. M. & Singer, W. (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: Intercolumnar interactions as determined by cross-correlation analysis. European Journal of Neuroscience 2:588606. [WJF, MPY]CrossRefGoogle ScholarPubMed
Engel, A. K., Koenig, P., Kreiter, A. K., Gray, C. M. & Singer, W. (1991) Temporal coding by coherent oscillations as a potential solution to the binding problem: Physiological evidence. In: Nonlinear dynamics and neural networks, ed. Schuster, H. G. & Singer, W.. Weinheim. [aLS]Google Scholar
Engel, A. K., Kroiter, A. K. & Singer, W. (1992) Oscillatory responses in the superior temporal sulcus of anesthetized macaque monkeys. Society for Neuroscience Abstracts 18:11.10. [rLS]Google Scholar
Etherington, D. & Reiter, R. (1983) On inheritance hierarchies with exceptions. Proceedings of the National Conference on Artificial Intelligence, Washington, D. C. [GWC]Google Scholar
Evans, J. St. B. T. (1972) Interpretation and matching bias in a reasoning task. Quarterly Journal of Experimental Psychology 24:193–99. [MO]CrossRefGoogle Scholar
Evans, J. St. B. T. (1982) The psychology of deductive reasoning. Routledge & Kegan Paul. [MO]Google Scholar
Evans, J. St. B. T. (1983) Linguistic determinants of bias in conditional reasoning. Quarterly Journal of Experimental Psychology 35A:635–44. [MO]CrossRefGoogle Scholar
Evans, J. St. B. T. (1989) Bias in human reasoning: Causes and consequences. Erlbaum. [MO]Google Scholar
Fahlman, S. E. (1979) NETL: A system for representing real-world knowledge. MIT Press. [aLS, GH, MO]CrossRefGoogle Scholar
Fahlman, S. E. (1981) Representing implicit knowledge. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [aLS, MO]Google Scholar
Fahlman, S. E., Hinton, G. E. & Sejnowski, T. J. (1983) Massively parallel architectures for AI: NETL, thistle, and Boltzmann machines. Proceedings of the National Conference on Artificial Intelligence. Morgan Kaufmann. [DST]Google Scholar
Fahlman, S. E., Touretzky, D. S. & van Roggen, W. (1981) Cancellation in a parallel semantic network. Proceedings of the Seventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann. [aLS]Google Scholar
Feldman, J. A. (1982) Dynamic connections in neural networks. Biological Cybernetics 46:2739. [aLS, PRC]CrossRefGoogle ScholarPubMed
Feldman, J. A. (1985) Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences 8:265–89. [PRC]CrossRefGoogle Scholar
Feldman, J. A. (1989) Neural representation of conceptual knowledge. In: Neural connections, mental computation, ed. Nadel, L., Cooper, L. A., Culicover, P. & Harnish, R. M.. MIT Press. [aLS]Google Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6(3):205–54. [aLS, PRC]CrossRefGoogle Scholar
Fodor, J. A. (1983) Modularity of mind. MIT Press. [MO]CrossRefGoogle Scholar
Fodor, J. A. & Pylyshyn, Z. W. (1988a) Connectionism and cognitive architecture: A critical analysis. In: Connections and symbols, ed. Pinker, S. & Mehler, J., MIT Press. [aLS, DLM]Google Scholar
Fodor, J. A. & Pylyshyn, Z. W. (1988b) Connectionism and cognitive architecture: A critical analysis Cognition 28:371. [GD, MO]CrossRefGoogle ScholarPubMed
Freeman, M. J. (1975) Mass action in the nervous system. Academic Press. [WJF]Google Scholar
Freeman, M. J. (1981) A physiological hypothesis of perception. Perspectives in Biology and Medicine 24(4):561–92. [aLS]CrossRefGoogle ScholarPubMed
Freeman, M. J. (1987) Simulation of chaotic EEC patterns with a dynamic model of olfactory system. Biological Cybernetics 56:139–50. [IT]CrossRefGoogle Scholar
Freeman, M. J. (1991) The physiology of perception. Scientific American 264:7885. [WJF, IT]CrossRefGoogle ScholarPubMed
Freeman, W. J. & van Dijk, B. (1987) Spatial patterns of visual cortical fast EEC during conditioned reflex in a rhesus monkey. Brain Research 422:267–76. [WJF]CrossRefGoogle Scholar
Frisch, A. M. & Allen, J. F. (1982) Knowledge retrieval as limited inference. In: Notes in computer science: Sixth conference on automated deduction, ed. Loveland, D. W.. Springer. [aLS]Google Scholar
Garnham, A. (1993) Is logicist cognitive science possible? Mind & Language 8 (in press). [MO]CrossRefGoogle Scholar
Gawne, T. J., Eskandar, E. N., Richmond, B. J. & Optican, L. M. (1991) Oscillations in the responses of neurons in inferior temporal cortex are not driven by stationary visual stimuli. Society for Neuroscience Abstracts 17(1):180.18. [MPY]Google Scholar
Geib, C. (1990) A connectionist model of medium-term memory. Term report, Department of Computer and Information Science, University of Pennsylvania. [aLS]Google Scholar
Geller, J. & Du, C. (1991) Parallel implementation of a class reasoner. Journal of Theoretical Artificial Intelligence 3:109–27. [aLS]CrossRefGoogle Scholar
Genesereth, M. R. & Nilsson, N. J. (1987) Logical foundations of artificial intelligence. Morgan Kaufmann. [aLS]Google Scholar
Gerstein, G. L. (1970) Functional association of neurons: Detection and interpretation. In: The neurosciences: Second study program, ed. Schmitt, F. O.. Rockefeller University Press. [aLS]Google Scholar
