Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T05:36:17.166Z Has data issue: false hasContentIssue false

When is a “center” not a “center”? When it's “anatomically distributed”: Prospects for a “diffuse REM center” (“generator”)

Published online by Cambridge University Press:  04 February 2010

Peter J. Morgane
Affiliation:
Worcester Foundation for Experimental Biology, Shrewsbury, Mass. 01545

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, S. T., Rashed, S., Biber, M. P. & Hobson, J. A. (1982) Brain state and body position. Archives of General Psychiatry 39:330–35. [taJAH]CrossRefGoogle ScholarPubMed
Adrien, J. & Lanfumey, L. (1984) Neuronal activity of the developing raphe dorsalis: Its relation with the state of vigilance. In: Experimental brain research. Supplement 8, Sleep mechanisms, ed. Borbély, A. & Valatx, J. L.. Springer. [taJAH]Google Scholar
Aghajanian, G. K., Cedarbaum, J. M. & Wang, R. Y. (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Research 136:570–77. [taJAH]CrossRefGoogle ScholarPubMed
Aghajanian, G. K. & Lakoski, J. M. (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: Studies in brain slices showing increased potassium conductance. Brain Research 305:181–85. [taJAH, PAMvD]CrossRefGoogle Scholar
Aghajanian, G. K. & Rogawski, M. A. (1983) The physiological role of a- adrenoceptors in the CNS: New concepts from single-cell studies. Trends in Pharmacological Sciences 4:315–18. [PAMvD]CrossRefGoogle Scholar
Aghajanian, G. K. & Wang, R. Y. (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Research 122:229–42. [taJAH, JRN]CrossRefGoogle ScholarPubMed
Akerstedt, T. (1984) Hormones and sleep. In: Experimental brain research, Supplement 8, Sleep mechanisms, ed. Borbély, A. & Valatx, J. L.. Springer. [taJAH]Google Scholar
Albers, H. E., Lydic, R., Gander, P. H. & Moore-Ede, M. C. (1984) Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey, 1. The generation of rhythmicity. Brain Research 300:275–84. [taJAH]CrossRefGoogle Scholar
Amatruda, T. T., Black, D. A., McKenna, T. M., McCarley, R. W. & Hobson, J. A. (1975) Sleep cycle control and cholinergic mechanisms: Differential effects of carbachol injections at pontine brain stem sites. Brain Research 98:501–15. [taJAH]CrossRefGoogle ScholarPubMed
Armstrong, D. M., Saper, C. B., Levey, A. I., Wainer, B. I. & Terry, R. D. (1983) Distribution of cholinergic neurons in the rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase. Journal of Comparative Neurology 216:5368. [PJS]CrossRefGoogle ScholarPubMed
Aschoff, J. C. (1974) Reconsideration of oculomotor pathway. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.MIT Press. [JA]Google Scholar
Aserinsky, E. (1969) The maximal capacity for sleep: Rapid eye movements density as an index of sleep satiety. Biological Psychiatry 1:147–59. [SD]Google ScholarPubMed
Aserinsky, E. & Kleitman, N. (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–74. [rJAH]CrossRefGoogle ScholarPubMed
Ashby, W. R. (1960) Design for a brain. Chapman and Hill. [rJAH]Google Scholar
Aston-Jones, G. & Bloom, F. E. (1981) Activity of norepinephrine-containing locus coeruleus neurons in rats anticipates fluctuations in the sleep-waking cycle. Journal of Neuroscience 1:876–86. [SLF, taJAH]CrossRefGoogle ScholarPubMed
Azmitia, E. C. & Segal, M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. Journal of Comparative Neurology 179:641–88. [taJAH]CrossRefGoogle ScholarPubMed
Baghdoyan, H. A., Monaco, A. P., Rodrigo-Angulo, M. L., Assens, F., McCarley, R. W. & Hobson, J. A. (1984) Microinjection of neostigmine into the pontine reticular formation of cats enhances desynchronized sleep signs. Journal of Pharmacology and Experimental Therapeutics 231:173–80. [taJAH]Google ScholarPubMed
Baghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W. & Hobson, J. A. (1982) Cholinergic induction of desynchronized sleep signs by carbachol microinjection shows intrapontine site differentiation. Sleep Research 11:51. [taJAH]Google Scholar
Baghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W. & Hobson, J. A. (1984) Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Research 306:3952. [taJAH, PJS]CrossRefGoogle ScholarPubMed
Baghdoyan, H. A., Rodrigo-Angulo, M. L., McCarley, R. W. & Hobson, J. A. (1986) A neuroanatomical gradient for the cholinoceptive induction of desynchronized sleep signs. Manuscript submitted. [tarJAH]CrossRefGoogle Scholar
Baloh, R. W., Markham, C. H. & Furuya, N. (1982) Inhibition of pontine omnipauser neurons in the cat by 5-hydroxytryptophan. Experimental Neurology 76:586–93. [rJAH]CrossRefGoogle ScholarPubMed
Baraban, J. M. & Aghajanian, G. K. (1980) Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19:355–63. [taJAH]CrossRefGoogle ScholarPubMed
Batsel, H. L. (1960) Electroencephalographic synchronization and desynchronization in the chronic “cerveau isolé” of the dog. Electroencephalography and Clinical Neurophysiology 12:421–30. [HK]CrossRefGoogle ScholarPubMed
Batsel, H. L. (1964) Spontaneous desynchronization in the chronic cat “cerveau isolé.” Archives Italiennes de Biologie 102:547–66. [HK]Google Scholar
Baxter, B. L. (1969) Induction of both emotional behavior and a novel form of REM sleep by chemical stimulation applied to cat mesencephalon. Experimental Neurology 23:220–29. [PAMvD]CrossRefGoogle Scholar
Beersma, D. C. M. (1984) Sleep structure in depression. In: Experimental brain research, Supplement 8, Sleep mechanisms, ed. Borbély, A. & Valatx, J. L.. Springer. [taJAH]Google Scholar
Beersma, D. C. M., Daan, S. & Van den Hoofdakker, R. H. (1984) Distribution of REM latencies and other sleep phenomena in depression as explained by a single ultradian rhythm disturbance. Sleep 7:126–36. [taJAH]CrossRefGoogle ScholarPubMed
Bennett, A. F. & Ruben, J. A. (1979) Endothermy and activity in vertebrates. Science 206:649–54. [CHV]CrossRefGoogle ScholarPubMed
Berkinblit, M. B., Feldman, A. G. & Fukson, O. I. (1986) Adaptability of innate motor patterns and motor control mechanisms. The Behavioral and Brain Sciences in press. [taJAH]CrossRefGoogle Scholar
Berman, A. L. (1968) The brain stem of the cat. University of Wisconsin Press. [tarJAH]Google Scholar
Bizzi, E. (1966) Discharge patterns of single geniculate neurons during the rapid eye movements of sleep. Journal of Neurophysiology 29:1087–95. [taJAH]CrossRefGoogle ScholarPubMed
Bizzi, E. & Brooks, D. C. (1963) Functional connections between pontine reticular formation and lateral geniculate nucleus during sleep. Archives Italiennes de Biologie 101:666–80. [taJAH]Google Scholar
Boehme, R., Baker, T., Mefford, I., Barchas, J., Dement, W. C. & Ciaranello, R. (1984) Narcolepsy: Cholinergic receptor changes in an animal model. Life Sciences 34:1825–28. [TSK]CrossRefGoogle ScholarPubMed
Bonime, W. with Bonime, F. (1962) The clinical use of dreams. Basic Books. [RG]Google Scholar
Borbély, A. A. (1982) A two-process model of sleep. Human Neurobiology 1:195204. [AAB, taJAH]Google ScholarPubMed
Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I. & Lehmann, D. (1981) Sleep deprivation: Effect on sleep stages and EEG power density in man. Electroencephalography and Clinical Neurophysiology 51:483–93. [AAB]CrossRefGoogle ScholarPubMed
Borbély, A. A. & Neuhaus, H. U. (1979) Sleep deprivation: Effects on sleep and EEG in the rat. Journal of Comparative Physiology 133:7187. [SD]CrossRefGoogle Scholar
Borbély, A. A., Tobler, I. & Hanagasioglu, M. (1984) Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behavioral Brain Research 14:171–82. [AAB]CrossRefGoogle ScholarPubMed
Bowie, E. P. & Herbert, D. C. (1976) Immunocytochemical evidence for the presence of arginine vasotocin in the rat pineal gland. Nature 261:6667. [JRN]CrossRefGoogle ScholarPubMed
Bowker, R. M. (1985) Variability in the characteristics of pontogeniculooccipital spikes during paradoxical sleep. Experimental Neurology 87:212–24. [taJAH]CrossRefGoogle ScholarPubMed
Bowker, R. & Abbott, L. C. (1985) The nucleus raphe magnus: The relationship between the peptidergic and serotonergic neurons. Neuroscience Abstracts 11:124. [MS]Google Scholar
Bowker, R. M., Westlund, K. N., Sullivan, M. C., Wilber, J. F. & Coulter, J. D. (1983) Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex. Brain Research 288:3348. [taJAH]CrossRefGoogle ScholarPubMed
Bradley, P. B. (1972) The actions of drugs on single neurones in the brain. Progress in Brain Research 36:185–86. [BEJ]Google ScholarPubMed
Bradley, P. B., Dhawan, B. N. & Wolstencroft, J. H. (1966) Pharmacological properties of cholinoceptive neurones in the medulla and pons of the cat. Journal of Physiology 183:658–74. [PJS]CrossRefGoogle ScholarPubMed
