Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T08:59:18.406Z Has data issue: false hasContentIssue false

The emergence of mirror-like response properties from domain-general principles in vision and audition

Published online by Cambridge University Press:  29 April 2014

Ayse P. Saygin
Affiliation:
Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093-0515. [email protected]://www.sayginlab.org
Frederic Dick
Affiliation:
Centre for Brain and Cognitive Development, Psychological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom. [email protected]://www.bbk.ac.uk/psychology/our-research/labs/alphalab

Abstract

Like Cook et al., we suggest that mirror neurons are a fascinating product of cross-modal learning. As predicted by an associative account, responses in motor regions are observed for novel and/or abstract visual stimuli such as point-light and android movements. Domain-specific mirror responses also emerge as a function of audiomotor expertise that is slowly acquired over years of intensive training.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barresi, J. & Moore, C. (1996) Intentional relations and social understanding. Behavioral and Brain Sciences 19(1):107–54.Google Scholar
Bates, E., Bretherton, I. & Snyder, L. (1988) From first words to grammar: Individual differences and dissociable mechanisms. Cambridge University Press.Google Scholar
Caggiano, V, Fogassi, L, Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A. & Casile, A. (2011) View-based encoding of actions in mirror neurons of area F5 in macaque premotor cortex. Current Biology 21(2):144–48.Google Scholar
Cross, E. S., Liepelt, R., Hamilton, A. F. de C., Parkinson, J., Ramsey, R., Stadler, W. & Prinz, W. (2012) Robotic movement preferentially engages the action observation network. Human Brain Mapping 33(9):2238–54.Google Scholar
Dick, F., Lee, H. L., Nusbaum, H. & Price, C. J. (2011) Auditory-motor expertise alters “speech selectivity” in professional musicians and actors. Cerebral Cortex 21(4):938–48.Google Scholar
Dick, F., Saygin, A. P., Galati, G., Pitzalis, S., Bentrovato, S., D'Amico, S., Wilson, S., Bates, E. & Pizzamiglio, L. (2007) What is involved and what is necessary for complex linguistic and non-linguistic auditory processing: Evidence from fMRI and lesion data. Journal of Cognitive Neuroscience 19(5):799816.Google Scholar
Dick, F., Saygin, A. P., Moineau, S., Aydelott, J. & Bates, E. (2004) Language in an embodied brain: The role of animal models. Cortex 40:226–27.Google Scholar
Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D. & Plunkett, K. (1996) Rethinking innateness: A connectionist perspective on development. MIT Press.Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G. & Fogassi, L. (2003) Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience 17(8):1703–14.Google Scholar
Gazzola, V., Rizzolatti, G., Wicker, B. & Keysers, C. (2007) The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage 35(4):1674–84.Google Scholar
Gilaie-Dotan, S., Kanai, R., Bahrami, B., Rees, G. & Saygin, A. P. (2013) Structural neural correlates of biological motion detection ability. Neuropsychologia 51(3):457–63.Google Scholar
Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G. & Orban, G. A. (2005) Observing others: Multiple action representation in the frontal lobe. Science 310(5746):332–36.Google Scholar
Oberman, L. M., McCleery, J. P., Ramachandran, V. S. & Pineda, J. A. (2007) EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots. Neurocomputing 70:2194–203.Google Scholar
Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J. & Frith, C. (2012) The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive Affective Neuroscience 7(4):413–22.Google Scholar
Saygin, A. P., Dick, F., Wilson, S. M., Dronkers, N. F. & Bates, E. (2003) Neural resources for processing language and environmental sounds: Evidence from aphasia. Brain 126(4): 928–45.Google Scholar
Saygin, A. P., Wilson, S. M., Hagler, D. J. Jr., Bates, E. & Sereno, M. I. (2004b) Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience 24:6181–88.Google Scholar
Urgen, B. A., Plank, M., Ishiguro, H., Poizner, H. & Saygin, A. P. (2013) EEG Theta and Mu oscillations during perception of human and robot actions. Frontiers in Neurorobotics 7:19. doi:10.3389/fnbot.2013.00019.Google Scholar
Vangeneugden, J., Vancleef, K., Jaeggli, T., VanGool, L. & Vogels, R. (2009) Discrimination of locomotion direction in impoverished displays of walkers by macaque monkeys. Journal of Vision 10(4):22.1–19.Google Scholar
van Kemenade, B. M., Muggleton, N., Walsh, V. & Saygin, A. P. (2012) Effects of TMS over premotor and superior temporal cortices on biological motion perception. Journal of Cognitive Neuroscience 24(4):896904.Google Scholar
Westermann, G. & Miranda, E. R. (2002) Modelling the development of mirror neurons for auditory-motor integration. Journal of New Music Research 31(4):367–75.Google Scholar
Westermann, G. & Miranda, E. R. (2004) A new model of sensorimotor coupling in the development of speech. Brain and Language 89:393400.Google Scholar
Wilson, S. M., Saygin, A. P., Sereno, M. I. & Iacoboni, M. (2004) Listening to speech activates motor areas involved in speech production. Nature Neuroscience 7:701702.Google Scholar