Gibbs, R. W. Jr. (1983) Do people always process the literal meanings of indirect requests? Journal of Experimental Psychology: Learning, Memory, and Cognition 9:524–33. [GH]Google Scholar
Gilbert, C. D. & Wiesel, T. (1992) Receptive field dynamics in adult primary visual cortex. Nature 356:150–52. [JD]CrossRefGoogle ScholarPubMed
Gray, C. M., Engel, A. K., Koenig, P. & Singer, W. (1991) Properties of synchronous oscillatory neuronal interactions in cat striate cortex. In: Nonlinear dynamics and neural networks, ed. Schuster, H. G. & Singer, W.. Weinheim: VCH Publishers. [aLS, RE]Google Scholar
Gray, C. M., Koenig, P., Engel, A. K. & Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–37. [aLS, IT, SJT]CrossRefGoogle ScholarPubMed
Gray, C. & Singer, W. (1989) Stimulus-specific neural oscillations in orientation specific columns of the visual cortex. Proceedings of the National Academy of Science 86:16981702. [aLS, RE]CrossRefGoogle Scholar
Gross, H., Koerner, E., Boehme, H. & Pomierski, T. (1992) A neural network hierarchy for data and knowledge controlled selective visual attention. In: Artificial neural networks, 2, ed. Aleksander, I. & Taylor, J.. North-Holland. [EK]Google Scholar
Grossberg, S. (1976) Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics 23:187202. [SC]CrossRefGoogle ScholarPubMed
Grossberg, S. (1978) A theory of visual coding, memory, and development. In: Formal theories of visual perception, ed. Leeuwenberg, E. & Buffart, H.. Wiley. [SG]Google Scholar
Grossberg, S. ed. (1987a) The adaptive brain, vols. 1 & 2. Elsevier/North-Holland. [SG]Google Scholar
Grossberg, S. ed. (1987b) Competitive learning: From interactive activation to adaptive resonance. Cognitive Science 11:2363. [MRWD]CrossRefGoogle Scholar
Grossberg, S. ed. (1988) Neural networks and natural intelligence. MIT Press. [SG]CrossRefGoogle Scholar
Grossberg, S. & Mingolla, E. (1985a) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading Psychological Review 92:173211. [SG]CrossRefGoogle ScholarPubMed
Grossberg, S. & Mingolla, E. (1985b) Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations Perception & Psychophysics 38:141–71. [SG]CrossRefGoogle ScholarPubMed
Grossberg, S. & Somers, D. (1991) Synchronized oscillations during cooperative feature linking in a cortical model of visual perception. Neural Networks 4:453–66. [SG]CrossRefGoogle Scholar
Grossberg, S. & Somers, D. (1992) Synchronized oscillations for binding spatially distributed feature codes into coherent spatial patterns. In: Neural networks for vision and image processing, ed. Carpenter, G. A. & Grossberg, S.. MIT Press. [SG]Google Scholar
Guha, R. V. & Lenat, D. B. (1990) Cyc: A mid-term report. Artificial Intelligence Magazine 11(3):3259. [aLS]Google Scholar
Halford, G. S., Wilson, W. H., Guo, J., Gayler, R. W., Wiles, J. & Stewart, J. E. M. (1993) Connectionist implications for processing capacity limitations in analogies. In: Advances in connectionist and neural computational theory, vol. 2, ed. Holyoak, K. J. & Barnden, J. A.. Ablex. [GSH]Google Scholar
Hanson, S. J. & Kegl, J. (1987) PARSNIP: A connectionist network that learns natural language grammar from exposure to natural language sentences. Proceedings of the Ninth Annual Cognitive Science Society Conference, Seattle, Wa. [GWC]Google Scholar
Harnad, S. (1990) The symbol grounding problem. Physica D 42:335–46. [rLS]CrossRefGoogle Scholar
Hatfield, H. (1991) Representation and rule-instantiation in connectionist networks. In: Connectionism and the philosophy of mind, ed. Horgan, T. & Tienson, J.. Kluwer Academic. [arLS]Google Scholar
Hayes, P. J. (1977) In defense of logic. Proceedings of the Fifth Annual International Joint Conference on Artificial Intelligence, Cambridge, MA. [GWC]Google Scholar
Hayes, S. C. (1991) A relational control theory of stimulus equivalence. In: Rule-governed behavior: Cognition, contingencies and instructional control, ed. Hayes, L. J. & Chase, P. N.. Plenum. [PJH]Google Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. [aLS, CWC, GP]Google Scholar
Henderson, J. (1992) A connectionist parser for structure unification grammar. Proceedings of the Thirtieth Annual Meeting of the Association of Computational Linguistics. Association of Computational Linguistics. [arLS]Google Scholar
Handler, J. (1987) Integrating marker-passing and problem solving: A spreading activation approach to improved choice in planning. Erlbaum. [aLS, GH, MO]Google Scholar
Hinton, G. E. (1981) Implementing semantic networks in parallel hardware. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [aLS]Google Scholar
Hinton, G. E. (1986) Learning distributed representations of concepts. Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Erlbaum. [CD]Google Scholar
Hirst, G. (1987) Semantic interpretation and the resolution of ambiguity. Cambridge University Press. [aLS, GH]CrossRefGoogle Scholar
Hirst, G. (1988) Resolving lexical ambiguity computationally with spreading activation and polaroid words. In: Lexical ambiguity resolution, ed. Small, S., Cottrell, G. & Tanenhaus, M. K.. Morgan Kaufmann. [GH]Google Scholar