Branchey, L., Branchey, M. & Nadler, R. D. (1973) Effects of hormones on sleep patterns of male rats gonadectornized in adulthood and in the neonatal period. Physiology and Behavior 11:609–11. [WF]CrossRefGoogle ScholarPubMed
Bremer, F. (1935) Cerveau isolé et physiologie du sommeil. Comptes Rendus de la Societé de Biologie (Paris) 118:1235–42. [taJAH, HK, WBM]Google Scholar
Brodal, A. (1969) Neurological anatomy in relation to clinical medicine. Oxford University Press. [rJAH]Google Scholar
Brooks, D. C. & Bizzi, E. (1963) Brain stem electrical activity during deep sleep. Archives Italiennes de Biologie 101:648–65. [taJAH]Google ScholarPubMed
Bucy, P. C., Ladpli, R. & Erlich, A. (1966) Destruction of the pyramidal tract in the monkey. Journal of Neurosurgery 25:123. [taJAH]CrossRefGoogle ScholarPubMed
Buttner-Ennever, J. A. & Henn, V. (1976) An autoradiographic study of the pathways from the pontine reticular formation involved in horizontal eye movements. Brain Research 108:155–64. [taJAH]CrossRefGoogle ScholarPubMed
Cahusac, P. M. B. & Hill, R. G. (1983) Alpha-2-adrenergic receptors on neurones in the region of the lateral reticular nucleus of the rat. Neuroscience Letters 42:279–84. [PAMvD]CrossRefGoogle ScholarPubMed
Campbell, S. S. & Tobler, I. (1984) Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews 8:269300. [taJAH]CrossRefGoogle ScholarPubMed
Campion, J., Latto, R. & Smith, Y. M. (1983) Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? The Behavioral and Brain Sciences 6:423–86. [taJAH]CrossRefGoogle Scholar
Card, J. P., Brecha, N., Karten, H. J. & Moore, R. Y. (1981) Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: Light and electron microscopic analysis. Journal of Neuroscience 1(11):12891303. [WF]CrossRefGoogle ScholarPubMed
Cedarbaum, J. M. & Aghajanian, G. K. (1977) Catecholamine receptors on locus coeruleus neurons: Pharmacological characterization. European Journal of Pharmacology 44:375–85. [taJAH]CrossRefGoogle ScholarPubMed
Cespuglio, R., Faradzi, H., Gomez, M. E. & Jouvet, M. (1981) Single unit recordings in the nuclei raphe dorsalis and magnus during sleeph–waking cycle of semi-chronic prepared cats. Neuroscience Letters 24:135–38. [tarJAH]CrossRefGoogle ScholarPubMed
Cespuglio, R., Gomez, M. E., Faradji, H. & Jouvet, M. (1982) Alterations in the sleep–waking cycle induced by cooling of the locus coeruleus area. Electroencephalography and Clinical Neurophysiology 54:570–78. [taJAH]CrossRefGoogle ScholarPubMed
Cespuglio, R., Laurent, J. P. & Calvo, J. M. (1976) Organisation anatomique des activités phasiques provoquées par la Réserpine au niveau du système oculo-moteur. Electroencephalography and Clinical Neurophysiology 40:1224. [RC]CrossRefGoogle Scholar
Cespuglio, R., Laurent, J. P. & Jouvet, M. (1975) Etude des relations entre l'activité ponto-géniculo-occipitale (PGO) et la motricité oculaire chez le chat sous Réserpine. Brain Research 83:319–35. [RC]CrossRefGoogle Scholar
Cespuglio, R., Verchere, G., Laurent, J. P. & Jouvet, M. (1975) Correlations between central PGO activity and ocular movements in the cat. In: Sleep 1974, ed. Lewin, P. & Koella, W. P.. Karger. [RC]Google Scholar
Chandler, S. H., Chase, M. H. & Nakamura, Y. (1980) Intracellular analysis of synaptic mechanisms controlling trigeminal motoneuron activity during sleep and wakefulness. Journal of Neurophysiology 44:359–71. [taJAH]CrossRefGoogle ScholarPubMed
Chase, M. H., Enomoto, S., Nurakami, T., Nakamura, Y. & Taire, M. (1981) Intracellular potential of medullary reticular neurons during sleep and wakefulness. Experimental Neurology 71:226–33. [taJAH]CrossRefGoogle ScholarPubMed
Chase, M. H. & Morales, F. R. (1983) Subthreshold excitatory activity and motoneuron discharge during REM periods of active sleep. Science 221:1195–98. [taJAH]CrossRefGoogle ScholarPubMed
Chase, M. H. & Morales, F. R. (1984) Supraspinal control of spinal cord motoneuron membrane potential during active sleep. In: Modulation of sensorimotor activity during alterations in behavioral states, ed. Bandler, R.. Liss. [taJAH]Google Scholar
Chu, N. S. & Bloom, F. (1974a) Activity patterns of catecholamine-containing pontine neurons in the dorso-lateral tegmentum of unrestrained cats. Journal of Neurobiology 5:527–44. [taJAH]CrossRefGoogle ScholarPubMed
Chu, N. S. & Bloom, F. (1974b) The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: Distribution of the cell bodies and some axonal projections. Brain Research 66:121. [taJAH]CrossRefGoogle Scholar
Coculescu, M., Serbaˇnescu, Al. & Temeli, E. (1979) Influence of arginine vasotocin administration on nocturnal sleep of human subjects. Revue Roumaine de Morphologie, d'Embryologie et de Physiologie 16:173–76. [JRN]Google ScholarPubMed
Cohen, M. I. (1979) Neurogenesis of respiratory rhythm in mammals. Physiological Reviews 59:1105–73. [taJAH]CrossRefGoogle Scholar
Cole, A. E. & Nicoll, R. A. (1983) Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science 221:12991301. [MS]CrossRefGoogle ScholarPubMed
Conrad, L. C. A., Leonard, C. M. & Pfaff, D. W. (1974) Connections of the median and dorsal raphe nuclei in the rat: An autoradiographic and degeneration study. Journal of Comparative Neurology 156:179206. [taJAH]CrossRefGoogle ScholarPubMed
Cordeau, J. P., Moreau, A., Beaulnes, A. & Laurin, C. (1963) EEG and behavioral changes following microinjections of acteylcholine andadrenaline in the brain stem of cats. Archives Italiennes de Biologie 101:3047. [PAMvD]Google Scholar
Crowne, D. D. (1983) The frontal eye fields and attention. Psychological Bulletin 93:232–60. [JA]CrossRefGoogle ScholarPubMed
Cuello, A. C. & Sofroniew, M. V. (1984) The anatomy of the CNS cholinergic neurons. Trends in Neuroscience 7:7478. [taJAH]CrossRefGoogle Scholar
Cuénod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L. & Streit, P. (1982) Transmitter-specific retrograde labeling of neurons. In: Cytochemical methods in neuroanatomy, ed. Chan-Palay, V. & Palay, S.. Liss. [MS]Google Scholar
Czeisler, C. A., Borbély, A. A., Hume, K. I., Kobayashi, T., Kronaure, R. E., Schulz, H., Weitzman, E. D., Zimmerman, J. C. & Zulley, J. (1980) Glossary of standardized terminology for sleep biological rhythm research. Sleep 2:287–88. [taJAH]Google Scholar
Czeisler, C. A., Weitzman, E. D., Moore-Ede, M. C., Zimmerman, J. C. & Knauer, R. S. (1980) Human sleep: Its duration and organization depend on its circadian phase. Science 210:1264–67. [taJAH]CrossRefGoogle ScholarPubMed
Daan, S., Beersma, D. G. M. & Borbély, A. A. (1984) The timing of human sleep: Recovery process gated by a circadian pacemaker. American Journal of Physiology 246:R161–R178. [AAB]Google ScholarPubMed
Dahlstrom, A. & Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system. Acta Physiologica Scandinavia 64 (Suppl. 247):136. [taJAH]Google Scholar
Davis, H. T. (1962) Introduction to nonlinear differential and integral equations. Dover. [taJAH]Google Scholar
Delashaw, J. B., Foutz, A. S., Guilleminault, & Dement, W. C. (1979) Cholinergic mechanisms and cataplexy in dogs. Experimental Neurology 66:745–57. [taJAH]CrossRefGoogle ScholarPubMed
Delorme, F. (1966) Monoamines et sommeils. Etude polygraphique neuropharmacologique et histochimique des états de sommeil chez lechat. Thèse Université de Lyon, Imprimerie LMD. [WBM]Google Scholar
DeWildt, D. J. & Porsius, A. J. (1981a) Central cardiovascular effects of physostigmine in the cat: Possible cholinergic aspects of blood pressure regulation. Archives of International Pharmacodynamics 253:2239. [PJS]Google Scholar
DeWildt, D. J. & Porsius, A. J. (1981b) The influence of physostigmine on sympathetic outflow and haemodynamics by an action upon the pontomedullary region of the cat. Archives of International Pharmacodynamics 253:4051. [PJS]Google Scholar
Divac, I. (1975) Magnocellular nuclei of the basal forebrain project to the neocortex, brainstem and olfactory bulb: Review of some functional correlates. Brain Research 93:385–98. [CHV]CrossRefGoogle Scholar
Drucker-Colin, R. & Bernal-Pedraza, J. G. (1983) Kainic acid lesions of gigantocellular tegmental field (FTG) neurons do not abolish REM sleep. Brain Research 272:387–91. [taJAH, WBM, JMS, PJS, RRV]CrossRefGoogle Scholar
Drucker-Colin, R., Bernal-Pedraza, J., Fernandez-Cancino, F. & Morrison, A. R. (1983) Increasing PGO spike density by auditory stimulation increases the duration and decreases the latency of rapid eye movement (REM) sleep. Brain Research 278:308–12. [tarJAH, JMS]CrossRefGoogle ScholarPubMed
Drucker-Colin, R., Bernal-Pedraza, J., Fernandez-Cancino, F. & Oksenberg, A. (1984) Is vasoactive intestinal polypeptide (VIP) a sleep factor? Peptides 5:837–40. [WF]CrossRefGoogle ScholarPubMed
