Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:32:14.916Z Has data issue: false hasContentIssue false

Brain mechanisms for offense, defense, and submission

Published online by Cambridge University Press:  19 May 2011

David B. Adams
Affiliation:
Department of Psychology, Wesleyan University, Middletown, Conn. 06457

Abstract

A preliminary attempt is made to analyze the intraspecific aggressive behavior of mammals in terms of specific neural circuitry. The results of stimulation, lesion, and recording studies of aggressive behavior in cats and rats are reviewed and analyzed in terms of three hypothetical motivational systems: offense, defense, and submission. A critical distinction, derived from ethological theory, is made between motivating stimuli that simultaneously activate functional groupings of motor patterning mechanisms, and releasing and directing stimuli that are necessary for the activation of discrete motor patterning mechanisms. It is suggested that motivating stimuli activate pathways that converge upon sets of homogeneous neurons, called motivational mechanisms, whose activity determines the motivational state of the animal.

A defense motivational mechanism is hypothesized to be located in the midbrain central gray. In addition to tactile, auditory, and visual inputs from the paleospinothalamic tract, lateral lemniscus, and (perhaps) from the pretectum, it may receive inputs from a major forebrain pathway whose functional significance is not yet understood.

A submission motivational mechanism is also thought to be located in the central gray. In addition to inputs for defense, it is thought to receive a necessary input from a “consociate (social familiarity cue) modulator” located in the ventromedial hypothalamus, which can switch behavior from defense to submission. The location of the hypothetical offense motivational mechanism is not known, although the pathways by which it is activated are traced in some detail.

Brain mechanisms of aggression in primitive mammals and in primates are apparently similar to those in rats and cats.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D. B. (1968) The activity of single cells in the midbrain and hypothalamus of the cat during affective defense behavior. Archives Italiennes de Biologie 106: 243–69. [DBA]Google ScholarPubMed
Adams, D. B. (1971) Defence and territorial behaviour dissociated by hypothalamic lesionsin the rat. Nature 232: 573–74. [DBA]CrossRefGoogle Scholar
Adams, D. B. (1976) The relation of scent-marking, olfactory investigation, and specific postures in the isolation-induced fighting of rats. Behaviour 56: 286–97. [DBA]CrossRefGoogle ScholarPubMed
Adams, D. B. (1977) The conspecific defense modulator (abstract). American Zoologist 17: 927. [DBA]Google Scholar
Adams, D. B. (1978) A possible single genetic locus determining differences in competitive fighting of highly inbred rats. Behavior Genetics 8: 535. [DBA]Google Scholar
Adams, D. B. (in press) Inborn and acquired aspects of offense and defense motivational systems in muroid rodents. In Gagra symposium on neurophysiology of memory. Tbilisi, USSR. [DBA]Google Scholar
Adams, D. B. (submitted for publication) Motivational systems of aggressive behavior in muroid rodents: a comparative review and neural model. [DBA]Google Scholar
Adams, D. B.; Baccelli, G.; Mancia, G.; and Zanchetti, A. (1969) Cardiovascular changes during naturally elicited fighting behavior in the cat. American Journal of Physiology 216: 1226–35. [DBA]CrossRefGoogle ScholarPubMed
Adams, D. B., and Flynn, J. P. (1966) Transfer of an escape response from tail shock to brain stimulated attack behavior. Journal of the Experimental Analysis of Behavior 9: 401–8. [DBA]CrossRefGoogle ScholarPubMed
Adams, D. B., and Severini, W. H. (1977) Visual pathways that guide paininduced defensive boxing in rats (abstract). Bulletin of the Psychonomic Society 10: 268. [DBA]Google Scholar
Albert, D. J., and Brayley, K. N. (1979, in press) Mouse killing and hyperreactivity following lesions of the medial hypothalamus, the lateral septum, and bed nucleus of the stria terminalis, or the region ventral to the anterior septum. Physiology and Behavior. [DJA]CrossRefGoogle Scholar
Albert, D. J.; Brayley, K. N.; and Milner, J. (1978) Killing of mice by rats: suppression by medial hypothalamic stimulation. Physiology and Behavior 21: 667–70. [DJA]CrossRefGoogle ScholarPubMed
Albert, D. J., and Richmond, S. E. (1975) Septal hyperreactivity: a comparison of lesions within and adjacent to the septum. Physiology and Behavior 15: 339–47. [DJA]CrossRefGoogle Scholar
Albert, D. J., and Richmond, S. E. (1977) Reactivity and aggression in the rat: induction by alpha-adrenergic blocking agents injected ventral to anterior septum but not into lateral septum. Journal of Comparative and Physiological Psychology 91: 886–96. [DBA]CrossRefGoogle Scholar
Albert, D. J., and Wong, R. C. K. (1978a) Interanimal aggression and hyperreactivity following hypothalamic infusion of local anesthetic in the rat. Physiology and Behavior 20: 755–61. [DJA]CrossRefGoogle ScholarPubMed
Albert, D. J., and Wong, R. C. K. (1978b) Irritability, muricide, and intraspecific aggression in the rat produced by infusion of local anesthetic into the lateral septum and surrounding areas. Journal of Comparative and Physiological Psychology 92: 1062–73. [DJA]CrossRefGoogle ScholarPubMed
Albus, J. S. (1971) A theory of cerebellar function. Mathematical Biosciences 10: 2561. [GGB]CrossRefGoogle Scholar
Alexander, M., and Perachio, A. A. (1973) The influence of target sex and dominance on evoked attack in rhesus monkeys. American Journal of Physical Anthropology 38: 543–48 [DBA]CrossRefGoogle ScholarPubMed
Anand, B. K., and Brobeck, J. R. (1951) Hypothalamic control of food intake in rats and cats. Yale Journal of Biology and Medicine 24: 123–40.Google Scholar
Andrew, R. J. (1962) Thie situations which evoke vocalization in primates. Annals of the New York Academy of Sciences 102: 296315 [RJA]CrossRefGoogle Scholar
Andrew, R. J. (1973) The evocation of calls by diencephalic stimulation in the conscious chick. Brain, Behavior, and Evolution 7: 424–46. [DBA, RJA]Google ScholarPubMed
Andrew, R. J. (1975) Midbrain mechanisms of calling and their relation to emotional states. In Wright, P.; Caryl, P. G.; and Vowles, D. M., eds. Neural and endocrine aspects of behaviour in birds. Elsevier: Amsterdam. [RJA]Google Scholar
Andrew, R. J., and DeLanerolle, N. (1974) The effects of muting lesions on emotional behaviour and behaviour normally associated with calling. Brain, Behavior, and Evolution 10: 377–99. [DBA, RJA]Google Scholar
Archer, J. (1976) The organisation of aggression and fear in vertebrates. In Perspectives in ethology, vol. 2, pp. 231–98. New York: Plenum Press. [PRW]CrossRefGoogle Scholar
Auerbach, A. A., and Bennett, M. V. L. (1969) Chemically mediated transmission at a giant fiber synapse in the central nervous system of a vertebrate. Journal of General Physiology 53: 183237. [RMG]CrossRefGoogle Scholar
Azrin, N. H.; Hutchinson, R. R.; and Hake, D. F. (1966) Extinction-induced aggression. Journal of the Experimental Analysis of Behavior. 9: 191204. [BE]CrossRefGoogle ScholarPubMed
Baerends, G.P. (1976) The functional organisation of behaviour. Animal Behaviour 24: 726–38. [PRW]CrossRefGoogle Scholar
Ball, G. G.; Micco, D. J.; and Berntson, G. G. (1974) Cerebellar stimulation in the rat: complex stimulation-bound oral behaviors and self-stimulation. Physiology and Behavior 13: 123–27. [GGB]CrossRefGoogle ScholarPubMed
Bandler, R. J. and Chi, C. C. (1972) Effects of olfactory bulb removal on aggression: a reevaluation. Physiology and Behavior 8: 207–11. [BS]CrossRefGoogle ScholarPubMed
Bard, P., and Macht, M. B. (1958) The behavior of chronically decerebrate cats. In Wolstenholme, G. E. W., and O'Connor, C. M., eds., Neurological basis of behavior. London: J. and A. Churchill. [DBA]Google Scholar
Baxter, B. L. (1967) Comparison of the behavioral effects of electrical or chemical stimulation applied at the same brain loci. Experimental Neurology 19: 412–32. [DBA, RJB, LD, RJW]CrossRefGoogle ScholarPubMed
Baxter, B. L. (1968) Elicitation of emotional behavior by electrical or chemical stimulation applied at the same loci in cat mesencephalon. Experimental Neurology 21: 110. [DBA]CrossRefGoogle ScholarPubMed
Bazett, H. C., and Penfield, W. G. (1922) A study of the Sherrington decerebrate animal in the chronic as well as the acute condition. Brain 45: 185222. [DBA]CrossRefGoogle Scholar