Hirst, G. & Charniak, E. (1982) Word sense and case slot disambiguation. Proceedings of the Second National Conference on Artificial Intelligence, Pittsburgh. [GH]Google Scholar
Holden, A. V. & Kryukov, V. I., eds. (1991) Neurocomputers and attention I & II. Proceedings in nonlinear science. Manchester University Press. [IT]Google Scholar
Hölldobler, S. (1990) CHCL: A connectionist inference system for Horn logic based on the connection method and using limited resources. Technical Report 90–042. International Computer Science Institute, Berkeley, CA. [aLS, SH]Google Scholar
Horn, D., Sagi, D. & Usher, M. (1991) Segmentation, binding, and illusory conjunctions. Neural computation 3(4):510–25. [aLS]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architectures of the cat's visual cortex. Journal of Physiology 160:106–54. [WJF]CrossRefGoogle ScholarPubMed
Hummel, J. E. & Biederman, I. (1992) Dynamic binding in a neural network for shape recognition. Psychological Review 99:480517. [aLS, SJT]CrossRefGoogle Scholar
Hummel, J. E., Burns, B. & Holyoak, K. J. (in press) Analogical mapping by dynamic binding: Preliminary investigations. In: Advances in conneetionist and neural computation theory, vol. 2: Analogical connections, ed. K. J. Holyoak & J. A. Barnden. Ablex. [GSH, JEH]Google Scholar
Hummel, J. E. & Holyoak, K. J. (1992) Indirect analogical mapping. Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society. Erlbaum. [JEH]Google Scholar
Humphreys, M. S., Bain, J. D. & Pike, R. (1989) Different ways to cue a coherent memory system: A theory for episodic, semantic and procedural tasks. Psychological Review 96(2):208–33. [GSH]CrossRefGoogle Scholar
Ikeda, K., Otsuka, K. & Matsumoto, K. (1989) Maxwell-Bloch turbulence. Progress of Theoretical Physics (suppl.)99:295324. [IT]CrossRefGoogle Scholar
James, W. (1890) Psychology (Briefer course). Holt. [GWC]Google Scholar
Johannesma, P., Aertsen, A., Vanden Boogaard, H., Eggermont, J. & Epping, W. (1986) From synchrony to harmony: Ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Brain theory, ed. Palm, G. & Aertsen, A.. Springer. [GP]Google Scholar
Johnson-Laird, P. N. (1983) Mental models. Cambridge University Press. [MIB, MO]Google Scholar
Johnson-Laird, P. N. (1988) The computer and the mind. Harvard University Press. [MIB]Google Scholar
Johnson-Laird, P. N. & Byrne, R. M. J. (1991) Deduction. Erlbaum. [MO]Google Scholar
Just, M. A. & Carpenter, P. A., eds. (1977) Cognitive processes in comprehension. Erlbaum. [aLS]Google Scholar
Kaneko, K. (1989) Pattern dynamics in spatio-temporal chaos. Physica 34D:141. [IT]Google Scholar
Kaneko, K. (1990) Clustering, switching, hierarchical ordering and control in a network of chaotic elements. Physica 41 D: 137–72. [IT]Google Scholar
Kautz, H. A. & Selman, B. (1991) Hard problems for simple default logics. Artificial Intelligence 47 (1–3):243–79. [aLS]CrossRefGoogle Scholar
Keenan, J. M., Baillet, S. D. & Brown, P. (1984) The effects of causal cohesion on comprehension and memory. Journal of Verbal Learning and Verbal Behavior 23:115–26. [aLS]CrossRefGoogle Scholar
Kintsch, W., ed. (1974) The representation of meaning in memory. Erlbaum. [aLS]Google Scholar
Kintsch, W., ed. (1988) The role of knowledge discourse comprehension: A construction-integration model. Psychological Review 95:163–82. [aLS]CrossRefGoogle ScholarPubMed
Kiper, D. C., Cegenfurtner, K. R. & Movshon, J. A. (1991) The effect of 40Hz flicker on the perception of global stimulus properties. Society for Neuroscicnce Abstracts 17(2):479.4. [MPY]Google Scholar
Klayman, J. & Ha, Y. (1987) Confirmation, disconfirmation, and information in hypothesis testing. Psychological Review 94:211–28. [SS]CrossRefGoogle Scholar
Koerner, E. & Boehme, H. (1991) Organization of an episodic knowledge base in a neural network architecture with parallel-sequential processing modes for autonomous recognition and learning. In: Artificial neural networks, ed. Kohonen, T., Mackisara, K., Simula, O. & Kangas, J.. Elsevier/North-Holland. [EK]Google Scholar
Koerner, E., Gross, H. & Boehme, H. (1991) Elementary cognitive mechanisms for knowledge based image interpretation. In: Proceedings of the International Workshop on Adaptive Learning and Neural Networks, ed. Bock, P., Loew, M., Radermacher, F. J. & Richter, M. M.. Ulm: Forschungsinstitut für Anwendungs orientierte Wissensrerarbeitung. [EK]Google Scholar
Koerner, E., Gross, H. & Tsuda, I. (1990) Holonic processing in a model system of cortical processors. In: Biological complexity and information, ed. Shimizu, H.. World Scientific. [EK]Google Scholar
Koerner, E., Salevski, H., Shimizu, H., Koerner, U. & Seifert, S. (submitted) A structured neural network model of hippocampus and its function as a nonspecific controller of cortical decision making and nontrivial learning. [EK]Google Scholar
Koerner, E., Shimizu, H. & Tsuda, I. (1987) Parallel in sequence: Towards the architecture of an elementary cortical processor. In: Parallel algorithms and architectures, ed. Albrecht, A., Hung, H. & Mehlhorn, G.. Akademie-Verlag. [EK]Google Scholar