Earnest, D. J. & Sladek, C. D. (1984) Circadian rhythm in vasopressin release from rat suprachiasmatic explants in vitro. Society for Neuroscience Abstracts 10:500. [taJAH]Google Scholar
Economo, C. von (1930) Sleep as a problem of localization. Journal of Nervous and Mental Disease 71:249–59. [HK]CrossRefGoogle Scholar
Edwards, S. B. (1975) Autoradiographic studies of the projections of the midbrain reticular formation: Descending projections of nucleus cuneiformis. Journal of Comparative Neurology 161:341–58. [taJAH]CrossRefGoogle ScholarPubMed
Edwards, S. B. & DeOlmos, J. S. (1976) Autoradiographic studies of the projections of the midbrain reticular formation: Ascending projections of nucleus cuneiformis. Journal of Comparative Neurology 165:417–32. [taJAH]CrossRefGoogle ScholarPubMed
Eiden, L. E. G., Nilaver, G. & Palkovitz, M. (1982) Distribution of vasoactive intestinal polypeptide (VIP) in the rat brain stem nuclei. Brain Research 231:472–77. [WF]CrossRefGoogle ScholarPubMed
Elazar, Z. (1985) Epileptogenic effect of carbachol microinjected in the brainstem. Society for Neurosciences Abstracts 11:1314. [ZE]Google Scholar
Elazar, Z. & Feldman, Z. (1986) Brainstem experimental seizures produced by microinjections of carbachol. Submitted for publication. [ZE]CrossRefGoogle Scholar
Elazar, Z. & Hobson, J. A. (1985) Neuronal excitability control in health and disease: A neurophysiological comparison of REM sleep and epilepsy. Progress in Neurobiology, in press. [tarJAH, ZE]CrossRefGoogle Scholar
Emde, R. N. & Metcalf, P. R. (1970) An electroencephalographic study of behavioral rapid eye movement states in the human newborn. Journal of Nervous and Mental Disease 150:376–86. [taJAH]CrossRefGoogle ScholarPubMed
Evarts, E. V. (1960) Effects of sleep and waking on spontaneous and evoked discharge of single units in visual cortex. Federation Proceedings 19:828–37. [taJAH]Google ScholarPubMed
Evarts, E. V. (1964) Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. Journal of Neurophysiology 27:152–71. [taJAH]CrossRefGoogle ScholarPubMed
Evarts, E. V. (1965) Relation of discharge frequency to conduction velocity in pyramidal tract neurons. Journal of Neurophysiology 28:216–28. [taJAH]CrossRefGoogle ScholarPubMed
Everitt, B. J., Hokfelt, T., Terenius, L., Tatemoto, K., Mutt, V. & Goldstein, M. (1984) Differential co-existence of neuropeptide Y (NPY)- like immunoreactivity with catecholamine in the central nervous system of the rat. Neuroscience 11:443–62. [taJAH]CrossRefGoogle ScholarPubMed
Faull, K. F., Zeller-DeAmicis, L. C., Radde, L., Bowersox, S. S., Baker, T. L., Kilduff, T. S. & Dement, W. C. (1986) Biogenic amine concentrations in the brains of normal and narcoleptic canines: Current status. Sleep 9, in press. [TSK]CrossRefGoogle Scholar
Feinberg, I. (1974) Changes in sleep cycle patterns with age. Journal of Psychiatric Research 10:283306. [SD]CrossRefGoogle ScholarPubMed
Fernstrom, J. D., Fisher, L. A., Cusak, B. M. & Gillis, M. A. (1980) Radioimmunologic detection and measurement of nonapeptides in the pineal gland. Endocrinology 106:243–51. [JRN]CrossRefGoogle ScholarPubMed
Fishbein, W. & Bright, P. F. (1986) Sexual dimorphism in sleep. In preparation. [WF]Google Scholar
Foote, S. L. (1973) Compensatory changes in REM sleep time of cats during adlibitum sleep and following brief REM sleep deprivation. Brain Research 54:261–76. [rJAH]CrossRefGoogle Scholar
Foote, S. L., Aston-Jones, G. & Bloom, F. E. (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences, USA 77:3033–37. [SLF]CrossRefGoogle ScholarPubMed
Foote, S. L., Bloom, F. E. & Aston-Jones, G. (1983) Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiological Reviews 63:844914. [SLF, taJAH, MS]CrossRefGoogle ScholarPubMed
Fuller, C. A., Lydic, R., Sulzman, F. M., Albers, H. E., Tepper, B. & Moore-Ede, M. C. (1981) Circadian rhythm of body temperature persists after suprachiasmatic lesions in the squirrel monkey. American Journal of Physiology 241:R38591. [taJAH]Google ScholarPubMed
Fung, S. J., Boxer, P. A., Morales, F. R. & Chase, M. H. (1982) Hyperpolarizing membrane responses induced in lumbar motoneurons by stimulation of the nucleus reticularis pontis oralis during active sleep. Brain Research 248:267–73. [ZE, taJAH]CrossRefGoogle ScholarPubMed
Fuxe, K. (1965) Evidence for the existence of monoamine neurons in the central nervous system, 3. Nerve terminals. Zeitschrift für Zellforschung und Mikroskopische Anatomie 65:573–96. [taJAH]CrossRefGoogle Scholar
French, T. & Fromm, E. (1964) Dream interpretation: A new approach. Basic Books. [RG]Google Scholar
Friedman, L. & Jones, B. E. (1984) Computer graphics analysis of sleep-wakefulness state changes after pontine lesions. Brain Research Bulletin 13:5368. [BEJ, PJS]CrossRefGoogle ScholarPubMed
Gallager, D. W. & Aghajanian, G. K. (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells, 2. Reversal by picrotoxin. European Journal of Pharmacology 39:357–64. [taJAH]CrossRefGoogle ScholarPubMed
Gallager, D. W. & Pert, A. (1978) Afferents to brain stem nuclei (brain stem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microintophoretically applied horseradish peroxidase. Brain Research 144:257–75. [taJAH]CrossRefGoogle Scholar
Gallistel, C. R. (1980) The organization of action: A new synthesis. Erlbaum. [taJAH]Google Scholar
Gassel, M. M., Marchiafava, P. L. & Pompeiano, O. (1964) Tonic and phasic inhibition of spinal reflexes during deep desynchronized sleep in unrestrained cats. Archives Italiennes de Biologie 102:471–99. [taJAH]Google ScholarPubMed
George, R., Haslett, W. L. & Jenden, D. J. (1964) A cholinergic mechanism in the brainstem reticular formation: Induction of paradoxical sleep. International Journal of Neuropharmacology 3:541–52. [PAMvD]CrossRefGoogle ScholarPubMed
Gillin, J. C. & Borbély, A. A. (1985) Sleep: A neurobiological window on affective disorders. Trends in Neuroscience 8:537–42. [rJAH]CrossRefGoogle Scholar
Gillin, J. C., Sitaram, N., Janowsky, D., Risch, C., Huey, L. & Storch, F. I. (1985) Cholinergic mechanisms in REM sleep. In: Sleep: Neurotransmitters and neuromodulators, ed. Wauquier, A., Gaillard, J. M., Monti, J. M. & Radulovacki, M.. Raven Press. [taJAH]Google Scholar
Gillin, J. C., Sitaram, N., Wehr, T., Duncan, W., Post, R., Murphy, D. L., Mendelson, W. B., Wyatt, R. J. & Bunney, W. E. (1984) Sleep and affective illness. In: Neurobiology of mood disorders, ed. Post, R. M. & Ballenger, J. C.. Williams and Wilkins. [WBM]Google Scholar
Glazer, E. J., Steinbusch, H., Verhofstad, A. & Basbaum, A. I. (1981) Serotonin neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin. Journal of Physiology (Paris) 77:241–45. [taJAH]Google ScholarPubMed
Glenn, L. L. & Dement, W. C. (1981a) Membrane potential, synaptic activity, and excitability of hindlimb motor neurons during wakefulness and sleep. Journal of Neurophysiology 46:839–54. [taJAH]CrossRefGoogle ScholarPubMed
Glenn, L. L. & Dement, W. C. (1981b) Membrane resistance and rheobase of hindlimb motor neurons during wakefulness and sleep. Journal of Neurophysiology 46:1076–88. [taJAH]CrossRefGoogle ScholarPubMed
Glenn, L. L. & Dement, W. C. (1985) Membrane potential and input resistance in alpha motoneurons of hindlimb extensors during isolated and clustered episodes of phasic events in REM sleep. Brain Research 339:7986. [taJAH]CrossRefGoogle ScholarPubMed
Glenn, L. L., Hadda, J., Roy, J. P., Deschenes, M. & Steriade, M. (1932) Anterograde tracer and field potential analysis of the neocortical layer I projection from nucleus ventralis medialis of the thalamus in the cat. Neuroscience 7:1861–77. [taJAH]CrossRefGoogle Scholar
Goldberg, G. (1985) Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences 8:567616. [taJAH]CrossRefGoogle Scholar
Goldstein, R. (1983) A GABAergic habenulo-raphe pathway mediation of the hypnogenic effects of vasotocin in cat. Neuroscience 10:941–45. [JRN]CrossRefGoogle ScholarPubMed
Goldstein, R. (1983) The administration of synthetic vasotocin into various spaces of the ventricular system of the brain and the sleep-wake cycle of the cat. Revue Roumaine de Neurologie 21:111–13. [JRN]Google ScholarPubMed
Graham-Brown, T. (1914) The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society (Britain) 84:308–19. [taJAH]Google Scholar
Graybiel, A. M. (1977) Direct and indirect preoculomotor pathways of the brain stem: An autoradiographic study of the pontine reticular formation in the cat. Journal of Comparative Neurology 175:3778. [taJAH]CrossRefGoogle ScholarPubMed
Greene, R. W. & Carpenter, D. O. (1981) Biphasic responses to acetylcholine in mammalian reticulospinal neurons. Cellular and Molecular Neurobiology 1:401–05. [PJS]CrossRefGoogle ScholarPubMed