Beeman, E. A. (1947) The effect of male hormone on aggressive behavior in mice. Physiological Zoology 20: 373405. [RG]CrossRefGoogle ScholarPubMed
Beleslin, D. B., and Samardzic, Ranka. (1977) Muscarine- and carbacholinduced aggressions: fear and irritable kinds of aggressions. Psychopharmacology 55: 233–36. [BE]CrossRefGoogle ScholarPubMed
Bergquist, E. H. (1970) Output pathways of hypothalamic mechanisms for sexual, aggressive, and other motivated behaviors in opossum. Journal of Comparative and Physiological Psychology 70: 389–98. [DBA]CrossRefGoogle ScholarPubMed
Berman, A. J.; Berman, D.; and Prescott, J. W. (1974) The effect of cerebellar lesions on emotional behavior in the rhesus monkey. In Cooper, I. S.; Riklan, M.; and Snider, R. S., eds. The cerebellum, epilepsy, and behavior. New York: Plenum Press. [GGB]Google Scholar
Berman, N. (1977) Connections of pretectum in cat. Journal of Comparative Neurology 174: 227. [DBA]CrossRefGoogle Scholar
Bermond, B. (1978) Neuro-hormonal regulation of aggressive and sexual behavior in the rat. Doctoral dissertation, University of Amsterdam. [DBA]Google Scholar
Berstein, H., and Moyer, K. E. (1970) Aggressive behavior in the rat: effects of isolation and olfactory bulb lesions. Brain Research 20: 7584. [BS]CrossRefGoogle Scholar
Berntson, G. G. (1972) Blockade and release of hypothalamically and naturally elicited aggressive behaviors in cats following midbrain lesions. Journal of Comparative and Physiological Psychology 81: 541–54. [DBA]CrossRefGoogle ScholarPubMed
Berntson, G. G. and Micco, D. J. (1976) Organization of brainstem behavioral systems. Brain Besearch Bulletin 1: 471483. [GGB]CrossRefGoogle ScholarPubMed
Berntson, G. G. and Paulucci, T. S. (In press) Cerebellar influence on brainstem behavioral substrates. Brain Besearch Bulletin. [GGB]Google Scholar
Bernston, G. G.; Potolicchio, S. J.; and Miller, N. E. (1973) Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. Proceedings of the National Academy of Sciences 70: 2497–99. [GGB]Google Scholar
Beyer, C.; Tindal, J. S.; and Sawyer, C. H. (1962) Electrophysiological study of projections from mesencephalic central gray matter to forebrain in the rabbit. Experimental Neurology 6: 435–50. [DBA]CrossRefGoogle ScholarPubMed
Bindra, D. (1969) A unified interpretation of emotion and motivation. Annals of the New York Academy of Science 159: 1071–83. [DBA]CrossRefGoogle Scholar
Blanchard, D. C.; Blanchard, R. J.; Lee, E. M. C.; and Nakamura, S. (1979) Defensive behaviors in rats following septal and septal-amygdala lesions. Journal of Comparative and Physiological Psychology 93: 378–90. [DBA, RJB]CrossRefGoogle ScholarPubMed
Blanchard, D. C.; Blanchard, R. J.; Takahashi, L. K.; and Takahashi, T. (1977b) Septal lesion and aggressive behavior. Behavioral Biology 21: 157–61. [DBA, RJR, DAY]CrossRefGoogle ScholarPubMed
Blanchard, R. J., and Blanchard, D. C. (1968) Limbic lesions and reflexive fighting. Journal of Comparative and Physiological Psychology 66(3): 603–5. [DBA, BE]CrossRefGoogle ScholarPubMed
Blanchard, R. J., and Blanchard, D. C. (1977) Aggressive behaviour in the rat. Behavioral Biology 21: 197224. [RJB, RJR]CrossRefGoogle ScholarPubMed
Blanchard, R. J.; Blanchard, D. C.; and Takahashi, L. K. (1977) Reflexive fighting in the albino rat: aggressive or defensive behaviour? Aggressive Behavior. 3: 145–55. [RJR]3.0.CO;2-Z>CrossRefGoogle Scholar
Blanchard, R. J., and Blanchard, D. C. (1978) Pain and aggression in the rat. Behavioral Biology 23: 291305. [RJR]CrossRefGoogle ScholarPubMed
Blanchard, R. J.; Blanchard, D. C.; Takahashi, L. K.; and Kelley, M. J. (1977) Attack and defensive behavior in the albino rat. Animal Behaviour 25: 622–34. [RJB, RJR]CrossRefGoogle ScholarPubMed
Blanchard, R. J.; Fukunaga, K. R.; and Blanchard, D. C. (1976) Environmental control of defensive reactions to a cat. Bulletin of the Psychonomic Society 8: 179–81. [DBA]CrossRefGoogle Scholar
Blanchard, R. J.; Fukunaga, K. R.; Blanchard, D. C.; and Kelley, M. J. (1975) Conspecific aggression in the laboratory rat. Journal of Comparative and Physiological Psychology 89: 1204–09. [DBA, RJR]CrossRefGoogle ScholarPubMed
Blanchard, R. J.; Takahashi, L. K.; and Blanchard, D. B. (1977) The development of intruder attack in colonies of laboratory rats. Animal Learning and Behavior 5: 365–69. [RJR]CrossRefGoogle Scholar
Blanchard, R. J.; Takahashi, L. K.; Fukunaga, K. K.; and Blanchard, D. C. (1977c) Functions of the vibrissae in the defensive and aggressive behavior of the rat. Aggressive Behavior 3: 231–40. [RJR]3.0.CO;2-5>CrossRefGoogle Scholar
Blumenschine, R. J.; Mink, J. W.; and Adams, D. B. (1978) Basal metabolism predicts size of vertebrate CNS. Society for Neuroscience Abstracts 4: 97. [DBA]Google Scholar
Bohus, B., and deWied, D. (1967) Avoidance and escape behavior following medial thalamic lesions in rats. Journal of Comparative and Physiological Psychology 64: 2629. [DBA]CrossRefGoogle ScholarPubMed
Boshka, S. C.; Weisman, M. H.; and Thor, D. H. (1966) A technique for inducing aggression in rats utilizing morphine withdrawal. Psychological Record 16: 541–43. [BE]Google Scholar
Bowden, N. J., and Brain, P. F. (1978) Blockade of testosterone-maintained intermale fighting in albino laboratory mice by an aromatization inhibitor. Physiology and Behavior 201: 543–46. [PFB]CrossRefGoogle Scholar
Brady, J. V., and Nauta, W. J. H. (1953) Subcortical mechanisms in emotional behavior: affective changes following septal forebrain lesions in the albinorat. Journal of Comparative and Physiological Psychology 46: 339–46. [DBA]CrossRefGoogle Scholar
Brain, P. F. (1977) Hormones and aggression, vol. 1, Annual Research Reviews. Montreal: Eden Press. [PFB]Google Scholar
Brain, P. F. (1978) Hormones and aggression, vol. 2, Annual Research Reviews. Montreal: Eden Press. [PFB]Google Scholar
Brain, P. F. (1979) Hormones and aggression, vol. 3, Annual Research Reviews. Montreal: Eden Press. [PFB]Google Scholar
Brain, P. F., and Bowden, N. J. (1979) Sex steroid control in intermale fighting in albino laboratory mice. In Essman, W. B., and Valzelli, L., eds. Current developments in psychopharmacology, vol. 5, pp. 403–65. New York: Spectrum Publications. [PFB]Google Scholar
Brain, P. F., and Haug, M. (in press) Implication of urinary pheromones in the attack directed by groups of castrated mice towards female intruders. Journal of Endocrinology. [PFB]Google Scholar
Brayley, K. N. and Albert, D. J. (1977) Suppression of VMH-lesion induced reactivity and aggressiveness by electrical stimulation ventral to the anterior septum in the rat. Physiology and Behavior 18: 567–71. [DBA, DJA]CrossRefGoogle Scholar
Brayley, K. N. and Albert, D. J. (1977a) Suppression of VMH-lesion induced reactivity and aggressiveness by stimulation of the lateral septum but not the medial septum or cingulate cortex in the rat. Journal of Comparative and Physiological Psychology 91: 290–99. [DJA]CrossRefGoogle ScholarPubMed
Bronson, F. H., and Desjardins, C. (1970) Neonatal androgen administration and adult aggressiveness in female mice. General and Comparative Endocrinology 88: 320–25. [RG]CrossRefGoogle Scholar
Brown, J. L. (1975) The evolution of behavior. New York: W. W. Norton and Co. [DBA]Google Scholar
Brown, J. L.; Hunsperger, R. W.; and Rosvold, H. E. (1969a) Defence, attack and flight elicited by electrical stimulation of the hypothalamus of the cat. Experimental Brain Research 8: 113–29. [DBA]Google ScholarPubMed
Brown, J. L.; Hunsperger, R. W.; and Rosvold, H. E. (1969b) Interaction of defence and flight reactions produced by simultaneous stimulation at two points in the hypothalamus of the cat. Experimental Brain Research 8: 130–49. [DBA]Google ScholarPubMed
Buchholz, D. (1976) Spontaneous and centrally induced behaviors in normal and thalamic opossums. Journal of Comparative and Physiological Psychology 90: 898908. [GGB]CrossRefGoogle ScholarPubMed
Buchtel, H. A. (1970) Visual-learning deficits following cerebellar damage in rats. Journal of Comparative and Physiological Psychology 72: 296305. [GGB]CrossRefGoogle ScholarPubMed
Buddington, R. W.; King, F. A.; and Roberts, L. (1967) Emotionality and conditioned avoidance responding in the squirrel monkey following septal injury. Psychonomic Science 8: 195–96. [DBA]CrossRefGoogle Scholar
Bugbee, N. M., and Eichelman, B.S. (1972) Sensory alterations and aggressive behavior in the rat. Physiology and Behavior 8: 981–85. [BS]CrossRefGoogle ScholarPubMed
Bunnell, B. N. (1966) Amygdaloid lesions and social dominance in the hooded rat. Psychonomic Science 6: 9394. [DBA]CrossRefGoogle Scholar