Koerner, E., Tsuda, I. & Shimizu, H. (1987) Take-grant control, variable byte formation and processing parallel in sequence: Characteristics of a new type of holonic processor. In: Parallel algorithms and architecture, ed. Albrecht, A., Jung, H. & Mehlhorn, G.. Springer. [IT]Google Scholar
Kosslyn, S. M., Murphy, G. L., Bemesderfer, M. E. & Feinstein, K. J. (1977) Category and continuum in mental comparisons. Journal of Experimental Psychology: General 106:341–75. [PJH]CrossRefGoogle Scholar
Kreiter, A. K., Engel, A. K. & Singer, W. (1992) Stimulus dependent synchronization in the caudal superior temporal sulcus of macaque monkeys. Society for Neuroscience Abstracts 18:11.11. [rLS]Google Scholar
Kreiter, A. K. & Singer, W. (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. European Journal of Neuroscience 4:369–75. [aLS, IT]CrossRefGoogle ScholarPubMed
Kruse, W., Eckhorn, R., Schanze, T. & Reitboeck, H. J. (1992) Stimulus-induced oscillatory synchronization is inhibited by stimulus-locked non-oscillatory synchronization in cat visual cortex: Two modes that might support feature linking. Society for Neuroscicnce Abstracts 18:131.3. [RE]Google Scholar
Kuramoto, Y. (1991) Collective synchronization of pulse-coupled oscillators and excitable units. Physica 50D: 1530. [IT]Google Scholar
Lado, F., Ribary, U., loannides, A., Volkman, J., Joliot, M., Mogilner, A. & Llinás, R. (1992) Coherent oscillations in motor and sensory cortices detected using MEG and MFT. Society for Neuroscience Abstracts 18:355.15. [rLS]Google Scholar
Lakoff, G. (1987) Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press. [aLS, SS, DST]CrossRefGoogle Scholar
Lakoff, G. & Johnson, M. (1980) Metaphors we live by. University of Chicago Press. [DST]Google Scholar
Lange, T. E. & Dyer, M. G. (1989) High-level inferencing in a conneetionist network. Connection Science 1(2):181217. [aLS, JAB, GWC]CrossRefGoogle Scholar
Lehnert, W. G. & Ringle, M. H., eds. (1982) Strategies for natural language processing. Erlbaum. [aLS]Google Scholar
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. (1959) What the frog's eye tells the frog's brain. Proceedings of the Institute of Radio Engineering 47:1940–51. [WJF]Google Scholar
Levesque, H. J. (1988) Logic and the complexity of reasoning. Journal of Philosophical Logic 17:335–89. [aLS]CrossRefGoogle Scholar
Levesque, H. J. & Brachman, R. J. (1985) A fundamental tradeoff in knowledge representation and reasoning. In: Readings in knowledge representation, ed. Brachman, R. J. & Levesque, H. J.. Morgan Kaufmann. [aLS, GWC]Google Scholar
Levi, J. N. (1978) The syntax and semantics of complex nominals. Academic Press. [GH]Google Scholar
Livingstone, M. S. (1991) Visually evoked oscillations in monkey striate cortex. Society for Neuroscience Abstracts 17:73.3. [rLS]Google Scholar
Lucas, M. M., Tanenhaus, M. K. & Carlson, G. N. (1990) Levels of representation in the interpretation of anaphoric reference and instrument inference. Memory and Cognition 18(6):611–31. [GH]CrossRefGoogle ScholarPubMed
Lynch, G. (1986) Synapses, circuits, and the beginnings of memory. MIT Press. [aLS]Google Scholar
MacVicar, B. & Dudek, F. E. (1980) Dye-coupling between CA3 pyramidal cells in slices of rat hippocampus. Brain Research 196:494–97. [aLS]CrossRefGoogle ScholarPubMed
Malloch, M. I., Oaksford, M. & Iddon, J. (1992) Impairments of reasoning, memory and planning in early stage Parkinsonism. Technical Report No. UWBCNU-TR-13, Cognitive Neurocomputation Unit, University of Wales, Bangor. [MO]Google Scholar
Mandelbaum, R. (1991) A robust model for temporal synchronization of distant nodes: Description and simulation. Term Report, Department of Computer and Information Science, University of Pennsylvania. [aLS]Google Scholar
Mandelbaum, R. & Shastri, L. (1990) A robust model for temporal synchronisation of distant nodes. (Unpublished report.) [aLS]Google Scholar
Mani, D. R. & Shastri, L. (1991) Combining a connectionist type hierarchy with a connectionist rule-based reasoner. Proceedings of the Thirteenth Conference of the Cognitive Science Society. Erlbaum. [aLS]Google Scholar
Mani, D. R. & Shastri, L. (1992) A connectionist solution to the multiple instantiation problem using temporal synchrony. Proceedings of the Fourteenth Conference of the Cognitive Science Society. Erlbaum. [aLS]Google Scholar
Marr, D. (1971) Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society B 262:2381. [aLS]Google ScholarPubMed
Martin, C. E. & Riesbeck, C. K. (1986) Uniform parsing and inferencing for learning. Proceedings of the Fifth National Conference on Artificial Intelligence. Philadelphia. [GH]Google Scholar
Matsumoto, K. & Tsuda, I. (1987) Extended information in one-dimensional maps. Physica 26D:347–57. [IT]Google Scholar
McAllester, D. A. (1990) Automatic recognition of tractability in inference relations. Memo 1215, MIT Artificial Intelligence Laboratory. [aLS]Google Scholar
McCarthy, J. (1988) Epistemological challenges for connectionism [Commentary on Smolensky]. Behavioral and Brain Sciences 11(1):44. [aLS]CrossRefGoogle Scholar