Greene, R. W. & Carpenter, D. O. (1985) Actions of neurotransmitters on pontine medial reticular formation of the cat. Journal of Ncurophysiology 54:520–31. [ZE, rJAH, MS, PJS]CrossRefGoogle Scholar
Greenberg, R. (1981) Dreams and REM sleep: An integrative approach. In: Sleep dreams and memory, ed. Fishbein, W.. Spectrum Publications. [RC]Google Scholar
Greenberg, R. & Pearlman, C. (1978) If Freud only knew: A reconsideration of psychoanalytic dream theory. International Review of Psychoanalysis 5:7175. [RG]Google Scholar
Grillner, S. (1975) Some aspects on the descending control of the spinal circuits generating locomotor movements. In: Neural control of locomotion, ed. Herman, R. M., Grillner, S., Stein, P. S. G. & Stuart, S. G.. Plenum Press. [rJAH]Google Scholar
Groos, G. (1984) The physiological organization of the circadian sleep–wake cycle. In: Experimental brain research, Supplement 8, Sleep mechanisms, ed. Borbély, A. & Valatx, J. L.. Springer. [taJAH]Google Scholar
Gustafson, E. L. & Moore, R. Y. (1985) Differential projections of neuropeptide Y containing neurones in the locus coeruleus of the rat. Neuroscience Abstracts 11:89. [MS]Google Scholar
Guyenet, P. G. & Aghajanian, G. K. (1979) ACh, substance P, and met-enkephalin in the locus coeruleus: Pharmacological evidence for independent sites of action. European Journal of Pharmacology 53:319–28. [taJAH]CrossRefGoogle ScholarPubMed
Haefely, W., Jalfre, M. & Ruch-Munachon, M. A. (1975) A pathway and neurotransmitters involved in the control of noradrenergic locus coeruleus neurons. In: Chemical tools in catecholamine research. Vol. 2, ed. Almgren, O., Carlsson, A. & Engel, J.. North-Holland. [WH]Google Scholar
Haefely, W., Ruch-Monachon, M. A., Jalfre, M. & Schaffner, R. (1976) Interaction of psychotropic agents with central neurotransmitters as revealed by their effects on PGO waves in the cat. Drug Research 26:710. [WH]Google ScholarPubMed
Haigler, H. J. & Aghajanian, G. K. (1974) Lysergic acid diethylamide and serotonin: A comparison of effects on serotonergic neurons and neurons containing a serotonergic input. Journal of Pharmacology and Experimental Therapeutics 188:688–99. [taJAH]Google Scholar
Hanada, Y. & Kawamura, H. (1981) Sleep-waking electrocorticographic rhythms in chronic cerveau isolé rats. Physiology and Behavior 26:725–28. [HK]CrossRefGoogle ScholarPubMed
Heimer, L. (1978) The olfactory cortex and the ventral striatum. In: Limbic mechanisms: The continuing evolution of the limbic concept, ed. Livingston, K. E. & Hornykiewicz, O.. Plenum. [CHV]Google Scholar
Hendricks, J. C., Morrison, A. R. & Mann, G. L. (1982) Different behaviors during paradoxical sleep without atonia depend upon pontine lesion site. Brain Research 239:81105. [taJAH]CrossRefGoogle ScholarPubMed
Hendry, S. H., Jones, E. G. & Graham, J. (1979) Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. Journal of Comparative Neurology 185:679714. [taJAH]CrossRefGoogle ScholarPubMed
Henley, K. & Morrison, A. R. (1974) A re-evaluation of the effects of lesions on the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in cat. Acta Neurobiologiae Experimentalis (Warsaw) 34:215–32. [taJAH]Google Scholar
Henn, V. (1980) Reticulo-oculomotor neurons: Specificity of discharge in relation to eye movements. Neuroscience Research Program Bulletin 18:5558. [taJAH]Google Scholar
Henn, V., Baloh, R. W. & Hepp, K. (1984) The sleep–wake transitions in the oculomotor system. Experimental Brain Research 54:166–76. [taJAH]CrossRefGoogle ScholarPubMed
Henn, V., Buttner-Ennever, J. A. & Hepp, K. (1982) The primate oculomotor system, 1. Motoneurons: A synthesis of anatomical, physiological, and clinical data. Human Neurobiology 1:7785. [taJAH]Google ScholarPubMed
Henn, V., Hepp, K. & Buttner-Ennever, J. A. (1982) The primate occulomotor system, 2. Premotor systems: A synthesis of anatomical, physiological, and clinical data. Human Neurobiology 1:8795. [taJAH]Google Scholar
Hernández-Peón, R., Chavez-Ibarra, G., Morgane, P. J. & Timo-Iaria, C. (1962) Cholinergic pathways for sleep, alertness and rage in the limbic midbrain circuit. Acta Neurologica Latinoamericana 8:9396. [PJM]Google Scholar
Hernández-Peón, R., Chavez-Ibarra, G., Morgane, P. J. & Timo-Iaria, C.(1963) Limbic cholinergic pathways involved in sleep and emotional behavior. Experimental Neurology 8:93111. [PJM]CrossRefGoogle Scholar
Hess, W. R. (1931) Le sommeil. Comptes Rendus de Biologie 107:1333–64. [WBM, taJAH]Google Scholar
Heule, F., Lorez, H., Cumin, R. & Haefely, W. (1983) Studies on the anticonflict effect of midazolam injected into the amygdala. Neuroscience Letters. Suppl. 14:164. [WH]Google Scholar
Heym, J., Steinfels, G. F. & Jacobs, B. L. (1982) Activity of serotonin-containing neurons in the nucleus raphe pallidus of freely moving cats. Brain Research 251:259–76. [taJAH]CrossRefGoogle ScholarPubMed
Heym, J., Steinfels, G. F. & Jacobs, B. L. (1984) Chloral hydrate anesthesia alters the responsiveness of central serotonergic neurons in the cat. Brain Research 291:6372. [taJAH]CrossRefGoogle ScholarPubMed
Hirsch, J. C., Fourment, A. & Marc, M. E. (1983) Sleep-related variations of membrane potentials in the lateral geniculate body relay neurons of the cat. Brain Research 259:308–12. [taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A. (1965) The effects of chronic brain-stem lesions on cortical and muscular activity during sleep and waking in the cat. Electroencephalography and Clinical Neurophysiology 19:4162. [HK]CrossRefGoogle ScholarPubMed
Hobson, J. A. (1974) The cellular basis of sleep cycle control. In: Advances in sleep research, vol. 1, ed. Weitzman, E.. Spectrum. [rJAH]Google Scholar
Hobson, J. A. (1978) What is a behavioral state? In: Neuroscience symposia, vol. 3, Aspects of behavioral neurobiology, ed. Ferrendelli, J. A.. Society for Neuroscience. [taJAH]Google Scholar
Hobson, J. A. (1983a) Sleep mechanisms and pathophysiology: Some clinical implications of the reciprocal interaction hypothesis of sleep cycle control. Psychosomatic Medicine 45:123–40. [taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A. (1983b) Sleep: Order and disorder. Behavioral Biology and Medicine 1:136. [rJAH]Google Scholar
Hobson, J. A. (1984) How does the cortex know when to do what? A neurobiological theory of state control. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, M. W.. Neurosciences Research Foundation. [taJAH]Google Scholar
Hobson, J. A., Goldberg, M., Vivaldi, E. & Riew, D. (1983) Enhancement of desynchronized sleep signs after pontine microinjection of the muscarinic agonist bethanechol. Brain Research 275:127–36. [taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A. & McCarley, R. W. (1972) Spontaneous discharge rates of cat cerebellar Purkinje cells in sleep and waking. Electroencephalography and Clinical Neurophysiology 33:457–69. [rJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A. & McCarley, R. W. (1977) The brain as a dream state generator: An activation synthesis hypothesis of the dream process. American Journal of Psychiatry 134:1335–48. [RG]Google ScholarPubMed
Hobson, J. A., McCarley, R. W., Freedman, R. & Pivik, R. T. (1974) Time-course of discharge rate changes in cat pontine brainstem neurons during the sleep cycle. Journal of Neurophysiology 37:12971309. [taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W. & Nelson, J. P. (1983) Location and spike-train characteristics of cells in anterodorsal pons having selected decreases in firing rate during desynchronized sleep. Journal of Neurophysiology 50:770–83. [taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W., Pivik, R. T. & Freedman, R. (1974) Selective firing by cat pontine brainstem neurons in desynchronized sleep. Journal of Neurophysiology 37:497510. [taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. (1975) Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science 189:5558. [BEJ, taJAH]CrossRefGoogle ScholarPubMed
Hobson, J. A., McCarley, R. W., Wyzinski, P. W. & Pivik, R. T. (1973) Reciprocal tonic firing by FTG and LC neurons during the sleep-waking cycle. Sleep Research 2:29. [taJAH]Google Scholar
Hobson, J. A. & Steriade, M. (1986) The neuronal basis of behavioral state control. In: Handbook of physiology, Section I, “The Nervous System,” ed. Mountcastle, V.. Intrinsic Regulatory Systems of the Brain. American Physiological Society 4:701823. [taJAH]Google Scholar
Hokfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad, A., Nilsson, G., Brodin, E., Pernow, B. & Goldstein, M. (1978) Immunocytochemical evidence of substance P-like immunoreactivity in some 5-HT-containing neurons in the cat central nervous system. Neuroscience 3:517–38. [taJAH]CrossRefGoogle Scholar
Holst, E. von & Mittelstaedt, H. (1950) Das reafferenzprinzip. Die Naturwissen 20:464–76. [taJAH]CrossRefGoogle Scholar