Bunnell, B. N.; Sodetz, F. J.; and Shalloway, D. I. (1970) Amygdaloid lesions and social behavior in the golden hamster. Physiology and Behavior 5: 153–61. [DBA]CrossRefGoogle ScholarPubMed
Busch, D. E., and Barfield, R. J. (1974) A failure of amygdaloid lesions to alter agonistic behavior in the laboratory rat. Physiology and Behavior 12: 887–92. [DBA]CrossRefGoogle ScholarPubMed
Butter, C. M.; Snyder, D. R.; and McDonald, J. A. (1970) Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. Journal of Comparative and Physiological Psychology 72: 132–44. [DBA]CrossRefGoogle ScholarPubMed
Cain, D. P. (1974) Olfactory bulbectomy: neural structures involved in irritability and aggression in the male rat. Journal of Comparative and Physiological Psychology 86: 213–20. [DBA]CrossRefGoogle ScholarPubMed
Carli, G.; Malliani, A.; and Zanchetti, A. (1963) Midbrain course of descending pathways mediating sham rage behavior. Experimental Neurology 7: 210–23. [DBA]CrossRefGoogle ScholarPubMed
Chaurand, J. P.; Vergnes, M.; and Karli, P. (1972) Mesencephalic central gray and the rat's mouse-killing behavior (in French). Physiology and Behavior 9: 475–81. [DBA, PK]CrossRefGoogle Scholar
Chi, C. C. (1970) An experimental silver study of the ascending projections of the central gray substance and adjacent tegmentum in the rat with observations in the cat. Journal of Comparative Neurology 139: 259–72. [DBA]CrossRefGoogle ScholarPubMed
Childs, G., and Brain, P. F. (1979a) A videotape analysis of biting targets employed in intraspecific fighting encounters in laboratory mice from four treatment categories. IRCS Medical Science 7: 44. [PFB]Google Scholar
Childs, G., and Brain, P. F. (1979b) A videotape analysis of behavioural strategies of attacked anosmic mice in encounters with three different types of conspecific. IRCS Medical Science 7: 80. [PFB]Google Scholar
Clark, M. M., and Galef, B. G. (1977) The role of the physical rearing environment in the domestication of the Mongolian gerbil (Meriones unguiculatus). Animal Behaviour 25: 298316. [DBA]CrossRefGoogle Scholar
Colgan, P. W., ed. (1978) Quantitative ethology. New York: John Wiley & Sons. [PRW]Google Scholar
Davis, W. J. (1977) The command neuron. In Hoyle, G., ed. Identified neurons and behavior of arthropods, pp. 293305. New York: Plenum Press. [RMG]CrossRefGoogle Scholar
Decsi, L. (1974) Behavioral effect of intracerebrally injected carbachol on unrestrained cats. Pharmacology, Biochemistry and Behavior 2: 141–43. [LD]Google ScholarPubMed
Decsi, L., and Karmos-Várszegi, M. (1969) Fear and escape reaction evoked by the intrahypothalamic injection of d-tubocurarine in unrestrained cats. Acta Physiologica Academiae Scientiarum Hungaricae 36: 95104. [LD]Google ScholarPubMed
Decsi, L., and Nagy, J. (1974) Chemical stimulation of the amygdala with special regard to influence on the hypothalamus. Neuropharmacology 13: 1153–62. [DBA, LD]CrossRefGoogle ScholarPubMed
Decsi, L., and Nagy, J. (1977a) Adrenergic modulation of a cholinergic emotional reaction in the cat's thalamus. Psychopharmacology 54: 303–5. [LD]CrossRefGoogle ScholarPubMed
Decsi, L., and Nagy, J. (1977b) Catecholaminergic and cholinergic interaction in some extrastriatal brain regions. Polish Journal of Pharmacology and Pharmacy 29: 197–98. [LD]Google Scholar
Decsi, L.; Várszegi, K. M.; and Méhes, J. (1969) Direct chemical stimulation of various subcortical brain areas in unrestrained cats. In Lissák, K., ed. Recent developments in neurobiology in Hungary, II. Budapest: Publishing House of the Hungarian Academy of Sciences. [LD]Google Scholar
DeLanerolle, N., and Andrew, R. J. (1974) Midbrain structures controlling vocalization in the domestic chick. Brain, Behavior, and Evolution 10: 354–76. [DBA]Google Scholar
Delgado, J. M. R. (1963) Cerebral heterostimulation in a monkey colony. Science 141: 161–63. [DBA]CrossRefGoogle Scholar
Delgado, J. M. R. (1967) Social rank and radio-stimulated aggressiveness in monkeys. Journal of Nervous and Mental Diseases 114: 383–90. [JMRD]CrossRefGoogle Scholar
Delgado, J. M. R., and Mir, D. (1969) Fragmentai organization of emotional behavior in the monkey brain. Annals of the New York Academy of Science 159: 731–51. [JMRD]CrossRefGoogle ScholarPubMed
Delgado, J. M. R.; Sanguinetti, A. M.; and Mora, F., (1973) Aggressive behavior in gibbons modified by caudate and central gray stimulation. International Research Communications System Medical Science, Sept., 16–2–32. [JMRD]Google Scholar
Dostrovsky, J. O., and Deakin, J. F. W. (1977) Periaqueductal grey lesions reduce morphine analgesia in the rat. Neuroscience Letters 4: 99103. [DBA]CrossRefGoogle ScholarPubMed
Douglas, R. J.; Isaacson, R. L.; and Moss, R. L. (1969) Olfactory lesions, emotionnality and activity. Physiology and Behavior 4: 379–81. [BS]CrossRefGoogle Scholar
Dreifuss, J. J., and Murphy, J. T. (1968) Convergence of impulses upon single hypothalamic neurons. Brain Research 8: 167–76. [DBA]CrossRefGoogle ScholarPubMed
DSM III (1978) Diagnostic and statistical manual of mental disorders. Washington, D.C.: American Psychiatric Association. [BE]Google Scholar
Eccles, J. C. (1977) An instruction-selection theory of learning in the cerebellar cortex. Brain Research 127: 327–52. [GGB]CrossRefGoogle ScholarPubMed
Eclancher, F., and Karli, P. (1971). Comportement d'aggression interspécifique et comportement alimentaire du rat: effets de lesions des noyaux ventromedians de l'hypothalamus. Brain Research 26: 7179. [DJA]CrossRefGoogle Scholar
Edwards, D. A. (1968) Mice: fighting by neonatally androgenized females. Science 161: 1027–28. [RG]CrossRefGoogle ScholarPubMed
Edwards, M. A., and Adams, D. B. (1974) Role of midbrain central gray in pain-induced defensive boxing of rats. Physiology and Behavior 13: 113–21. [DBA]CrossRefGoogle ScholarPubMed
Eibl-Eibesfeldt, I. (1970) Ethology: the biology of behavior. New York: Holt, Rinehart and Winston. [DBA]Google Scholar
Eibl-Eibesfeldt, I. (1977) Evolution of destructive aggression. Aggressive Behavior 3: 127–44. [PFB]3.0.CO;2-Y>CrossRefGoogle Scholar
Eichelman, B. (1971) Effect of subcortical lesions on shock-induced aggression in the rat. Journal of Comparative and Physiological Psychology 74: 331–39. [DBA, BE, BS]CrossRefGoogle ScholarPubMed
Engel, G. L., and Smale, A. H. (1972) Conservation withdrawal: a primary regulation process for organismic homeostasis. In Physiology, emotions and psychosomatic illness. Ciba Foundation Symposium 8 (new series), vol. 1, pp. 5785. Amsterdam: Elsevier-Excerpta Medica. [HL]Google Scholar
Erskine, M. S.; Barfield, R. J.; and Goldman, B. D. (in press) Postpartum aggression in rats I: Effects of hypophysectomy. Journal of Comparative and Physiological Psychology. [RG]Google Scholar
Ewert, J.-P. (1970) Neural mechanism of prey-catching and avoidance behavior in the toad (Bufo bufo L). Brain, Behavior, and Evolution 3: 3656. [DBA]Google ScholarPubMed
Fentress, J. C. (1973). Specific and non-specific factors in the causation of behavior. In Bateson, P. P. G., and Klopfer, P., eds. Perspectives in Ethology, pp. 155255. New York: Plenum Press. [JCF]CrossRefGoogle Scholar
Fentress, J. C. (1976a) Dynamic boundaries of patterned behaviour: interaction and selforganization. In Bateson, P. P. G., and Hinde, R. A., eds. Growing points in ethology, pp. 135169. Cambridge: Cambridge University Press. [JCF]Google Scholar
Fentress, J. C. (1976b) Simpler networks and behavior. Sunderland, Mass: Sinauer. [DBA, RMG]Google Scholar
Fentress, J. C. (1977) The tonic hypothesis and the patterning of behavior. Annals of the New York Academy of Science 290: 370–95. [JCF]CrossRefGoogle ScholarPubMed
Fernandez de Molina, A., and Hunsperger, R. W. (1962) Organization of the subcortical system governing defense and flight reactions in the cat. Journal of Physiology 160: 200–13. [DBA]CrossRefGoogle ScholarPubMed
Flynn, J. P. (1972) Patterning mechanisms, patterned reflexes, and attack behavior in cats. Nebraska Symposium on Motivation 20: 125–54. [DBA]Google ScholarPubMed
Flynn, J. P. (1976) Neural basis of threat and attack. In Grenell, R. G., and Gabay, S., eds. Biological foundations of psychiatry. New York: Raven Press. [DBA]Google Scholar
Flynn, J. P.; Edwards, S. B.; and Bandler, R. J. (1971) Changes in sensory and motor systems during centrally elicited attack. Behavioral Science 16: 119. [DBA]CrossRefGoogle ScholarPubMed
Fredericson, E. (1950) The effects of food deprivation upon competitive and spontaneous combat in C57 black mice. Journal of Psychology 29: 89100. [DBA]CrossRefGoogle ScholarPubMed