McDermott, D. (1981) Artificial intelligence meets natural stupidity. In: Mind design, ed. Haugland, J.. MIT Press/Bradford Books. [DLM]Google Scholar
McDermott, D. (1986) A critique of pure reason. Technical Report, Department of Computer Science, Yale University. [MO]Google Scholar
McKendall, T. (1991) A design for an answer extraction and display scheme for a connectionist rule-based reasoner. Unpublished report on work done for National Science Foundation, Research Experience for Undergraduates grant IRI 88–05465. [aLS]Google Scholar
McKoon, G. & Ratcliff, R. (1980) The comprehension processes and memory structures involved in anaphoric reference. Journal of Verbal Learning and Verbal Behavior 19:668–82. [aLS]CrossRefGoogle Scholar
McKoon, G. & Ratcliff, R. (1981) The comprehension processes and memory structures involved in instrumental inference. Journal of Verbal Learning and Verbal Behavior 20:671–82. [aLS]CrossRefGoogle Scholar
McKoon, G. & Ratcliff, R. (1986) Inferences about predictable events. Journal of Experimental Psychology: Learning, Memory, and Cognition 12:8291. [aLS]Google ScholarPubMed
McMillan, C., Mozer, M. & Smolensky, P. (1991): The connectionist scientist game. Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Erlbaum. [GD]Google Scholar
McRoy, S. W. (1993) Abductive interpretation and re-interpretation of natural language utterances. Ph.D. dissertation, Department of Computer Science, University of Toronto. [GH]Google Scholar
McRoy, S. W. & Hirst, G. (1993) Abductive explanations of dialogue misunderstanding. Proceedings, Sixth Conference of the European Chapter of the Association for Computational Linguistics, Utrecht. [GH]Google Scholar
Merzenich, M. M., Recanzone, G., Jenkins, W. M., Allard, T. T. & Nudo, R. J. (1988) Cortical representational plasticity. In: Neurobiology of neocortex, ed. Rakie, P. & Singer, W.. Wiley. [JD]Google Scholar
Miller, G. A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63(2):8197 [aLS, GSH, EK]CrossRefGoogle ScholarPubMed
Milner, B. (1963) Effects of different brain lesions on card sorting. Archives of Neurology 9:90100. [MO]CrossRefGoogle Scholar
Minsky, M. (1975) A framework for representing knowledge. In: The psychology of computer vision, ed. Winston, P. M.. McGraw-Hill. [aLS]Google Scholar
Minsky, M. (1985) The society of mind. Simon & Schuster. [EK]Google Scholar
Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of cat's somatic cortex. Journal of Neurophysiology 20:408–34. [WJF]CrossRefGoogle Scholar
Mozer, M. C., Zemel, R. S. & Behrman, M. (1991) Learning to segment images using dynamic feature binding. Technical Report CU-CS-540-91, University of Colorado at Boulder. [aLS]Google Scholar
Newell, A. (1980) Harpy, production systems and human cognition. In: Perception and production of fluent speech, ed. Cole, R.. Erlbaum. [aLS]Google Scholar
Newell, A. (1990) Unified theories of cognition. Harvard University Press. [arLS]Google Scholar
Newell, A. & Simon, H. A. (1972) Human problem solving. Prentice-Hall. [aLS]Google Scholar
Norman, D. A. & Shallice, T. (1985) Attention to action: Willed and automatic control of behaviour. In: Consciousness and self-regulation, vol. 4, ed. Davidson, R. J., Schwartz, G. E. & Shapiro, D.. Plenum. [MO]Google Scholar
Norvig, P. (1989) Marker passing as a weak method for text inferencing. Cognitive Science 113:569620. [aLS, GH]CrossRefGoogle Scholar
Oaksford, M. (1993) Mental models and the tractability of everyday reasoning. Behavioral and Brain Sciences 16(2):360–61. [MO]CrossRefGoogle Scholar
Oaksford, M. & Chater, N. (1991) Against logicist cognitive science. Mind & Language 6:138. [MO]CrossRefGoogle Scholar
Oaksford, M. & Chater, N. (1992a) Reasoning theories and bounded rationality. In: Rationality, ed. Manktelow, K. & Over, D.. Routledge. [MO]Google Scholar
Oaksford, M. & Chater, N. (1992b) Bounded rationality in taking risks and drawing inferences. Theory & Psychology 2:225–30. [MO]CrossRefGoogle Scholar
Oaksford, M. & Chater, N. (in press) Cognition and inquiry. Academic Press. [MO]Google Scholar
Oaksford, M., Malloch, M. I. & Swain, S. (1992a) Transitive inference in closed head injury: A single case study. Technical Report No. UWBCNU-TR-12, Cognitive Neuroeomputation Unit, University of Wales, Bangor. [MO]Google Scholar
Oaksford, M., Malloch, M. I., Watson, F. & Hargreaves, I. (1992b) Impairments of reasoning, memory and attention in frontal lobe damage: A single case study. Technical Report No. UWBCNU-TR-11, Cognitive Neuroeomputation Unit, University of Wales, Bangor. [MO]Google Scholar
Oaksford, M. & Stenning, K. (1992) Reasoning with conditionals containing negated constituents. Journal of Experimental Psychology: Learning, Memory & Cognition 18:835–54. [MO]Google ScholarPubMed
Oram, M. W. & Perrett, D. I. (1992) Time course of neural responses discriminating different views of the face and head. Journal of Neurophysiology 69:7084. [SJT]CrossRefGoogle Scholar
