Published online by Cambridge University Press: 01 February 1998
Cognitive theories based on a fixed feature set suffer from frame and symbol grounding problems. Flexible features and other empirically acquired constraints (e.g., analog-to-analog mappings) provide a framework for letting extrinsic relations influence symbol manipulation. By offering a biologically plausible basis for feature learning, nonorthogonal multiresolution analysis and dimensionality reduction, informed by functional constraints, may contribute to a solution to the symbol grounding problem.