Fulton, J. F., and Ingraham, F. D. (1929) Emotional disturbances following experimental lesions of the base of the brain (pre-chiasmal). Journal of Physiology 67: 27P–28P. [DBA]Google Scholar
Galef, B. G. (1970) Aggression and timidity; responses to novelty in feral Norway rats. Journal of Comparative and Physiological Psychology 70: 370–81. [DBA]CrossRefGoogle ScholarPubMed
Galun, R.; Hillman, P.; Parnas, I.; and Werman, R. (1976) Sensory physiology and behavior. New York: Plenum Press. [RMG]Google Scholar
Gardner, L., and Malmo, R. B. (1969) Effects of low level septal stimulation on escape. Journal of Comparative and Physiological Psychology 68: 6573. [DBA]CrossRefGoogle ScholarPubMed
Gaston, M. G. (1978) Amygdaloid lesions disrupt incentive-motivation in the rat. Society for Neuroscience Abstracts 4: 220. [DBA]Google Scholar
Getting, P. A. (1977) Neuronal organization of escape swimming in Tritonia. Journal of Comparative Physiology 121: 325–42. [RMG]CrossRefGoogle Scholar
Gilbert, P. F. C. (1975) How the cerebellum could memorize movements. Nature 254: 688–89. [GGB]CrossRefGoogle Scholar
Giuliani, G.; Martini, L.; and Pecile, A. (1961) Midbrain section and release of ACTH following stress. Acta Neurovegetativa 23: 2134. [DBA]CrossRefGoogle ScholarPubMed
Glantz, R. M. (1977) Visual input and motor output of command interneurons of the defense reflex pathway in the crayfish. In Hoyle, G., ed. Identified neurons and behavior of arthropods, pp. 259–74. New York: Plenum Press. [RMG]CrossRefGoogle Scholar
Glees, P.; Cole, J.; Whitty, C. W.; and Cairns, H. (1950) The effect of lesions in the cingulate gyrus and adjacent areas in monkeys. Journal of Neurology, Neurosurgery, and Psychiatry 13: 178–90. [DBA]Google ScholarPubMed
Gloor, P. (1978) Inputs and outputs of the amygdala: what the amygdala is trying to tell the rest of the brain. In Livingston, K. E., and Hornykiewicz, O., eds. Limbic mechanisms. New York: Plenum Press. [DBA]Google Scholar
Glusman, M. (1974) The hypothalamie “savage” syndrome. In Frazier, S. H., ed. Aggression. Baltimore: Williams and Wilkins. [DBA]Google Scholar
Glusman, M.; Won, W.; Burdock, E. I.; and Ransohoff, J. (1961) Effects of mid-brain lesions on “savage” behavior induced by hypothalamie lesions in cat. Transactions of the American Neurological Association 86: 216–18. [DBA]Google Scholar
Grant, E. C., and Mackintosh, J. H. (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21: 246–59. [DBA, RJR]CrossRefGoogle Scholar
Grossman, S. P. (1972) Aggression, avoidance, and reaction to novel environments in female rats with ventromedial hypothalamie lesions. Journal of Comparative and Physiological Psychology 78: 274–83. [DBA, BS]CrossRefGoogle Scholar
Grossman, S. P., and Grossman, L. (1970) Surgical interruption of the anterior or posterior connections of the hypothalamus: effects on aggressive and avoidance behavior. Physiology and Behavior 5: 1313–17. [DBA]CrossRefGoogle ScholarPubMed
Halpern, M. (1968) Effects of midbrain central gray matter lesions on escapeavoidance behavior in rats. Physiology and Behavior 3: 171–78. [DBA]CrossRefGoogle Scholar
Hamilton, B. L., and Skultety, F. M. (1970) Efferent connections of the periaqueductal gray matter in the cat. Journal of Comparative Neurology 139: 105–14. [DBA]CrossRefGoogle ScholarPubMed
Hammond, M. A., and Rowe, F. A. (1976) Medial preoptic and anterior hypothalamie lesions: Influences on aggressive behavior in female hamsters. Physiology and Behavior 17: 507–13. [DBA]CrossRefGoogle Scholar
Hara, K., and Myers, R. E. (1973) Role of forebrain structures in emotional expression in opossum. Brain Research 52: 131–44. [DBA]CrossRefGoogle ScholarPubMed
Hara, T.; Favale, E.; Rossi, G. F.; and Sacco, G. (1961) Responses in mesencephalic reticular formation and central gray matter evoked by somatic peripheral stimuli. Experimental Neurology 4: 297309. [DBA]CrossRefGoogle ScholarPubMed
Haug, M., and Brain, P. F. (1978) Attack directed by groups of castrated male mice towards lactating or non-lactating intruders: a urine-dependent phenomenon? Physiology and Behavior. 21: 549–52. [PFB]CrossRefGoogle ScholarPubMed
Hazlett, B. A., ed. (1977) Quantitative methods in the study of animal behavior. New York: Academic Press. [PRW]Google Scholar
Heath, R. G. (1976) Correlation of brain function with emotional behavior. Biological Psychiatry 11: 463480. [GGB]Google ScholarPubMed
Heiligenberg, W. (1976) A probabilistic approach to the motivation of behavior. In Fentress, J. C., ed. Simpler networks and behavior, pp. 301–13. Sunderland, Mass.: Sinauer. [JCF]Google Scholar
Henke, P. G. (1973) Effects of reinforcement omission on rats with lesions in amygdala. Journal of Comparative and Physiological Psychology 84: 187–93. [DBA]CrossRefGoogle ScholarPubMed
Henn, F. A., and Henke, D. J. (1978) Cellular localization of (3H)-diazepam receptors. Neuropharmacology 17(11):985–88. [BE]CrossRefGoogle ScholarPubMed
Hess, W. R. (1954) Das Zwischenhirn. Syndrome, Lokalisationen, Funktionen. Basel: Benno Schwabe & Co. 2nd Ed. [KAM]Google Scholar
Hess, W. R., and Brugger, M. (1943) Das subkortikale Zentrum der affektiven Abwehrreaktion. Helvetica Physiologica Acta 1: 3352. [DBA, LD]Google Scholar
Hilton, S. M., and Zbrozyna, A. W. (1963) Amygdaloid region for defence reactions and its efferent pathway to the brain stem. Journal of Physiology 165: 160–73. [DBA, DAY]CrossRefGoogle Scholar
Hinde, R. A., and Stevenson-Hinde, J. G., eds. (1973) Constraints on learning. London: Academic Press. [PRW]Google Scholar
Hole, K.; Johnson, G. E.; and Berge, O-G. (1977) 5,7-Dihydroxytryptamine lesions of the ascending 5-hydroxytryptamine pathways: habituation, motor activity and agonistic behavior. Pharmacology, Biochemistry, and Behavior 7: 205–10. [HU]Google ScholarPubMed
Hoyle, G. (1977) Identified neurons and behavior of arthropods. New York: Plenum Press. [DBA, RMG]CrossRefGoogle Scholar
Hunsperger, R. W. (1956) Affektreaktionen auf elektrische reizung in Hirnstamm der Katze. Helvetica Physiologica Acta 14: 7092. [DBA, LD]Google Scholar
Hunsperger, R. W., and Bucher, V. M. (1967) Affective behaviour produced by electrical stimulation in the forebrain and brainstem of the cat. Progress in Brain Research 27: 103–27. [LD]CrossRefGoogle Scholar
Huntingford, F. A. (1976) The relationship between inter- and intra-specific aggression. Animal Behaviour 24: 485–97. [PFB]CrossRefGoogle Scholar
Hutchins, D. A.; Pearson, J. D. M.; and Sharman, D. F. (1975) Striatal metabolism of dopamine in mice made aggressive by isolation. Journal of Neuro-chemistry 24: 1151–54. [DBA]CrossRefGoogle ScholarPubMed
Hutchinson, R. R., and Renfrew, J. W. (1978) Functional parallels between the neural and environmental antecedents of agression. Neuroscience and Biobehavioral Reviews 2: 3358. [BE]CrossRefGoogle Scholar
Ingle, D. (1976) Behavioral correlates of central visual function in Anurans. In Llinas, F., and Precht, W., eds. Frog neurobiology, pp. 435–51. Berlin: Springer-Verlag. [DBA]CrossRefGoogle Scholar
Ito, M. (1972) Neural design of the cerebellar motor control system. Brain Research 40: 8184. [GGB]CrossRefGoogle ScholarPubMed
Jacquet, Y. F., and Lajtha, A. (1973) Morphine action at central nervous system sites in rat: analgesia or hyperalgesia depending on site and dose. Science 182: 490–92. [DBA]CrossRefGoogle ScholarPubMed
Johnson, D. A.; Poplawsky, A.; and Bieliaukas, L. (1972) Alterations of social behavior in rats and hamsters following lesions of the septal forebrain. Psychonomic Science 26: 1920. [DBA]CrossRefGoogle Scholar
Jonason, K. R., and Enloe, L. J. (1971) Alterations in social behavior following septal and amygdaloid lesions in the rat. Journal of Comparative and Physiological Psychology 75: 286301. [DAY]CrossRefGoogle ScholarPubMed
Kaada, B. R. (1967) Brain mechanisms related to aggressive behavior. In Clemente, C. D., and Lindsley, D. B., eds. Aggression and defense: neural mechanisms and social patterns. Berkeley: Univ. of California Press. [DBA, HU]Google Scholar
Kaelber, W. W.; Mitchell, C. L.; and Way, J. S. (1965) Some sensory influences on savage (affective) behavior in cats. American Journal of Physiology 209: 866–70. [DBA]CrossRefGoogle ScholarPubMed
Kanai, T., and Wang, S. C. (1962) Localization of the central vocalization mechanism in the brain stem of the cat. Experimental Neurology 6: 426–34. [DBA]CrossRefGoogle ScholarPubMed
Kanki, J. P., and Adams, D. B. (1978) Ventrobasal thalamus necessary for visually-released defensive boxing of the rat. Physiology and Behavior 21: 712. [DBA]CrossRefGoogle Scholar