Hoshino, K. & Pompeiano, O. (1976) Selective discharge of pontine neurons during the postural atonia produced by an anticholinesterase in the decerebrate cat. Archives Italiennes de Biologie 114:244–47. [taJAH]Google ScholarPubMed
Hösli, L., Tebecis, A. K. & Schonwetter, H. P. (1971) A comparison of the effects of monoamines on neurones of the bulbar reticular formation. Brain Research 25:357–70. [MS]CrossRefGoogle ScholarPubMed
Hounsgaard, J. & Kiehn, O. (1985) Ca+ +-dependent bistability induced by serotonin in spinal motoneurons. Experimental Brain Research 57:422–25. [PAMvD]CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1961) Evoked and spontaneous activity in single units of medial brain stem during natural sleep and waking. Journal of Neurophysiology 24:451–68. [taJAH]CrossRefGoogle Scholar
Inoue, S. & Borbély, A. A., eds. (1985) Endogenous sleep substances and sleep regulation. Japan Scientific Societies Press. [AAB]Google Scholar
Inoue, S., Honda, K. & Komoda, Y. (1985) Sleep-promoting substances. In: Sleep: Neurotransmitters and neuromodulators, ed. Wauquier, A., Gaillard, J. M., Monti, J. M. & Radulovacki, M.. Raven Press. [taJAH]Google Scholar
Inouye, S. T. & Kawamura, H. (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing suprachiasmatic nucleus. Proceedings of the National Academy of Science (USA) 76:5962–66. [tarJAH]CrossRefGoogle Scholar
Inubushi, S., Kobayashi, T., Oshima, T. & Torü, S. (1978) An intracellular analysis of EEG arousal in cat motor cortex. Japanese Journal of Physiology 28:689708. [MS]Google ScholarPubMed
Ito, K. & McCarley, R. W. (1984) Alterations in membrane potential and excitability of cat medial pontine reticular formation neurons during changes in naturally occurring sleep-wake states. Brain Research 292:169–75. [WF, taJAH]CrossRefGoogle ScholarPubMed
Ito, M. (1975) The control mechanisms of cerebellar motor systems. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.. MIT. [JA]Google Scholar
Jalfre, M., Ruch-Monachon, M. A. & Haefely, W. (1974) Method for assessing the interaction of agents with 5-hydroxytryptamine neurons and receptors in the brain. Advances in Biochemical Psychopharmacology 10:121–34. [WH]Google ScholarPubMed
Janowsky, D., Ei-Yousef, M. K., Davis, J. M. & Sederke, H. J. (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:623–35. [taJAH]Google ScholarPubMed
Jasper, H. H. & Tessier, J. (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172:601–2. [MS]CrossRefGoogle ScholarPubMed
Jeannerod, M., Monet, J. & Jouvet, M. (1965) Effects secondaires de la deafferentation visuelle sur l'activité electrique phasique ponto-geniculo-occipitale du sommeil paradoxical. Journal of Physiology (Paris) 57:255–56. [taJAH]Google Scholar
Johnson, E. S., Roberts, M. H. T. & Straughan, D. W. (1969) The responses of cortical neurones to monoamines under differing anesthetic conditions. Journal of Physiology (London) 203:261–80. [CHV]CrossRefGoogle Scholar
Johnston, M. V., McKinney, M. & Coyle, J. T. (1979) Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Proceedings of the National Academy of Sciences of the United States of America 79:5392–96. [CHV]CrossRefGoogle Scholar
Jones, B. E. (1979) Elimination of paradoxical sleep by lesions of the pontine gigantocellular tegmental field in the cat. Neuroscience Letters 13:285–93. [taJAH]CrossRefGoogle ScholarPubMed
Jones, B. E. (1980) Projections from the pontine gigantocellular tegmental field in the rat. Neuroscience Abstracts 6:59. [BEJ]Google Scholar
Jones, B. E. (1985a) Paradoxical sleep and chemically identified neurons of the reticular formation. In: Sleep: Neurotransmitters and neuromodulators, ed. Waquier, A., Gaillard, J. M., Monti, J. M. & Radulovacki, M.. Raven Press. [taJAH, KS, PJS]Google Scholar
Jones, B. E. (1985b) Neuroanatomical and neurochemical substrates of mechanisms underlying paradoxical sleep. In Brain mechanisms of sleep, ed. McGinty, D. J., Parmeggiani, P. L., Drucker-Colin, R. & Morrison, A.. Raven Press. [JMS]Google Scholar
Jones, B. E. & Friedman, L. (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. Journal of Comparative Neurology 215:382–96. [BEJ]CrossRefGoogle ScholarPubMed
Jones, B. E., Halaris, A. E., McIlhany, M. & Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat, 1. Axonal transport in central noradrenaline neurons. Brain Research 127:121. [taJAH]CrossRefGoogle ScholarPubMed
Jones, B. E., Harper, S. T. & Halaris, A. E. (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Research 124:473–96. [BEJ, JMS]CrossRefGoogle ScholarPubMed
Jones, B. E. & Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat, 2. Autoradiographic study. Brain Research 127:2353. [taJAH]CrossRefGoogle Scholar
Jones, B. E. & Yang, T.-Z. (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. Journal of Comparative Neurology 242:5692. [BEJ]CrossRefGoogle ScholarPubMed
Jones, E. G. & Leavitt, R. Y. (1974) Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. Journal of Comparative Neurology 154:349–78. [taJAH]CrossRefGoogle Scholar
Jones, R. S. G. (1982) Responses of cortical neurones to stimulation of the nucleus raphe medianus: A pharmacological analysis of the role of indoleamines. Neuropharmacology 21:511–20. [CHV]CrossRefGoogle ScholarPubMed
Jouvet, M. (1962) Recherches sur les structures nerveuses et les mécanismes responsables des differentes phases du sommeil physiologique. Archives Italiennes de Biologie 100:125206. [taJAH]Google Scholar
Jouvet, M. (1969) Biogenic amines and the States of sleep. Science 163:3241. [taJAH, HK, PJM]CrossRefGoogle ScholarPubMed
Jouvet, M. (1972) The role of monoamine and acetylcholine-containing neurons in the regulation of the sleep-wake cycle. Ergebnisse der Physiologie 64:166307. [taJAH]Google Scholar
Jouvet, M. (1978) Does a genetic programming of the brain occur during paradoxical sleep? In: Cerebral correlates of conscious experience, ed. Buser, P. & Rougeul-Buser, A.. Elsevier. [taJAH]Google Scholar
Jouvet, M. (1984) Indolamines and sleep-inducing factores. In: Sleep mechanisms, ed. Borbély, A. A. & Valatx, J. L.. Experimental Brain Research, Suppl. 8, Springer. [rAAB]Google Scholar
Jouvet, M., Bobillier, P., Pujol, J. F. & Renault, J. (1966) Effets des lesions du systéme du raphé sur le sommeil et la serotonine cerebrale. Comptes Rendus de la Societé de Biologie (Paris) 160:2343–50. [WBM]Google Scholar
Jouvet, M. & Delorme, F. (1965) Locus coerulus et sommeil paradoxical. Comptes Rendus de la Societé de Biologie 159:895–99. [taJAH]Google Scholar
Jouvet, M. & Michel, F. (1959) Correlations électromyographiques du sommeil chez le chat décortique et mésencephalique chronique. Comptes Rendus de la Societé de Biologie (Paris) 153:422–25. [taJAH]Google Scholar
Kanamori, N., Sakai, K. & Jouvet, M. (1980) Neuronal activity specific to paradoxical sleep in the ventromedial medullary reticular formation of unrestrained cats. Brain Research 189:251–55. [taJAH, KS]CrossRefGoogle Scholar
Karczmar, A. G., Longo, V. G. & De Carolis, A. S. (1970) A pharmacological model of paradoxical sleep: The role of cholinergic and monoamine systems. Physiology and Behavior 5:175–82. [taJAH]CrossRefGoogle ScholarPubMed
Kasamatsu, T. (1970) Maintained and evoked unit activity in the mesencephalic reticular formation of the freely behaving cat. Experimental Neurology 28:450–70. [taJAH]CrossRefGoogle ScholarPubMed
Katayama, Y., De Witt, D. S., Becker, D. P. & Hayes, R. L. (1984) Behavioral evidence for cholinoceptive pontine inhibitory area: Descending control of spinal motor output and sensory input. Brain Research 296:241–62. [JMS]CrossRefGoogle ScholarPubMed
Keller, E. L. (1974) Participation of medial pontine reticular formation in eye movement generation in the monkey. Journal of Neurophysiology 37:316–32. [taJAH]CrossRefGoogle ScholarPubMed
Kilduff, T. S., Bowersox, S., Kaitin, K., Baker, T. L., Ciaranello, R. D. & Dement, W. C. (1986) Muscarinic cholinergic receptors and the canine model of narcolepsy. Sleep 9, in press. [TSK]CrossRefGoogle Scholar
Kimura, H., McGeer, P. L., Peng, J. H. & McGeer, E. G. (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. Journal of Comparative Neurology 200:151201. [BEJ, JMS, PJS]CrossRefGoogle ScholarPubMed
Kimura, H. & Maeda, T. (1982) Aminergic and cholinergic systems in the dorsolateral pontine tegmentum. Brain Research 9:403–99. [PJS]Google ScholarPubMed
Klein, D. C. (1983) Converging circadian rhythms could explain effects of the pineal gland: Implications for psychiatric disease. In: Psychobiology and psychopathology, vol. 2: Circadian rhythms in psychiatry, ed. Wehr, T. A. & Goodwin, F. K.. Boxwood Press. [JRN]Google Scholar