Pabst, M., Reitboeck, H. J. & Eckhorn, R. (1989) A model of preattentive region definition based on texture analysis. In: Models of brain function, ed. Cotterill, R. M. J.. Cambridge University Press. [RE]Google Scholar
Palm, G. (1982) Neural assemblies: An alternative approach to artificial intelligence. Springer. [GP]CrossRefGoogle Scholar
Palm, G. (1986) Associative networks and cell assemblies. In: Brain theory, ed. Palm, G. & Aertsen, A.. Springer. [GP]CrossRefGoogle Scholar
Palm, G. (1990) Cell assemblies as a guideline for brain research. Concepts in Neuroscience 1:133–14. [GP]Google Scholar
Pelletier, F. J. (1982) Completely non-causal, completely heuristic-ally driven, automated theorem proving. Technical Report 82–7, Department of Computing Science, University of Alberta. [MRWD]Google Scholar
Pfeifer, R. & Verschure, P. (1992) Beyond rationalism: Symbols, patterns and behavior. Connection Science 4:313–25. [JD]CrossRefGoogle Scholar
Pollack, J. B. (1988) Recursive auto-associative memory: Devising compositional distributed representations. Technical report MCCS-88-124, Computing Research Laboratory, New Mexico State University. [GH]Google Scholar
Pollack, J. B. (1990) Recursive distributed representations. Artificial Intelligence 46:77105. [GD, GH]CrossRefGoogle Scholar
Posner, M. I. & Snyder, C. R. R. (1975) Attention and cognitive control. In: Information processing and cognition: The Loyola Symposium, ed. Solso, R. L.. Erlbaum. [aLS]Google Scholar
Potts, G. R., Keenan, J. M. & Golding, J. M. (1988) Assessing the occurrence of elaborative inferences: Lexical decision versus naming. Journal of Memory and Language 27:399415. [aLS]CrossRefGoogle Scholar
Quillian, M. R. (1968) Semantic memory. In: Semantic information processing, ed. Minsky, M.. MIT Press. [aLS]Google Scholar
Ramesh, R., Verma, R. M., Krishnaprasad, T. & Ramakrishnan, I. V. (1989) Term matching on parallel computers. Journal of Logic Programming 6:213–28. [SH]CrossRefGoogle Scholar
Reder, L. M. & Ross, B. H. (1983) Integrated knowledge in different tasks: The role of retrieval strategy on fan effects. Journal of Experimental Psychology: Learning, Memory, and Cognition 9:5572. [aLS]Google Scholar
Reitboeck, H. J., Eckhorn, R., Arndt, M. & Dicke, P. (1990) A model for feature linking via correlated neural activity. In: Synergetics of cognition. Springer series in synergetics, vol. 45, ed. Haken, H. & Stadler, M.. Springer. [IT]CrossRefGoogle Scholar
Reiter, R. (1980) A logic for default reasoning. Artificial Intelligence 13:81132. [rLS]CrossRefGoogle Scholar
Riesbeck, C. R. & Schank, R. C. (1989) Inside case-based reasoning. Erlbaum. [PRC]Google Scholar
Rips, L. J. (1983) Cognitive processes in propositional reasoning. Psychological Review 90:3871. [MO]CrossRefGoogle Scholar
Rohwer, R. A. (1993) A representation of representation applied to a discussion of variable binding. In: Neurodynamics and psychology, ed. Oaksford, M. & Brown, G.. Academic Press. [RR]Google Scholar
Rolls, E. T. (1991) Neural organisation of higher visual functions. Current Opinion in Neurobiology 1:274–78. [aLS, MPY]CrossRefGoogle ScholarPubMed
Rotter, M. & Dorffner, G. (1990) Struktur und Konzeptrelationen in verteilten Netzwerken. In: Konnektionismus in Artificial Intelligence und Kognitionsforschung, ed. Dorffner, G.. Springer. [GD]Google Scholar
Rumelhart, D. E. (1989) Toward a microstructural account of human reasoning. In: Similarity and analogical reasoning, ed. Vosnaidou, S. & Ortony, A.. Cambridge Universtiy Press. [MO]Google Scholar
Rumelhart, D. E. & McClellan, J. L., eds. (1986) Parallel distributed processing: Explorations in the microstructure of cognition, vol 1. Bradford Books/MIT Press. [aLS]CrossRefGoogle Scholar
Rumelhart, D. E., Smolensky, P., McClelland, J. L. & Hinton, G. E. (1986) Schemata and sequential thought processes in PDF models. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2: Psychological and biological processes, ed. McClelland, J. L. & Rumelhart, D. E.. MIT Press. [MO]Google Scholar
Schank, R. C. & Abelson, R. P. (1977) Scripts, plans, goals and understanding. Erlbaum. [aLS]Google Scholar
Schauze, T. & Eckhorn, R. (1991) Synchronization statistics of stimulusspecific oscillatory events in cat visual cortex. In: Synapse, transmission, modulation, ed. Eisner, N. & Penzlin, H.. Thieme Verlag. [RE]Google Scholar
Schneider, W. & Shiffrin, R. M. (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review 84:166. [aLS]CrossRefGoogle Scholar
Schubert, L. K. (1989) An episodic knowledge representation for narrative texts. Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann. [aLS]Google Scholar
Sejnowski, T. J. (1981) Skeleton filters in the brain. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [aLS]Google Scholar
Servan-Schreiber, D., Cleeremans, A. & McClelland, J. (1989) Encoding semantical structure in simple recurrent nets. In: Advances in neural information processing systems 1, ed. Touretzsky, D.. Morgan Kaufmann. [JWG]Google Scholar
Shallice, T. (1982) Specific impairments of planning. Philosophical Transactions of the Royal Society of London B 298:199209. [MO]Google ScholarPubMed