Karli, P.; Eclancher, F.; Vergnes, M.; Chaurand, J. P.; and Schmitt, P. (1974) Emotional responsiveness and interspecific aggressiveness in the rat: interactions between genetic and experiential determinants. In van Abeelen, J. H. F., ed. The genetics of behaviour, pp. 291319. Amsterdam: North-Holland Publishing Company. [PK]Google Scholar
Karli, P.; Vergnes, M.; Eclancher, F.; and Penot, C. (1977) Involvement of amygdala in inhibitory control over aggression in the rat: a synopsis. Aggressive Behavior 3: 157–62. [PK]3.0.CO;2-P>CrossRefGoogle Scholar
Keller, A. D. (1932) Autonomie discharges elicited by physiological stimuli in midbrain preparations. American Journal of Physiology 100: 576–86. [DBA]CrossRefGoogle Scholar
Kelly, A. H.; Beaton, L. E.; and Magoun, H. W. (1946) A midbrain mechanism for faciovocal activity. Journal of Neurophysiology 9: 181–89. [DBA]CrossRefGoogle ScholarPubMed
King, F. A., and Meyer, P. M. (1958) Effects of amygdaloid lesion upon septal hyperemotionality in the rat. Science 128: 655–56. [DBA, DAY]CrossRefGoogle ScholarPubMed
Kinzel, A. F. (1970) Body-buffer zone in violent prisoners. American Journal of Psychiatry 127(1):5964. [BE]CrossRefGoogle ScholarPubMed
Kling, A., and Hutt, P. J. (1958) Effect of hypothalamic lesions on the amygdala syndrome in the cat. Archives of Neurology and Psychiatry 79: 511–17. [DBA]CrossRefGoogle ScholarPubMed
Kluver, H., and Buey, P. C. (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry 42: 9791000. [DBA]CrossRefGoogle Scholar
Kolb, B. and Nonneman, A. J. (1974) Frontolimbic lesions and social behavior in rat. Physiology and Behavior 13: 637–43. [DBA]CrossRefGoogle Scholar
Koolhaas, J. M. (1978) Hypothalamically induced intraspecific aggressive behaviour in the rat. Experimental Brain Besearch 32: 365–75. [DBA]Google ScholarPubMed
Koridze, M. G., and Oniani, T. M. (1972) Effects of cingulate cortex lesions on emotional behavior and delayed responses in cat. Acta Neurobiologica 32: 918. [DBA]Google Scholar
Kostowski, A., and Valzelli, L. (1974) Biochemical and behavioral effects of lesions of raphe nuclei in aggressive mice. Pharmacology, Biochemistry, and Behavior 2: 277–80. [DBA]CrossRefGoogle ScholarPubMed
Krsiak, M., and Steinberg, H. (1969) Psychopharmacological aspects of aggression: a review of the literature and some new experiments. Journal of Psychosomatic Research 13: 243–52. [RJR]CrossRefGoogle ScholarPubMed
Kumadaki, N.; Hitomi, M.; and Kumadi, S. (1967) Effect of psychotherapeutic drugs on hyperemotionality of rats from which the olfactory bulb was removed. Japanese Journal of Pharmacology 17: 659–67. [BS]CrossRefGoogle ScholarPubMed
Kunz, E.; Valette, N.; and Laborit, H. (1974) Rôle de l'apprentissage dans le mécanisme d'inhibition comportemental et de l'hypertension artérielle consécutives à l'application de stimulus aversifs sans possibilité de fuite ou de lutte. Agressologie 15(6):381–85. [HL]Google Scholar
Kuo, Z. Y. (1930) The genesis of the cat's response towards the rat. Journal of Comparative Psychology 11: 135. [DBA]CrossRefGoogle Scholar
Kupfermann, I., and Weiss, K. R. (1978) The command neuron concept. The Behavioral and Brain Sciences 1: 339. [RMG]CrossRefGoogle Scholar
Laborit, H. (1975) Bases neurophysiologiques et biologiques des comportements d'évitement actifs et passifs. Conséquences somatiques. Annales Medicales Psychologiques 1(5):573603. [HL]Google Scholar
Laborit, H. (1976) On the mechanism of activation of the hypothalamo-pituitary-adrenal reaction to changes in the environment (the “alarm reaction”). Resuscitation 5: 1930. [HL]CrossRefGoogle ScholarPubMed
Laborit, H. (1978) The biological and sociological mechanisms of aggression. International Social Science Journal 30(4):727–49. [HL]Google Scholar
Laborit, H., and Baron, C. (1977) Variations des concentrations du lactate sérique chez le lapin après stimulation de l'amygdale latérale ou dorsomédiane. Agressologie 18(2):8991. [HL]Google Scholar
Laborit, H.; Baron, C.; and Laurent, J. (1977) Faits expérimentaux neurophysiologiques et biologiques montrant l'existence d'activités fonctionnelles séparées pour l'hippocampe dorsal et ventral. Agressologie 18(1):1115. [HL]Google Scholar
Lan, P., and Miczek, K. A. (1977) Differential effects of septal lesions on attack and defensive-submissive reactions during intraspecies aggression in rats. Physiology and Behavior 18: 479–86. [DBA, RJR]Google Scholar
Lehman, M. N., and Adams, D. B. (1977) A statistical and motivational analysis of the social behaviors of the male laboratory rat. Behaviour 61: 238–75. [DBA, PRW]CrossRefGoogle Scholar
Lehman, M. N.; Kevetter, G. A.; and Powers, J. B. (1978) Sexual and aggressive behavior in male hamsters after lesions of the cortico medial amygdala. Society for Neuroscience Abstracts 4: 88. [DBA]Google Scholar
Leyhausen, P. (1956) Verhaltensstudien an Katzen. Zeitschrift für Tierpsychologie 2: 1120. [DBA]Google Scholar
Leyhausen, P. (1965) Über die Funktion der Relativen Stimmungshierarchie (dargestellt am Beispiel der phylogenetischen und ontogenetischen Entwicklung des Beutefangs von Raubtieren). Zeitschrift für Tierpsychologie 22: 412–94. (English in Lorenz/Leyhausen, Motivation of human and animal behavior, New York: van Nostrand-Reinhold, 1973). [PL]CrossRefGoogle Scholar
Leyhausen, P. (1979a in press) Cat behavior, New York: Garland Press. [PL]Google Scholar
Leyhausen, P. (1979b in press) Aggression, fear and attachment: complexities and interdependencies. In von Cranach, M., ed. Human ethology, pp. 253–64. Cambridge: Cambridge University Press. [PL]Google Scholar
Liebeskind, J. C. (1976) Pain modulation by central nervous system stimulation. In Bonica, J. J., and Albe-Fessard, D., eds. Advances in pain research and therapy. New York: Raven Press. [HU]Google Scholar
Liebeskind, J. C., and Mayer, D. J. (1971) Somatosensory evoked responses in the mesencephalic central gray matter of the rat. Brain Besearch 27: 133–51. [DBA]CrossRefGoogle ScholarPubMed
Liebman, J. M.; Mayer, D. J.; and Liebeskind, J. C. (1970) Mesencephalic central gray lesions and fear-motivated behavior in rats. Brain Research 23: 353–70. [DBA]CrossRefGoogle ScholarPubMed
Lisander, B. and Martner, J. (1975) Integrated somatomotor, cardiovascular and gastrointestinal adjustments induced from the cerebellar fastigial nucleus. Acta Physiologica Scandinavica 94: 358–67. [GGB]CrossRefGoogle ScholarPubMed
Lore, R.; Flannelly, K.; and Farina, P. (1976) Ultrasounds produced by rats accompany decreases in intraspecific fighting. Aggressive Behavior 2: 175–81. [DBA]3.0.CO;2-7>CrossRefGoogle Scholar
Lorenz, K. (1970) Studies in animal and human behaviour. 2 vols. Cambridge, Mass.: Harvard University Press. [DBA]Google Scholar
Lovick, T. E. (1972) The behavioral repertoire of precollicular decerebraterats. Journal of Physiology 226: 4P–6P. [DBA]Google Scholar
Luria, A. R. (1976) Basic problems of neurolinguistics. The Hague: Mouton and Co. [JCF]CrossRefGoogle Scholar
Lyon, M. (1964) The role of central midbrain structures in conditioned responding to aversive noise in the rat. Journal of Comparative Neurology 122: 407–29. [DBA]CrossRefGoogle ScholarPubMed
MacCorquodale, K. and Meehl, P. E. (1948) On a distinction between hypothetical constructs and intervening variables. Psychological Review 55: 95107. [HU]CrossRefGoogle ScholarPubMed
MacLean, P. D. (1969) The hypothalamus and emotional behavior. In Haymaker, W.; Anderson, E.; and Nauta, J. H., eds. The hypothalamus. Springfield, Ill.: C. C. Thomas. [LD]Google Scholar
MacLean, P. D. (1978) Effects of lesions of globus pallidus on species-typical display behavior of squirrel monkeys. Brain Research 149: 175–96. [DBA, BS]CrossRefGoogle ScholarPubMed
Maephail, E. M., and Miller, N. E. (1968) Cholinergic brain stimulation in cats: failure to obtain sleep. Journal of Comparative and Physiological Psychology 65: 499503. [LD]CrossRefGoogle Scholar
Magoun, H. W.; Atlas, D.; Ingersoll, E. H.; and Ranson, S. W. (1937) Associated facial, vocal and respiratory components of emotional expression: an experimental study. Journal of Neurological Psychopathology 17: 241–55. [DBA]CrossRefGoogle ScholarPubMed
Maire, F. W., and Patton, H. D. (1954) Hyperactivity and pulmonary edema from rostral hypothalamic lesions in rat. American Journal of Physiology 178: 315–20. [DBA]CrossRefGoogle Scholar
Marr, D. A. (1969) A theory of cerebellar cortex. Journal of Physiology 202: 437–70. [GGB]CrossRefGoogle ScholarPubMed