Kornhuber, H. H. (1975) Cerebral cortex, cerebellum and basal ganglia: An introduction to their motor functions. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.. MIT [JA]Google Scholar
Kostowski, W., Giacalone, E., Garattini, S. & Valzelli, L. (1968) Studies on behavioural and biochemical changes in rats after lesions of midbrain raphe. European Journal of Pharmacology 4:371–76. [WBM]CrossRefGoogle ScholarPubMed
Kraemer, H. C., Hole, W. T. & Anders, T. F. (1984) The detection of behavioral state cycles and classification of temporal structure in behavioral states. Sleep 7:317. [taJAH]CrossRefGoogle ScholarPubMed
Krnjević, K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiological Reviews 43:418540. [CHV]CrossRefGoogle Scholar
Krnjević, K., Pumain, R. & Renaud, L. (1971) The mechanism of excitation by acetylcholine in the cerebral cortex. Journal of Physiology (London) 215:247–68. [MS]CrossRefGoogle ScholarPubMed
Kubo, T. & Misu, Y. (1981a) Changes in arterial blood pressure after microinjections of nicotine into the dorsal area of the medulla oblongata of the rat. Neuropharmacology 20:521–24. [PJS]CrossRefGoogle ScholarPubMed
Kubo, T. & Misu, Y.(1981b) Cardiovascular response to microinjection of physostigmine and choline into the dorsal medullary site of the rat. Neuropharmacology 20:1091–95. [PJS]CrossRefGoogle ScholarPubMed
Kubota, K. & Kidokoro, Y. (1965) Excitability of the membrane of lumbar motor neurons and natural sleep in the cat. Japanese Journal of Physiology 16:217–26. [taJAH]Google Scholar
Kuhn, T. S. (1962) The structure of scientific revolutions. University of Chicago Press. [rJAH]Google Scholar
Kulikowski, J. J. (1971) Information channels of the senses. In: Bionics: The nervous system as a control system, ed. Gawronski, R.. Elsevier. [PAMvD]Google Scholar
Kupfer, D. J., Spyker, D. G., Coble, P. & McPortland, R. J. (1978) Amitryptyline and EEG sleep in depressed patients, 1. Drug effect. Sleep 1:149–59. [SD]Google ScholarPubMed
Lamour, Y., Dutar, P. & Jobert, A. (1983) Effects of neuropeptides on rat cortical neurons: Laminar distribution and interaction with the effect of acetylcholine. Neuroscience 10:107–17. [MS]CrossRefGoogle ScholarPubMed
Laurent, J. P., Cespuglio, R. & Jouvet, M. (1972) Delimitation des voies ascendantes responsables de l'activité ponto-géniculo-occipitale chez le chat. Experientia 28:1174–75. [RC]CrossRefGoogle Scholar
Laurent, J. P., Cespuglio, R. & Jouvet, M. (1974) Délimitation des voies ascendantes de l'activité ponto-géniculo-occipitale chez le chat. Brain Research 65:2952. [RC]CrossRefGoogle Scholar
Lavie, P. & Kripke, D. F. (1981) Ultradian circa 1½-hour rhythms: A multioscillatory system. Life Sciences 29:2445–50. [taJAH]CrossRefGoogle Scholar
Leger, L., Degueurce, A., Lundberg, J. J., Pujol, J. F. & Møllgård, K. (1983) Origin and influence of the serotoninergic innervation of the subcommissural organ in the rat. Neuroscience 10:411–23. [JRN]CrossRefGoogle ScholarPubMed
Leger, L., Wiklund, L., Descarries, L. & Person, M. (1979) Description of an indolaminergic cell component in the cat locus coeruleus: A fluorescence histochemical and radioautographic study. Brain Research 168:4356. [taJAH]CrossRefGoogle ScholarPubMed
Lehmann, J., Nagy, J. I., Atmadja, S. & Fibiger, H. C. (1980) The nucleus basalts magnocellularis: The origin of a cholinergic projection to the neocortex of the rat. Neuroscience 5:1161–74. [CHV]CrossRefGoogle Scholar
Lendrem, D. W. (1984) Sleeping and vigilance in birds, 2. An experimental study of the Barbary dove (Streptopelia risoria). Animal Behaviour 32:243–48. [SD]CrossRefGoogle Scholar
Lidbrink, P. (1974) The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Research 74:1940. [JMM]CrossRefGoogle ScholarPubMed
Llinas, R. & Jahnsen, H. (1982) Electrophysiology of mammalian thalamic neurons in vitro. Nature 297:406–8. [WBM]CrossRefGoogle Scholar
Llinas, R., Yarom, Y. & Sugimori, M. (1981) Isolated mammalian brain in vitro: New technique for analysis of electrical activity of neuronal circuit function. Federation Proceedings 40:2240–45. [MS]Google ScholarPubMed
Lund, J. S., Lund, R. D., Henrickson, A. E., Bunt, A. H. & Fuchs, A. F. (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164:287304. [taJAH]CrossRefGoogle ScholarPubMed
Lundberg, J. M., Hokfelt, T., Schultzberg, M., Uvnas-Wallenstein, K., Kohler, C., & Said, S. I. (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: Evidence from combined immunohistochemistry and acetylcholinesterase staining. Journal of Neuroscience 4:1539–59. [WF]CrossRefGoogle ScholarPubMed
Lydic, R., McCarley, R. W. & Hobson, J. A. (1982) Multiple sleep cycle averaging of dorsal raphe activity. Sleep Research 11:22. [rJAH]Google Scholar
Lydic, R., McCarley, R. W. & Hobson, J. A. (1983a) The time-course of dorsal raphe discharge, PGO waves, and muscle tone averaged across multiple sleep cycles. Brain Research 274:365–70. [taJAH]CrossRefGoogle ScholarPubMed
Lydic, R., McCarley, R. W. & Hobson, J. A. (1983b) Enhancement of dorsal raphe discharge by medial pontine reticular formation stimulation depends on behavioral state. Neuroscience Letters 38:3540. [taJAH]CrossRefGoogle ScholarPubMed
Lydic, R., McCarley, R. W. & Hobson, J. A. (1984) Forced activity alters sleep cycle periodicity and dorsal raphe discharge rhythm. American Journal of Physiology 247:R13545. [SD, tarJAHrsqb;Google ScholarPubMed
Lydic, R., McCarley, R. W. & Hobson, J. A. (1985) Timing function of the dorsal raphe nucleus and the temporal organization of the ultradian sleep cycle. In: Experimental brain research, Supplement 12, Ultradian rhythms in physiology and behavior, ed. Schultz, H. & Lavie, P.. Springer. Pp. 125144. [taJAH]Google Scholar
Lydic, R., McCarley, R. W. & Hobson, J. A. (1986a) Forced locomotor activity alters the temporal organization of sleep: The discharge frequency of dorsal raphe neurons and PGO waves. Manuscript submitted. [tarJAH]Google Scholar
Lydic, R., McCarley, R. W. & Hobson, J. A. (1986b) Forced locomotor activity alters the temporal organization of sleep: The time course profiles of dorsal raphe neuronal discharge, PGO waves, and behavioral states. Manuscript submitted. [tarJAH]Google Scholar
Lydic, R. & Orem, J. (1979) Respiratory neurons of the pneumotaxic center during sleep and wakefulness. Neuroscience Letters 15:187–92. [taJAH]CrossRefGoogle ScholarPubMed
McCarley, R. W. (1978) Control of sleep-waking state alterations in Felis domesticus. In: Neuroscience symposia, vol. 3, Aspects of behavioral neurobiology. Society for Neuroscience. [taJAH]Google Scholar
McCarley, R. W. (1980) Pontine brainstem neuronal activity and REM sleep control mechanisms. Proceedings of the 28th International Congress of Physiological Sciences, Hungarian Academy of Science, Advances in Physiological Science 1:293–99. [taJAH]Google Scholar
McCarley, R. W. (1982) REM sleep and depression: Common neurobiological control mechanisms. American Journal of Psychiatry 139:565–70. [taJAH]Google ScholarPubMed
McCarley, R. W. & Hobson, J. A. (1971) Single neuron activity in cat gigantocellular tegmental field: Selectivity of discharge in desynchronized sleep. Science 174:1250–52. [BEJ]CrossRefGoogle ScholarPubMed
McCarley, R. W. & Hobson, J. A. (1975a) Discharge patterns of cat pontine brainstem neurons during desynchronized sleep. Journal of Neurophysiology 38:751–66. [taJAH]CrossRefGoogle ScholarPubMed
McCarley, R. W. & Hobson, J. A. (1975b) Neuronal excitability over the sleep cycle: A structural and mathematical model. Science 189:5860. [AAB, tarJAH, BEJ, PJS]CrossRefGoogle ScholarPubMed
McCarley, R. W. & Hoffman, E. (1981) REM sleep dreams and the activation-synthesis hypothesis. American Journal of Psychiatry 138:904–12. [taJAH]Google ScholarPubMed
McCarley, R. W. & Ito, K. (1983) Intracellular evidence linking medial pontine reticular formation neurons to PGO wave generation. Brain Research 280:343–48. [WF, taJAH]CrossRefGoogle ScholarPubMed
McCarley, R. W. & Ito, K. (1985) Desynchronized sleep-specific changes in membrane potential and excitability in medial pontine reticular formation neurons: Implications for concepts and mechanisms of behavioral state control. In Brain mechanisms of sleep, ed. McGinty, D. J., Drucker-Colin, R., Morrison, A. & Parmeggiani, P. L.. Raven Press. [ZE]Google Scholar
McCarley, R. W. & Massaquoi, S. (1985) A limit cycle model of the ultradian rhythm of REM sleep. In: Experimental brain research. Supplement 12, Ultradian rhythms, ed. Schultz, H. & Lavie, P.. Springer. [JA, tarJAH]Google Scholar
McCarley, R. W. & Massaquoi, S. (in press) A limit cycle mathematical model of the REM sleep oscillator system. American Journal of Physiology. [rJAH]Google Scholar