Sharkey, N. E. (1992) The causal role of the constituents of superpositional representations. In: Cybernetics and systems 92, ed. Trappl, R.. World Scientific. [CD]Google Scholar
Shastri, L. (1988a) Semantic networks: An evidential formulation and its connectionist realization. Pitman/Morgan Kaufmann. [arLS, PRC]Google Scholar
Shastri, L. (1988b) A connectionist approach to knowledge representation and limited inference. Cognitive Science 12(3):331–92. [arLS, GWC]CrossRefGoogle Scholar
Shastri, L. (1990) Connectionism and the computational effectiveness of reasoning. Theoretical Linguistics 16(1):6587. [aLS]CrossRefGoogle Scholar
Shastri, L. (1991) Relevance of connectionism to AI: A representation and reasoning perspective. In: Advances in connectionist and neural computation theory, vol. 1, ed. Barnden, J. & Pollack, J.. Ablex. [aLS]Google Scholar
Shastri, L. (1992) Encoding higher-order bindings in LCS structures. Working notes for the NLQ-Project. National Science Foundation. [rLS]Google Scholar
Shastri, L. (1993a) A realization of preference rules using temporal synchrony (in preparation). [aLS]Google Scholar
Shastri, L. (1993b) Learning evidential rules in SHRUTI (in preparation). [rLS]Google Scholar
Shastri, L. & Ajjanagadde, V. G. (1990) A connectionist representation of rules, variables and dynamic binding. Technical Report MS-CIS-90-05, Department of Computer and Information Science, University of Pennsylvania. [aLS]Google Scholar
Shastri, L. & Feldman, J. A. (1986) Semantic nets, neural nets, and routines. In: Advances in cognitive science, ed. Sharkey, N.. Ellis Harwood/Wiley. [arLS]Google Scholar
Shiffrin, R. M. & Schneider, W. (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review 84:127–90. [aLS]CrossRefGoogle Scholar
Shimizu, H. & Yamaguchi, Y. (1987) Synergetic computers and holoniesinfonnation dynamics of semantic computers. Physica Scripta 36:970–85. [IT]CrossRefGoogle Scholar
Shimizu, H., Yamaguchi, Y., Tsuda, I. & Yano, M. (1985) Pattern recognition based on holonic information dynamics. In: Complex systems-operational approaches, ed. Haken, H.. Springer Series in Synergetics, vol. 31. [EK]Google Scholar
Singer, M. & Ferreira, F. (1983) Inferring consequences in story comprehension. Journal of Verbal Learning and Verbal Behavior 22:437–48. [aLS]CrossRefGoogle Scholar
Singer, W. (1987) Activity-dependent self-organization of synaptic connections as a substrate of learning. In: The neural and molecular bases of learning, ed. Changeux, J.-P. & Konishi, M.. Wiley. [JD]Google Scholar
Skarda, C. A. & Freeman, W. J. (1987) How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10:161–95. [WJF, IT]CrossRefGoogle Scholar
Sloman, S. A. (1993) Feature-based induction. Cognitive Psychology 25 (in press). [SS]CrossRefGoogle Scholar
Smolensky, P. (1988) On the proper treatment of connectionism. Behavioral and Brain Sciences 11:174. [GD, EK]CrossRefGoogle Scholar
Smolensky, P. (1990) Tensor product variable binding and the representation of symbolic structure in connectionist systems. Artificial Intelligence 46(1–2):159216. [aLS, CSH]CrossRefGoogle Scholar
Squire, L. R. (1987) Memory and brain. Oxford University Press. [aLS]Google Scholar
Squire, L. R. & Zola-Morgan, S. (1991) The medial temporal lobe memory system. Science 253:1380–86. [aLS]CrossRefGoogle ScholarPubMed
Stenning, K., Shepard, M. & Levy, J. (1988) On the construction of representations for individuals from descriptions in text. Language and Cognitive Processes 3(2): 129–64. [aLS]CrossRefGoogle Scholar
Stevens, C. F. (1989) How cortical interconnectedness varies with network size. Neural Computation 1:473–79. [JD]CrossRefGoogle Scholar
Stolcke, A. K. & Wu, D. (1992) Tree matching with recursive distributed representations. AAAI-92 Workshop on Integrating Neural and Symbolic Processes, San Jose, CA. (Also available as Technical Report 92–025, International Computer Science Institute, Berkeley.) [GH]Google Scholar
Strehler, B. L. & Lestienne, R. (1986) Evidence on precise time-coded symbols and memory of patterns in monkey cortical neuronal spike trains. Proceedings of the National Academy of Science 83:9812–16. [aLS]CrossRefGoogle ScholarPubMed
Strong, G. W. & Whitehead, B. A. (1989) A solution to the tag-assignment problem for neural nets. Behavioral and Brain Sciences 12:381433. [aLS, GWS]CrossRefGoogle Scholar
Sumida, R. A. & Dyer, M. G. (1989) Storing and generalizing multiple instances while maintaining knowledge-level parallelism. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann. [aLS]Google Scholar
Thorpe, S. J., Celebrini, S., Trotter, Y. & Imbert, M. (1991) Dynamics of stereo processing in area VI of the awake primate. European Journal of Neuroscience (Suppl.)4:83. [SJT]Google Scholar
Thorpe, S. J., Celebrini, S., Trotter, Y., Pouget, A. & Imbert, M. (1989) Dynamic aspects of orientation coding in area VI of the awake primate. European Journal of Neuroscience (Suppl.) 2:322. [SJT]Google Scholar