Max, D. M.; Cohen, E.; and Lieblich, I. (1974) Effects of capture procedures on emotionality scores in rats with septal lesions. Physiology and Behavior 13: 617–20. [DAY]CrossRefGoogle ScholarPubMed
Mehler, W. R. (1969) Some neurological species differences – a posteriori. Annals of the New York Academy of Science 157: 424–67. [DBA]CrossRefGoogle Scholar
Metzgar, H. (1967) An experimental comparison of screech owl predation on resident and transient white-footed mice (Peromyscus leucopus). Journal of Mammalogy 48: 387–91. [DBA]CrossRefGoogle Scholar
Meyer, D. R.; Ruth, R. A.; and Lavond, D. G. (1978) The septal social cohesiveness effect: its robustness and main determinants. Physiology and Behavior 21: 1027–29. [DBA, DAY]CrossRefGoogle ScholarPubMed
Miczek, K. A. (1974) Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39: 275301. [DBA, RJR]CrossRefGoogle ScholarPubMed
Miczek, K. A. (1978) Δ9-Tetrahydrocannabinol: antiaggressive effects in mice, rats, and squirrel monkeys. Science 199: 14591561. [KAM]CrossRefGoogle ScholarPubMed
Miczek, K. A. (1979) A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine. Psychopharmacology 60: 253–59. [KAM]CrossRefGoogle ScholarPubMed
Miczek, K. A., and Barry, H. (1974) Δ9-Tetrahydrocannabinol and aggressive behavior in rats. Behavioral Biology 11: 6167. [RJR]CrossRefGoogle ScholarPubMed
Miczek, K. A., and Barry, H. (1976) Pharmacology of sex and aggression. In Glick, S. D., and Goldfarb, J., eds. Behavioral pharmacology, pp. 176257. St. Louis: C. V. Mosby. [KAM]Google Scholar
Miczek, K. A., and Barry, H. (1977) Effects of alcohol on attack and defensive-submissive reactions in rats. Psychopharmacology 52: 231–37. [RJR]CrossRefGoogle ScholarPubMed
Miczek, K. A.; Brykczynski, T.; and Grossman, S. P. (1974) Differential effects of lesions in amygdala, periamygdaloid cortex or stria terminalis on aggressive behavior in rats, journal of Comparative and Physiological Psychology 87: 760–71. [DBA]CrossRefGoogle ScholarPubMed
Miczek, K. A., and Krsiak, M. (1979) Drug effects on agonistic behavior. In Thompson, T., and Dews, P., eds. Advances in behavioral pharmacology, vol. 2. New York: Academic Press. [KAM]Google Scholar
Miczek, K. A., and O'Donnell, J. (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and L-Dopa. Psychopharmacology 57: 4755. [KAM]CrossRefGoogle ScholarPubMed
Milgram, N. W.; Devor, M.; and Server, A. C. (1971) Spontaneous changes in behaviors induced by electrical stimulation of the lateral hypothalamus in rats. Journal of Comparative and Physiological Psychology 75: 491–99. [RB]CrossRefGoogle ScholarPubMed
Millhouse, O. E. (1969) A Golgi study of the descending medial forebrain bundle. Brain Research 15: 341–63. [DBA]CrossRefGoogle Scholar
Mitchell, G. L., and Kaelber, M. W. (1966) Effect of medial thalamic lesions on responses evoked by tooth pulp stimulation. American Journal of Physiology 210: 263–69. [DBA]CrossRefGoogle Scholar
Mogenson, G. J. (1971) Stability and modification of consummatory behavior elicited by electrical stimulation of the hypothalamus. Physiology and Behavior 6: 255–60. [RB]CrossRefGoogle ScholarPubMed
Morrell, J. I.; Greenberger, L. M.; and Pfaff, D. W. (1978) Projections to mesencephalic centrai gray related to estrogenic control of reproductive behaviors. Society for Neuroscience Abstracts 4: 226. [DBA]Google Scholar
Moyer, J. A., and Leshner, A. I. (1976) Pituitary-adrenal effects on avoidance-of-attack in mice: separation of the effects oí ACTH and corticosterone. Physiology and Behavior 17: 297301. [DBA]CrossRefGoogle Scholar
Moyer, K. E. (1968) Kinds of aggression and their physiological basis. Communications in Behavioral Biology 2: 6587. [DBA, BE]Google Scholar
Mugford, R. A., and Nowell, N. W. (1970a) Pheromones and their effect on aggression in mice. Nature 226: 967–68. [RG]CrossRefGoogle ScholarPubMed
Mugford, R. A., and Nowell, N. W. (1970b) The aggression of male mice against androgenized females. Psychonomic Science 20: 191–92. [RG]CrossRefGoogle Scholar
Mugford, R. A., and Nowell, N. W. (971) The relationship between endocrine status of female opponents and aggressive behaviour of male mice. Animal Behaviour 19: 153–55. [RG]CrossRefGoogle Scholar
Murphy, J. T. (1972) The role of the amygdala in controlling hypothalamic output. In Eleftheriou, B. E., ed. The neurobiology of the amygdala. New York: Plenum Press. [DBA]Google Scholar
Myers, R. D. (1974) Handbook of drug and chemical stimulation of the brain, pp. 586–87. New York: Van Nostrand Reinhold. [LD]Google Scholar
Nagy, J., and Decsi, L. (1973) Location of the site of the tranquilizing action of diazepam by intralimbic application. Neuropharmacology 12: 757–68. [LD]CrossRefGoogle ScholarPubMed
Nagy, J., and Decsi, L. (1974) Simultaneous chemical stimulation of the hypothalamus and dorsal hippocampus in the waking cat. Pharmacology, Biochemistry, and Behavior 2: 285–92. [DBA, LD]CrossRefGoogle ScholarPubMed
Nagy, J., and Decsi, L. (1977) Transmitter background of an emotional reaction of the cat. Activitas Nervosa Superior (Prague) 19: 122–23. [LD]Google ScholarPubMed
Nauta, W. J. H. (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81: 319–40. [DBA]CrossRefGoogle Scholar
Nieuwenhuys, R. (1967) Comparative anatomy of the cerebellum. Progress in Brain Research 25: 193. [DBA]CrossRefGoogle ScholarPubMed
O'Keefe, J. and Nadel, L. (1978) The hippocampus as a cognitive map. Oxford: Oxford University Press. [DBA]Google Scholar
Olivier, B. (1977) The ventromedial hypothalamus and aggressive behavior inrats. Aggressive Behavior 3: 4756. [DBA]3.0.CO;2-H>CrossRefGoogle Scholar
Olton, D. S., and Gage, F. H.Role of the fornix in the septal syndrome. Physiology and Behavior 13: 269–79. [DAY]CrossRefGoogle Scholar
Ono, T., and Oomura, Y. (1975) Excitatory control of hypothalamic ventromedial nucleus by basolateral amygdala in rats. Pharmacology, Biochemistry, and Behavior (supplement)3: 3747. [DBA]Google ScholarPubMed
Orlovsky, G. N. (1970) Connections of the reticulo-spinal neurons with the “locomotor sections” of the brain stem. Biophysics 15: 178–86. [DBA]Google Scholar
Orlovsky, G. N., and Shik, M. L. (1976) Control of locomotion: A neurophysiological analysis of the eat locomotor system, international Review of Physiology 10: 281317. [DBA]Google Scholar
Owen, K.; Peters, P. J.; and Bronson, F. H. (1974) Effects of intracranial implants of testosterone proprionate on intermale aggression in the castrated male mouse. Hormones and Behavior 5: 8392. [DBA]CrossRefGoogle Scholar
Panksepp, J. (1971) Aggression elicited by electrical stimulation of hypothalamus in albino rats. Physiology and Behavior 6: 321–29. [DBA, JP]CrossRefGoogle ScholarPubMed
Panksepp, J. (1971a) Effects of hypothalamic lesions on mouse-killing and shock-induced fighting in rats. Physiology and Behavior 6: 311–16. [DJA, BS]CrossRefGoogle ScholarPubMed
Panksepp, J. (1980 in press) Hypothalamic integration of behavior: rewards, punishments, and related psychological processes. In Morgane, P., and Panksepp, J., eds. Handbook of the hypothalamus, vol. 3, behavioral studies of the hypothalamus, Part B. New York: Marcel Dekker, Inc. [JP]Google Scholar
Panksepp, J.; Herman, B.; Conner, R.; Bishop, P.; and Scott, J. P. (1978) The biology of social attachments: opiates alleviate separation distress. Biological Psychiatry 13: 607–18. [JP]Google ScholarPubMed
Paxinos, G., and Bindra, D. (1972) Hypothalamic knife cuts: effects on eating, drinking, irritability, aggression and copulation in male rat. Journal of Comparative and Physiological Psychology 79: 219–29. [DBA]CrossRefGoogle ScholarPubMed
Perachio, A. A., and Alexander, M. (1975) The neural basis of aggression and sexual behavior in the rhesus monkey. In Bourne, G. H., ed. The Rhesus monkey: anatomy and physiology. New York: Academic Press. [DBA]Google Scholar
Peters, M., and Monjan, A. A. (1971) Behavior after cerebellar lesions in cats and monkeys. Physiology and Behavior 6: 205–6. [GGB]CrossRefGoogle ScholarPubMed
Plotnik, R.; Mir, D.; and Delgado, J. M. R. (1970) Aggression, noxiousness and brain stimulation in unrestrained rhesus monkeys. In Eleftherion, B. F., ed. Physiology of aggression and defeat, pp. 143221. New York: Plenum Press. [JMRD]Google Scholar
Pond, F. J.; Sinnamon, H. M.; and Adams, D. B. (1977) Single unit recording in the midbrain of rats during shock elicited fighting behavior. Brain Re search 120: 469–85. [DBA, JMK]CrossRefGoogle ScholarPubMed
Potegal, M.; Blau, A.; and Glusman, M. (1978) Septal stimulation inhibits intraspecific aggression in hamster. Society for Neuroscience Abstracts 4: 364. [DBA]Google Scholar