McCarley, R. W., Nelson, J. P. & Hobson, J. A. (1978) Ponto-geniculo-occipital (PGO) burst neurons: Correlative evidence for neuronal generators of PGO waves. Science 201:269–72. [taJAH]CrossRefGoogle ScholarPubMed
McCarley, R. W., Winkelman, J. W. & Duffy, F. H. (1983) Human cerebral potentials associated with REM sleep rapid eye movements: Link to PGO waves and waking potentials. Brain Research 274:359–64. [JA]CrossRefGoogle Scholar
McGinty, D. J. (1985) Physiological equilibrium and the control of sleep states. In: Brain mechanisms of sleep, ed. McGinty, D. J., Drucker-Colin, R., Morrison, A. & Parmeggiani, P. L.. Raven Press. [SJH, JMS, PJS]Google Scholar
McGinty, D. J. & Harper, R. M. (1972) 5-HT-containing neurons: Unit activity during sleep. Sleep Research 1:27. [rJAH]Google Scholar
McGinty, D. J. & Harper, R. M. (1976) Dorsal raphe neurons: Depression of firing during sleep in cats. Brain Research 101:569–75. [tarJAH]CrossRefGoogle ScholarPubMed
McGinty, D. J., Harper, R. M. & Fairbanks, M. K. (1974) Neuronal unit activity and the control of sleep states. In: Advances in sleep research, ed. Weitzman, E. D.. Spectrum Publications. [JMS]Google Scholar
McKenna, T., McCarley, R. W. & Hobson, J. A. (1975) Pontine brain stem unit activity during naturally occurring desynchronized sleep episodes and their carbachol-induced analogues. Sleep Research 4:49. [taJAH]Google Scholar
Madison, D. V. & Nicoll, R. A. (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature (London) 299:636–38. [MS]CrossRefGoogle ScholarPubMed
Maeda, T., Pin, C., Salvert, D., Ligier, M. & Jouvet, M. (1973) Les neurones contenant des catecholamines du tegmentum pontique et leur voies de projection chez le chat. Brain Research 57:119–52. [taJAH]CrossRefGoogle Scholar
Mancia, M. (1969) EEG and behavioral changes owing to splitting of the brainstem in cats. Electroencephalography and Clinical Neurophysiology 27:487503. [taJAH]CrossRefGoogle ScholarPubMed
Martin, R. F., Jordan, L. M. & Willis, W. D. (1978) Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. Journal of Comparative Neurology 182:7788. [taJAH]CrossRefGoogle ScholarPubMed
Masserano, J. M. & King, C. (1982a) Effects on sleep of acetylcholine perfusion of the locus coeruleus of cats. Neuropharmacology 21:1163–67. [taJAH]CrossRefGoogle ScholarPubMed
Masserano, J. M. & King, C. (1982b) Effects on sleep of phentolamine and epinephrine infused into the locus coeruleus of cat. European Journal of Pharmacology 84:199204. [taJAH]CrossRefGoogle Scholar
May, R. M. (1973) Stability and competition of model ecosystems. Princeton University Press. [taJAH]Google Scholar
Meader, A. (1916) The dream problem. Nervous and mental disease monograph no. 22. New York Publishing Co. [RG]CrossRefGoogle Scholar
Mefford, I. N., Baker, T. L., Boehme, R., Foutz, A. S., Ciaranello, R. D., Barchas, J. D. & Dement, W. C. (1983) Narcolepsy: Biogenic amine deficits in an animal model. Science 220:629–32. [taJAH]CrossRefGoogle ScholarPubMed
Mergner, T. & Pompeiano, O. (1978) Single unit firing patterns in the vestibular nuclei related to saccadic eye movements in the decerebrate cat. Archives Italiennes de Biologie 116:91119. [taJAH]Google ScholarPubMed
Mesulam, M.-M., Mufson, E. J., Levey, A. I. & Wainer, B. H. (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–86. [taJAH]CrossRefGoogle ScholarPubMed
Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. (1983) Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:11851201. [PJS]CrossRefGoogle Scholar
Michaelis, R. & Hoffmann, E. (1973) Zur Phänomenologie und Ätiopathogenese der Hypersomnie bei endogen phäsischen Depressionen. In: The nature of sleep, ed. Janonovic, U. J.. Gustav Fischer Verlag. [WBM]Google Scholar
Mitler, M. M. & Dement, W. C. (1974) Cataplectic-like behavior in cats after microinjection of carbachol in pontine reticular formation. Brain Research 69:335–43. [taJAH]CrossRefGoogle Scholar
Monachon, M. A., Burkard, W. P., Jalfre, M. & Haefely, W. (1972) Blockade of central 5-hydroxytryptamine receptors by methiothepin. Archives of Pharmacology 274:192–97. [WH]CrossRefGoogle ScholarPubMed
Monaco, A. P., Baghdoyan, H. A., Nelson, J. P. & Hobson, J. A. (1984) Cortical wave amplitude and eye movement direction are correlated in REM sleep but not in waking. Archives Italiennes de Biologie 122:213–23. [JA, RC, taJAH]Google ScholarPubMed
Monti, J. M. (1983) Catecholamines and the sleep-wake cycle. II. REM sleep. Life Sciences 32:1401–15. [JMM]CrossRefGoogle ScholarPubMed
Monti, J. M., Pellejero, T., Jantos, H., D'Angelo, L., Barbeito, L. & Abó, V. (submitted) Sleep–wake cycle and sensitivity to adrenoceptor agonists in the rat after DSP-4, a selective noradrenergic neurotoxin. [JMM]Google Scholar
Monti, J. M., Pellejero, T., Jantos, H. & Pazos, S. (1985) Role of histamine in the control of sleep and waking. In: Sleep: Neurotransmitters and neuroinodulators, ed. Wauquier, A., Monti, J. M., Gaillard, J. M. & Radulovacki, M.. Raven Press. [JMM]Google Scholar
Moore, R. Y. (1982) The suprachiasmatic nucleus and the organization of a circadian system. Trends in Neuroscience 5:404–7. [taJAH]CrossRefGoogle Scholar
Moore, R. Y. & Eichler, V. B. (1972) Loss of circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research 42:201–6. [rJAH]CrossRefGoogle ScholarPubMed
Moore, R. Y., Halaris, A. E. & Jones, B. E. (1978) Serotonin neurons of the midbrain raphe: Ascending projections. Journal of Comparative Neurology 180:417–38. [taJAH]CrossRefGoogle ScholarPubMed
Morales, F. & Chase, M. H. (1978) Intracellular recording of lumbar motoneuron membrane potential during sleep and wakefulness. Experimental Neurology 62:821–27. [taJAH]CrossRefGoogle ScholarPubMed
Morgane, P. J. & Jacobs, M. S. (1979) Raphe projections to the locus coeruleus in the rat. Brain Research Bulletin 4:519–34. [taJAH]CrossRefGoogle Scholar
Morgane, P. J. & Stern, W. C. (1974) Chemical anatomy of brain circuits in relation to sleep and wakefulness. In: Advances in sleep research, vol. 1, ed. Weitzman, E.. Spectrum. [taJAH]Google Scholar
Mori, S., Ohta, Y., Matsuyama, K. & Takakusaki, K. (1986) The setting of postural muscle tone: Its importance for behavior in freely moving, intact cats. In: Neuronal and endogenous chemical control mechanisms on Emotional behavior, ed. Oomura, Y.. Japan Scientific Societies/Springer. [SM]Google Scholar
Mori, S., Sakamoto, T. & Ohta, Y. (1986) Neuronal mechanisms underlying plastic postural changes in decerebrate, reflexively standing cats. In: Neuronal mechanisms of conditioning, ed. Woody, C. D. & Alkon, D. L.. Plenum. [SM]Google Scholar
Morilak, D. A. & Jacobs, B. L. (1985) Noradrenergic modulation ofsensorimotor processes in intact rats: The masseteric reflex as a model system. Journal of Neuroscience 5:13001306. [rJAH]CrossRefGoogle Scholar
Morrison, A. R. (1979) Brainstem regulation of behavior during sleep and wakefulness. Progress in Neurobiology and Physiological Psychology 8:91131. [taJAH]Google Scholar
Morrison, A. R. (1983) A window on the sleeping brain. Scientific American 248:94103. [taJAH]CrossRefGoogle ScholarPubMed
Morrison, A. R. & Pompeiano, O. (1965a) An analysis of the supraspinal influences acting on motoneurons during sleep in the unrestrained cat. Responses of the alpha motoneurons to direct electrical stimulation during sleep. Archives Italiennes de Biologie 103:497516. [taJAH]Google ScholarPubMed
Morrison, A. R. & Pompeiano, O. (1965b) Central depolarization of group Ia afferent fibers during desynchronized sleep. Archives Italiennes de Biologie 103:517–37. [taJAH]Google ScholarPubMed
Morrison, A. R. & Pompeiano, O. (1965c) Pyramidal discharge from somatosensory cortex and cortical control of primary afferents during sleep. Archives Italiennes de Biologie 103:538–68. [taJAH]Google ScholarPubMed
Moruzzi, G. (1960) Synchronizing influences of the brain stem and theinhibitory mechanisms underlying the production of sleep by sensory stimulation. Electroencephalography and Clinical Neurophysiology Supplement 13:231–56. [taJAH]Google Scholar
Moruzzi, G. & Magoun, H. W. (1949) Brainstem reticular formation andactivation of the EEG. Electroencephalography and Clinical Neurophysiology 1:455–73. [taJAH, PJS]CrossRefGoogle Scholar
Mosco, S. S., Haubrich, D. & Jacobs, B. L. (1977) Serotonin afferents to the dorsal raphe nucleus: Evidence from HRP and synaptosomal uptake studies. Brain Research 119:269–90. [taJAH]CrossRefGoogle Scholar
Moss, M. S., Glazer, E. J. & Basbaum, A. I. (1981) Enkephalin-immunoreactive perikarya in the cat raphe dorsalis. Neuroscience Letters 21:3337. [taJAH]CrossRefGoogle ScholarPubMed
Mouret, J., Coindet, J. & Chouvet, G. (1974) Effet de la pinealectomie sur les états et rythmes de sommeil du rat malé. Brain Research 81:97105. [JRN]CrossRefGoogle Scholar