Thorpe, S. J. & Imbert, M. (1989) Biological constraints on connectionist models. In: Connectionism in perspective, ed. Pfeiffer, R., Schreter, Z., Fogelman-Souile, F. & Steels, L.. Elsevier. [arLS, SJT]Google Scholar
Tomabechi, H. & Kitano, H. (1989) Beyond PDF: The frequency modulation neural network approach. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann. [aLS]Google Scholar
Touretzky, D. S. (1986) The mathematics of inheritance systems. Morgan Kaufmann/Pitman. [aLS]Google Scholar
Touretzky, D. S. (1990) BoltzCONS: Dynamic symbol structures in a connectionist network. Artificial Intelligence 46:12, 546. [rLS, JAB]CrossRefGoogle Scholar
Touretzky, D. S. & Hinton, G. E. (1988) A distributed connectionist production system. Cognitive Science 12(3):423–66. [aLS, GWC]CrossRefGoogle Scholar
Tovee, M. J. & Rolls, E. T. (1992) Oscillatory activity is not evident in the primate temporal visual cortex with static stimuli. Neuroreport 3:369–71. [aLS, SJT, MPY]CrossRefGoogle Scholar
Toyama, K., Kimura, M. & Tanaka, T. (1981) Cross correlation analysis of interneuronal connectivity in cat visual cortex. Journal of Neurophysiology 46(2):191201. [aLS]CrossRefGoogle ScholarPubMed
Treisman, A. & Gelade, G. (1980) A feature integration theory of attention. Cognitive Psychology 12:97136. [aLS]CrossRefGoogle ScholarPubMed
Tsuda, I. (1991) Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures 32:167–84. [WJF, IT]CrossRefGoogle Scholar
Tsuda, I. (1992) Dynamic link of memory-chaotic memory map in nonequilibrium neural networks. Neural Networks 5:313–26. [IT]CrossRefGoogle Scholar
Tulving, E. (1983) Elements of episodic memory. Oxford University Press. [aLS]Google Scholar
Tversky, A. & Kahneman, D. (1983) Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review 90:293315. [SS]CrossRefGoogle Scholar
Ullman, J. D. & van Gelder, A. (1988) Parallel complexity of logical query programs. Algorithmica 3:542. [aLS]CrossRefGoogle Scholar
Valiant, L. G. (1988) Functionality in neural nets. Proceedings of the National Conference on Artificial Intelligence, Saint Paul, MN. [GWC]Google Scholar
van Gelder, T. (1990) Compositionality: A connectionist variation on a classical theme. Cognitive Science 14:208–12. [GD]CrossRefGoogle Scholar
van Gelder, T. (1991) Classical questions, radical answers: Connectionism and the structure of mental representations. In: Connectionism and the philosophy of mind, ed. Horgan, T. & Tienson, J.. Kluwer. [JWG]Google Scholar
Velmans, M. (1991) Is human information processing conscious? [and Commentary thereon]. Behavioral and Brain Sciences 14(4):651726. [GH]CrossRefGoogle Scholar
Vogels, R. & Orban, G. A. (1991) Quantitative study of striate single unit responses in monkeys performing an orientation discrimination task. Experimental Brain Research 84:111. [SJT]CrossRefGoogle ScholarPubMed
von der Malsburg, C. (1981) The correlation theory of brain function. Internal Report 81–2. Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany. [aLS, WJF]Google Scholar
von der Malsburg, C. (1986) Am I thinking assemblies? In: Brain theory, ed. Palm, G. & Aertsen, A.. Springer. [aLS, GP]Google Scholar
von der Malsburg, C. & Schneider, W. (1986) A neural cocktail-party processor. Biological Cybernetics 54:2940. [aLS, WJF, EK, IT]CrossRefGoogle ScholarPubMed
Wason, P. C. (1960) On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology 12:129–40. [SS]CrossRefGoogle Scholar
Wason, P. C. (1966) Reasoning. In: New horizons in psychology, ed. Foss, B.. Penguin. [MO]Google Scholar
Whitney, P. & Williams-Whitney, D. (1990) Toward a contextualist view of elaborative inferences. In: The psychology of learning and motivation, vol. 25, ed. Graesser, A. C. & Bower, G. H.. Academic Press. [GH]Google Scholar
Wickelgren, W. A. (1979) Chunking and consolidation: A theoretical synthesis of semantic networks, configuring in conditioning, S-R versus cognitive learning, normal forgetting, the amnesic syndrome, and the hippocampal arousal system. Psychological Review 86(1):4460. [aLS]CrossRefGoogle ScholarPubMed
Wilensky, R. (1983) Planning and understanding: A computational approach to human reasoning. Addison-Wesley. [aLS]Google Scholar
Wu, D. (1989) A probabilistic approach to marker propagation. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence. Morgan Kaufmann. [GH]Google Scholar
Wu, D. (1992a) Automatic inference: A probabilistic basis for natural language interpretation. Ph.D. dissertation (Technical Report UCB/CSD 92/692), Division of Computer Science, University of California at Berkeley. [GH]Google Scholar
Wu, D. (1992b) Approximate maximum-entropy integration of syntactic and semantic constraints. AAAI-92 Workshop on Statistically-Based NLP Techniques, San Jose, CA. [GH]Google Scholar
Yao, Y., Freeman, W. J., Burke, B. & Yang, Q. (1991) Pattern recognition by a distributed neural network: An industrial application. Neural Networks 4:103–12. [WJF]CrossRefGoogle Scholar
Young, M. P., Tanaka, K. & Yamane, S. (1991) On oscillating neuronal responses in monkey visual cortex. Society for Neuroscience Abstracts 17(1):73.9. [MPY]Google Scholar