Powell, D. A. (1974) Shock-elicited aggression: an animal model of defensive behavior. Paper presented at a symposium entitled Infrahuman models of experimental aggression. Eastern Psychological Association. [RJR]Google Scholar
Pribram, K. H., and Fulton, J. F. (1954) An experimental critique of the effects of anterior cingulate ablations in monkey. Brain 77: 3444. [DBA]CrossRefGoogle ScholarPubMed
Reis, D. J. (1974) Central neurotransmitters in aggression. Research Publications of the Association for Research on Nervous and Mental Disease 52: 119–48. [BE]Google ScholarPubMed
Reis, D. J.; Doba, N.; and Nathan, M. A. (1973) Predatory attack, grooming, and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science 182: 845–47. [GGB]CrossRefGoogle ScholarPubMed
Renfrew, J. W. (1969) The intensity function and reinforcing properties of brain stimulation that elicits attack. Physiology and Behavior 4: 509–15. [DBA]CrossRefGoogle Scholar
Reynierse, J. H. (1971) Submissive postures during shock-elicited aggression. Animal Behaviour 19: 102–7. [RJR]CrossRefGoogle Scholar
Roberts, W. W. (1962) Fear-like behavior elicited from dorsomedial thalamus of cat. Journal of Comparative and Physiological Psychology 55: 191–97. [DBA, RJW]CrossRefGoogle Scholar
Roberts, W. W., Steinberg, M. L.; and Means, L. W. (1967) Hypothalamic mechanisms for sexual, aggressive and other motivational behaviors in the opossum. Journal of Comparative and Physiological Psychology 64: 115. [DBA]CrossRefGoogle Scholar
Robinson, B. W.; Alexander, M.; and Bowne, G. (1969) Dominance reversal resulting from aggressive responses evoked by brain telestimulation. Physiology and Behavior 4: 749–52. [DBA]CrossRefGoogle Scholar
Rodgers, R. J., and Brown, K. (1976) Amygdaloid function in central cholinergic mediation of shock-induced aggression in the rat. Aggressive Behavior 2: 131–52. [DBA, RJB, BE]3.0.CO;2-K>CrossRefGoogle Scholar
Rodgers, R. J.; Semple, J. M.; Cooper, S. J.; and Brown, K. (1976) Shock-induced aggression and pain sensitivity in rat: catecholamine involvement in corticomedial amygdala. Aggressive Behavior 2: 193204. [DBA]3.0.CO;2-5>CrossRefGoogle Scholar
Romaniuk, A.; Brudzinsky, S.; and Gronska, J. (1973) Specific changes in the defensive behavior of cats following injection of d-tubocurarine into the hypothalamic areas. Acta Physiologica Polonica 24: 305–11. [LD]Google ScholarPubMed
Romaniuk, A., and Golebiewski, H. (1977) Midbrain interaction with the hypothalamus in expression of aggressive behavior in cats. Acta Neurobiologica 37: 8397. [DBA]Google ScholarPubMed
Ropartz, P. (1968) The relation between olfactory stimulation and aggressive behaviour in mice. Animal Behaviour 16: 97100. [RG]CrossRefGoogle ScholarPubMed
Rosvold, H. E.; Mirsky, A. F.; and Pribram, K. H. (1954) Influence of amygdalectomy on social behavior in monkeys. Journal of Comparative and Physiological Psychology 47: 173–78. [DBA]CrossRefGoogle ScholarPubMed
Rothfield, L., and Harman, P. J. (1954) On the relation of the hippocampalfornix system to the control of rage responses in cats. Journal of Comparative Neurology 101: 265–81. [DBA]CrossRefGoogle Scholar
Ruth, R. E., and Rosenfeld, J. P. (1977) Dependence of photic cortical effects of aversive central gray stimulation on reticular activation. International Journal of Neuroscience 7: 165–73. [DBA]CrossRefGoogle Scholar
Ryon, C. J. (1979) Aspects of dominance behavior in groups of sibling coyote/red wolf hybrids. Behamoral and Neural Biology 25: 6978. [JCF]CrossRefGoogle Scholar
Sandner, G.; Schmitt, P.; and Karli, P. (1979 in press) Central gray and medial hypothalamic stimulation: correlation between escape behavior and unit activity. Brain Research. [PK]CrossRefGoogle Scholar
Saper, C. B.; Swanson, L. W.; and Cowan, W. M. (1976) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. Journal of Comparative Neurology 169: 409–42. [DBA]CrossRefGoogle ScholarPubMed
Schaefer, K. P. (1970) Unit analysis and electrical stimulation in the tectum opticum of rabbits and cats. Brain, Behavior, and Evolution 3: 222–40. [DBA]Google Scholar
Schmitt, P. and Karli, P. (1979 submitted for publication) Escape induced by combined stimulation in medial hypothalamus and central gray. [PK]CrossRefGoogle Scholar
Schmitt, P.; Paunovic, V. R.; and Karli, P. (1979 in press) Effects of mesencephalic central gray and raphé nuclei lesions on hypothalamically induced escape. Physiology and Behavior 23(1). [PK]CrossRefGoogle ScholarPubMed
Schneider, G. E. (1969) Two visual systems. Science 163: 895902. [DBA]CrossRefGoogle ScholarPubMed
Schreiner, L., and Kling, A. (1953) Behavioral changes following rhinencephalic injury in cats. Journal of Neurophysiology 16: 643–59. [DBA]CrossRefGoogle Scholar
Schreiner, L.; Rioch, D. M.; Pechtel, C.; and Masserman, J. H. (1952) Behavioral changes following thalamic injury in cat. Journal of Neurophysiology 16: 234–46. [DBA]CrossRefGoogle Scholar
Sclafani, A. (1971) Neural pathways involved in the ventromedial hypothalamic lesion syndrome in the rat. Journal of Comparative and Physiological Psychology 77: 7096. [DBA]CrossRefGoogle ScholarPubMed
Scott, J. P. (1966) Agonistic behavior of mice and rats: American Zoologist 6: 683701. [RJR]CrossRefGoogle ScholarPubMed
Senault, B. (1968) Syndrome agressif induit par l'apomorphine chez le rat. Journal de Physiologie (Paris) 60(suppl. 2):543–44. [BS]Google Scholar
Senault, B. (1970) Comportement d'agressivité intraspecifique induit par l'apomorphinechez le rat. Psychopharmacologia (Berlin) 18: 271–87. [BS]CrossRefGoogle Scholar
Senault, B. (1973) Effets de lésions du septum, de l'amygdale, du striatum, de la substantia nigra et de l'ablation des bulbes olfactifs sur le comportement d'agressivité intraspécifique induit par l'apomorphine chez le rat. Psychopharmacologia (Berlin) 28: 1325. [BS]CrossRefGoogle Scholar
Senault, B. (1977) Effets de lésions de l'hypothalamus et du globus pallidus et d'injections d'apomorphine dans le globus pallidus, le noyau caudé, la substantia nigra et le septum sur le comportement d'agressivité induit par l'apomorphine chez le rat. Psychopharmacologia (Berlin) 55: 135–40. [BS]CrossRefGoogle Scholar
Severini, W. H. (1973) A lesion study concerning the functional role of the hypothalamus in competitive attack behavior. Wesleyan University undergraduate thesis. [DBA]Google Scholar
Shik, M. L., and Orlovsky, G. N. (1976) Neurophysiology of locomotor automatism. Physiological Reviews 56: 465501. [DBA]CrossRefGoogle ScholarPubMed
Shipley, J. E., and Kolb, B. (1977) Neural correlates of species-typical behavior in the Syrian golden hamster. Journal of Comparative and Physiological Psychology 91: 1056–73. [DBA]CrossRefGoogle Scholar
Siegel, A., and Skog, D. (1970) Effects of electrical stimulation of the septum upon attack behavior elicited from the hypothalamus in the cat. Brain Research 23: 371–80. [DBA]CrossRefGoogle ScholarPubMed
Skultety, F. M. (1963) Stimulation of periaqueductal gray and hypothalamus. Archives of Neurology and Psychiatry 8: 608–20. [DBA]CrossRefGoogle Scholar
Slotnick, B. M., and McMullen, M. F. (1972) Intraspecific fighting in albino mice with septal forebrain lesions. Physiology and Behavior 8: 333–37. [DBA]CrossRefGoogle ScholarPubMed
Slotnick, B. M.; McMullen, M. F.; and Fleischer, S. (1973) Changes in emotionality following destruction of the septal area in albino mice. Brain, Behavior, and Evolution 8: 241–52. [DBA]Google ScholarPubMed
Slusher, M. A., and Hyde, J. E. (1966) Effect of diencephalic and midbrain stimulation on ACTH levels in unrestrained cats. American Journal of Physiology 210: 103–8. [DBA]CrossRefGoogle ScholarPubMed
Snider, R. S. and Maiti, A. (1976) Cerebellar contribution to the Papez circuit. Journal of Neuroscience Research 2: 133146. [GGB]CrossRefGoogle ScholarPubMed
Sødersten, P.; Berge, O-G.; and Hole, K. (1978) Effects of p-chioroamphet-amine and 5,7 dihydroxytryptamine on the sexual behavior of gonadectomized male and female rats. Pharmacology, Biochemistry, and Behavior 9: 499508. [HU]CrossRefGoogle ScholarPubMed
Sodetz, F. J., and Bunnell, B. N. (1970) Septal ablation and the social behavior of the golden hamster. Physiology and Behavior 5: 7988. [DBA]CrossRefGoogle ScholarPubMed
Sodetz, F. J.; Matalka, E. S.; and Bunnell, B. N. (1967) Septal ablation and affective behavior in golden hamster. Psychonomic Science 7: 189–90. [DBA]CrossRefGoogle Scholar
Spiegel, E. A.; Miller, H. R.; and Oppenheimer, M. J. (1940) Forebrain and rage reactions. Journal of Neurophysiology 3: 538–48. [DBA]CrossRefGoogle Scholar
Sprague, J. M.; Chambers, W. W.; and Stellar, E. (1961) Attentive, affective, and adaptive behavior in the cat. Science 133: 165–73. [DBA]CrossRefGoogle ScholarPubMed
Stein, R. B.; Pearson, K. G.; Smith, R. S.; and Redford, J. B. (1973) Control of posture and locomotion. New York: Plenum Press. [RMG]CrossRefGoogle Scholar
Strumwasser, F. (1967) Types of information stored in single neurons. In Wiersma, C. A., ed. Invertebrate nervous systems. Chicago: University of Chicago Press, pp. 291–319. [DBA]Google Scholar
Studdert-Kennedy, M. (1976) Speech perception. In Lass, N. J., ed. Contemporary issues in experimental phonetics, pp. 243–93. New York: Academic Press. [JCF]CrossRefGoogle Scholar
Svare, B.; Davis, P. G.; and Gandelman, R. (1974) Fighting behavior in female mice following chronic androgen treatment during adulthood. Physiology and Behavior 12: 399403. [RG]CrossRefGoogle ScholarPubMed
Szentagothai, J.; Flerko, B.; Mess, B.; and Halasz, B. (1962) Hypothalamic control of the anterior pituitary. Budapest: Akademiai, Kiadu. [DBA]Google Scholar
Taghert, P. H., and Willows, A. O. D. (1978) Control of a fixed action pattern by single, central neurons in the marine mollusk, Tritonia diomedea. Journal of Comparative Physiology 123: 253–59. [RMG]CrossRefGoogle Scholar
Takahashi, L. K., and Blanchard, R. J. (submitted for publication) Attack and defense in wild and laboratory rats. [RJB]Google Scholar
Thompson, R. (1978) A behavioral atlas of the rat brain. New York: Oxford University Press. [DBA]Google Scholar
Thor, D. H., and Ghiselli, W. B. (1975) Vibrissal anesthesia and suppression of irritable fighting in rats: a temporary duration of effect in experienced fighters. Physiological Psychology 3: 13. [DBA]CrossRefGoogle Scholar
Thorne, B. M., and Linder, L. H. (1971) No change in emotionality of rats following bulbectomy. Psychonomic Science 24: 207–8. [BS]CrossRefGoogle Scholar
Tinbergen, N. (1951) The study of instinct. New York: Oxford University Press. [DBA]Google Scholar
Toates, F. M., and Archer, J. (1978) A comparative review of motivational systems using classical control theory. Animal Behaviour 26: 368–80. [PRW]CrossRefGoogle Scholar
Tsubokawa, T., and Sutin, J. (1963) Mesencephalic influence upon the hypothalamic ventromedial nucleus. Electroencephalography and Clinical Neurophysiology 15: 804–10. [DBA]CrossRefGoogle ScholarPubMed
Ueki, S.; Nurimoto, S.; and Ogawa, N. (1972) Characteristics in emotional behavior of the rat with bilateral olfactory bulb ablations. Folia Psychiatrica et Neurologica Japonica 26: 229–39. [BS]Google ScholarPubMed
Ursin, H. (1964) Flight and defense behavior in cats. Journal of Comparative and Physiological Psychology 58: 180–86. [DBA, HU]CrossRefGoogle ScholarPubMed
Ursin, H. (1965) The effect of amygdaloid lesions on flight and defense behavior in cats. Experimental Neurology 11: 6179. [HU, DAY]CrossRefGoogle ScholarPubMed
Ursin, H. (1969) The cingulate gyrus – a fear zone? Journal of Comparative and Physiological Psychology. 68: 235–38. [HU]CrossRefGoogle ScholarPubMed
Ursin, H. (1972) Limbic control of emotional behavior. In Hitchcock, E.; Laitinen, L.; and Vaernet, K., eds. Psychosurgery. Springfield, Ill: C. C. Thomas. [HU]Google Scholar
Ursin, H., and Divac, I. (1975) Emotional behavior in feral cats with ablations of prefrontal cortex and subsequent lesions in amygdala. Journal of Comparative and Physiological Psychology 88: 3639. [HU]CrossRefGoogle ScholarPubMed
Ursin, H., and Kaada, B. R. (1960) Functional localization within the amygdaloid complex in the cat. Electroencephalography and Clinical Neurophysiology 12: 120. [DBA]CrossRefGoogle ScholarPubMed
Valenstein, E. S. (1973) Brain stimulation and motivation. Glenview, Ill.: Scott, Foresman Co. [JP]Google Scholar
Valenstein, E. S.; Cox, V. C.; and Kakolewski, J. W. (1969) The hypothalamus and motivated behavior. In Tapp, J. T., ed. Reinforcement and behavior, pp. 242–87. New York: Academic Press. [RB]CrossRefGoogle Scholar
Várszegi, K. M., and Decsi, L. (1967) Some characteristics of the rage reaction evoked by chemical stimulation of the hypothalamus. Acta Physiologica Academiae Scientiarum Hungaricae 32: 6168. [LD]Google ScholarPubMed
Veening, J. G. (1975) Behavioral changes induced by electrical stimulation of ventromedial hypothalamic area of rats. Brain Research 85: 191. [DBA, RJB]Google Scholar
Vergnes, M., and Karli, P. (1963) Déclenchement du comportement d'agression interspécifique rat-souris par ablation bilatérale des bulbes olfactifs. Action de l'hydroxyzine sur cette agressivité provoquée. Comptes Rendus des Séances de la Societé de Biologie (Paris) 157: 1063–65. [BS]Google Scholar
von Holst, E. (1932) Untersuchungen über die Funktionen des Zentralnerven-systems beim Regenwurm (Lumbricus terrestris L.). Zoologishes Jahrbuch (Physiologie) 51: 547–88. [PL]Google Scholar
von Holst, E. (1933) Weitere Versuche zum nervösen Mechanismus der Bewegungen beim Regenwurm (Lumbricus terrestris L.) Zoologishes Jahrbuch (Physiologie) 53: 67100. [PL]Google Scholar
von Holst, E., and von St. Paul, U. (1960) Vom Wirkungsgefüge der Triebe. Die Naturwiss. 18: 409–22. (English version: On the functional organisation of drives. Animal Behavior 11:1–20, 1963) [PL]CrossRefGoogle Scholar
Votaw, C. L. (1960) Study of septal stimulation and ablation in the macaque monkey. Neurology 10: 202–9. [DBA]CrossRefGoogle Scholar
Waldbillig, R. J. (1975) Attack, eating, drinking and gnawing elicited by electrical stimulation of rat mesencephalon and pons. Journal of Comparative and Physiological Psychology 89: 200–12. [DBA, RJW]CrossRefGoogle ScholarPubMed
Waldbillig, R. J. (1979) The role of electrically excitable mesencephalic behavioral mechanisms in naturally occurring attack and ingestive behavior. Physiology and Behavior 22: 473–77. [RJW]CrossRefGoogle ScholarPubMed
Watson, P. J. (1978a) Behavior maintained by electrical stimulation of the rat cerebellum. Physiology and Behavior 21: 749–55. [GGB]CrossRefGoogle ScholarPubMed
Watson, P. J. (1978b) Nonmotor functions of the cerebellum. Psychological Bulletin 85: 944–67. [GGB]CrossRefGoogle ScholarPubMed
Wheatley, M. D. (1944) The hypothalamus and affective behavior in cats: a study of the effects of experimental lesions. Archives of Neurology and Psychiatry 52: 296316. [DBA]CrossRefGoogle Scholar
Wiepkema, P. R. (1978) Reactions on crowding. Proceedings of the Zodiac Symposium on Adaptation, pp. 2529. The Netherlands: Wageningen. [PRW]Google Scholar
Wilson, E. O. (1975) Sociobiology: the new synthesis. Cambridge, Mass.: Harvard University Press. [DBA]Google Scholar
Wise, D. A., and Pryor, T. L. (1977) Effects of ergocornine and prolactin on aggression in the postpartum golden hamster. Hormones and Behavior 8: 3039. [DBA, RG]CrossRefGoogle ScholarPubMed
Wolfle, T. L.; Moyer, D. J.; Carder, B.; and Liebeskind, T. C. (1971) Motivational effects of electrical stimulation in the dorsal tegmentum of the rat. Physiology and Behavior 7: 569–74. [DBA]CrossRefGoogle ScholarPubMed
Woods, J. W. (1956) “Taming” of the wild Norway rat by rhinencephalic lesions. Nature 178: 869. [DBA]CrossRefGoogle ScholarPubMed
Woods, J. W. (1964) Behavior of chronic decerebrate rats. Journal of Neurophysiology 27: 635–44. [DBA]CrossRefGoogle ScholarPubMed
Woodworth, C. H. (1971) Attack elicited in rat by electrical stimulation of the lateral hypothalamus. Physiology and Behavior 6: 345–53. [DBA]CrossRefGoogle ScholarPubMed
Woodworth, R. S., and Sherrington, C. S. (1904) A pseudoaffective reflex and its spinal path. Journal of Physiology 31: 234–43. [DBA]CrossRefGoogle Scholar
Yaksh, T. L.; Yeung, J. C.; and Rudy, T. A. (1976) Systematic examination in the rat of the brain sites sensitive to direct application of morphine: observations of differential effects within the periaqueductal gray. Brain Research 114: 83103. [DBA]CrossRefGoogle ScholarPubMed
Yutzey, D. A.; Meyer, P. M.; and Meyer, D. R. (1964) Emotionality changes following septal and neocortical ablations. Journal of Comparative and Physiological Psychology 58: 463–65. [DBA]CrossRefGoogle ScholarPubMed
Zanchetti, A., and Zoccolini, A. (1954) Autonomic hypothalamic outbursts elicited by cerebellar stimulation. Journal of Neurophysiology 17: 475–83. [GGB]CrossRefGoogle ScholarPubMed
Zook, J. M., and Adams, D. B. (1975) Competitive fighting in the rat. Journal of Comparative and Physiological Psychology 88: 418–23. [DBA]CrossRefGoogle ScholarPubMed
Zucker, R. S. (1972) Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. Journal of Neurophysiology 35: 599620. [RMG]CrossRefGoogle ScholarPubMed