Nagatsu, I., Inagaki, S., Kondo, Y., Karasawa, N. & Nagatsu, T. (1979) Acta Histochemica Cytochemica 12:2037. [JMM]CrossRefGoogle Scholar
Nakamura, S. (1975) Two types of inhibitory effects upon brain stem reticular neurons by low frequency stimulation of the raphe nucleus in the rat. Brain Research 3:140–44. [taJAH]CrossRefGoogle Scholar
Nakata, K. & Kawamura, H. (1986) ECoG sleep-waking rhythms and bodily activity in the cerveau isolé rat. Physiology and Behavior, in press. [HK]CrossRefGoogle Scholar
Nauta, W. J. H. (1946) Hypothalamic regulation of sleep in rats: An experimental study. Journal of Neurophysiology 9:285316. [HK]CrossRefGoogle ScholarPubMed
Nauta, W. J. & Kuypers, G. J. M. (1958) Some ascending pathways in the brain stem reticular formation. In: Reticular formation of the brain, ed. Jasper, H., Proctor, L. D., Knighton, R. S., Noshay, W. S. & Costello, R. T.. Little, Brown. [taJAH]Google Scholar
Nelson, J. P., McCarley, R. W. & Hobson, J. A. (1978) PGO burst neurons, 4. State-dependent stimulation from lateral geniculate nucleus. Sleep Research 7:38. [taJAH]Google Scholar
Nelson, J. O., McCarley, R. W. & Hobson, J. A. (1983) REM sleep burst neurons, PGO waves, and eye movement information. Journal of Neurophysiology 50:784–97. [JA, taJAH]CrossRefGoogle ScholarPubMed
Netick, A., Orem, J. & Dement, W. C. (1977) Neuronal activity specific to REM sleep and its relationship to breathing. Brain Research 120:197207. [taJAH, KS]CrossRefGoogle ScholarPubMed
Nicoll, R. A. & Madison, D. V. (1982) General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217:1055–57. [taJAH]CrossRefGoogle ScholarPubMed
Nishikawa, T. & Scatton, B. (1983) Evidence for a GABAergic inhibitory influence on serotonergic neurons originating from the dorsal raphe. Brain Research 279:325–29. [taJAH]CrossRefGoogle ScholarPubMed
Normanton, J. R. & Gent, J. P. (1983) Comparison of the effects of two “sleep” peptides, delta sleep-inducing peptide and arginine-vasotocin, on single neurons in the rat and rabbit brain stem. Neuroscience 8:107–14. [JRN]CrossRefGoogle ScholarPubMed
North, R. A. & Yoshimura, M. (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. Journal of Physiology (London) 349:4356. [PAMvD]CrossRefGoogle ScholarPubMed
Ohta, Y., Nonaka, S. & Mori, S. (1985) The suppression of postural muscle tone and its brainstem and spinal cord neuronal mechanisms in acute decerebrate, reflex standing cats. Neuroscience Letters Supplement 1:S66. [SM]Google Scholar
Ohta, Y., Sakamoto, T. & Mori, S. (1984) The cells of origin projecting their axons to the dorsal part of the central tegmental field in the pons. Japanese Journal of Physiology 46:377. [SM]Google Scholar
Ohta, Y., Sakamoto, T. & Mori, S. (1985) Inhibitory effects of medial reticular neurons in the medulla oblongata upon alpha-motoneurons innervating hindlimb extensor muscles. Japanese Journal of Physiology 47:430. [SM]Google Scholar
Olpe, H. R., Jones, R. S. & Steinmann, M. W. (1983) The locus coeruleus: Actions of psychoactive drugs. Experientia 39:242–49. [PJS]CrossRefGoogle ScholarPubMed
Orem, J. (1980) Medullary respiratory neuron activity: Relationship to tonic and phasic REM sleep. Journal of Applied Physiology 48:5465. [taJAH]CrossRefGoogle ScholarPubMed
Orem, J., Montplaisir, J. & Dement, W. C. (1974) Changes in the activity of respiratory neurons during sleep. Brain Research 82:309–15. [taJAH]CrossRefGoogle ScholarPubMed
Oshima, T. (1983) Intracortical organization of arousal as a model of dynamic neuronal processes that may involve a set of movements. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [MS]Google Scholar
Palkovits, M., Inke, G. & Lukács, G. (1962) Topographische Beziehungen des menschlichen Subcommissuralorgans zur Epiphyse und ihre funktionelle Bedeutung. Endokrinologie 42:194200. [JRN]Google Scholar
Palumbo, S. (1978) Dreaming and memory. Basic Books.Google Scholar
Pearlman, C. (1981) Rat models of the adaptive function of REM sleep. In: Sleep dreams and memory, ed. Fishbein, W.. Spectrum Publications. [RG]Google Scholar
Panula, P., Yang, H. Y. T. & Costa, E. (1984) Histamine-containing neurons in the rat hypothalamus. Proceedings of the National Academy Sciences (USA) 81:2572–76. [JMM]CrossRefGoogle ScholarPubMed
Parker, I., Gundersen, C. B. & Miledi, R. (1985) A transient inward current elicited by hyperpolarization during serotonin activation in Xenopus oocytes. Proceedings of the Royal Society (London) B223:279–92. [PAMvD]Google Scholar
Parmeggiani, P. L. (1981) Temperature regulation during sleep: A study in homeostasis. In: Physiology in sleep, ed. Orem, J. & Barnes, C. D.. Academic Press. [taJAH]Google Scholar
Pasquier, D. A., Kemper, T. L., Forbes, W. B. & Morgane, P. J. (1977) Dorsal raphe, substantia nigra and locus coeruleus: Interconnections with each other and the neostriatum. Brain Research Bulletin 2:323–39. [JMM]CrossRefGoogle ScholarPubMed
Patton, H. D. (1965) Spinal reflexes and synaptic transmission. In: Neurophysiology, ed. Ruch, T. C., Patton, H. D., Woodburry, J. W. & Towe, A. L.. Saunders. [PAMvD]Google Scholar
Pavel, S. (1978) Arginine vasotocin as a pineal hormone. Journal of Neural Transmission 13:135–55. [JRN]Google Scholar
Pavel, S. (1979) The mechanism of action of vasotocin in the mammalian brain. Progress in Brain Research 52:445–58. [JRN]CrossRefGoogle ScholarPubMed
Pavel, S. (1980) Presence of relatively high concentrations of arginine vasotocin in the cerebrospinal fluid of newborns and infants. Journal of Clinical Endocrinology and Metabolism 50:271–73. [JRN]CrossRefGoogle ScholarPubMed
Pavel, S. & Eisner, C. (1984) A GABAergic habenulo-raphe pathway mediates both serotoninergic and hypnogenic effects of vasotocin in cats. Brain Research Bulletin 13:623–27. [JRN]CrossRefGoogle ScholarPubMed
Pavel, S. & Goldstein, R. (1981) Narcoleptic-like alterations of sleep cycle in cats induced by specific vasotocin antiserum. Brain Research Bulletin 7:453–54. [JRN]CrossRefGoogle ScholarPubMed
Pavel, S., Goldstein, R., Petrescu, M. & Popa, M. (1981) REM sleep induction in prepubertal boys by vasotocin: Evidence for the involvement of serotonin containing neurons. Peptides 2:245–50. [JRN]CrossRefGoogle ScholarPubMed
Pavel, S., Goldstein, R., Popoviciu, L., Corfariu, O., Foldes, A. & Farkas, E. (1979) Pineal vasotocin: REM sleep dependent release into the cerebrospinal fluid of man. Waking and Sleeping 3:347–52. [JRN]Google ScholarPubMed
Pavel, S., Psatta, D. & Goldstein, R. (1977) Slow-wave sleep induced in cats by extremely small amounts of synthetic and pineal vasotocin injected into the third ventricle of the brain. Brain Research Bulletin 2:251–54. [JRN]CrossRefGoogle ScholarPubMed
Peterson, B. W. (1980) Participation of pontomedullary reticular neurones in specific motor activity. In: The reticular formation revisited, ed. Hobson, J. A. & Brazier, M. A. B.. Raven Press. [taJAH]Google Scholar
Petitjean, F., Sakai, K., Blondaux, C. & Jouvet, M. (1975) Hypersomnie par lésion isthmique chez le chat, 2. Etude neurophysiologique et pharmacologique. Brain Research 88:439–53. [JMM]CrossRefGoogle Scholar
Phillipson, E. A. (1978) Control of breathing during sleep. American Review of Respiratory Disease 118:909–39. [taJAH]Google ScholarPubMed
Pickel, V. M., John, T. H. & Reis, D. J. (1977) A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: Demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Research 131:197214. [taJAH]CrossRefGoogle ScholarPubMed
Pittendrigh, C. S. & Daan, S. (1976) The functional analysis of circadian pacemakers in nocturnal rodents. Journal of Comparative Physiology 106:223355. [rJAH]CrossRefGoogle Scholar
Pivik, R. T., McCarley, R. W. & Hobson, J. A. (1977) Eye movement associated discharge in brain stem neurons during desynchronized sleep. Brain Research 121:5976. [taJAH]CrossRefGoogle ScholarPubMed
Pole, P., Schneeberger, J. & Haefely, W. (1979) Effects of several centrally active drugs on the sleep-wakefulness cycle of cats. Neuropharmacology 18:259–67. [WH]Google Scholar
Pompeiano, O. (1965) The neurophysiological mechanisms of the postural and motor events during desynchronized sleep. In: Association for Research in Nervous and Mental Disease, vol. 45, ed. Seymour, S. K., Edward, V. E. & Harold, L. W.. Williams and Wilkins. [HK]Google Scholar
Pompeiano, O. (1967) The neurophysiological mechanisms of the postural and motor events during desynchronized sleep. Proceedings of the Association of Research in Nervous and Mental Disease 45:351423. [taJAH]Google Scholar
Pompeiano, O. (1980) Cholinergic activation of reticular and vestibular mechanisms controlling posture and eye movements. In: The reticular formation revisited, ed. Hobson, J. A. & Brazier, M. A. B.. Raven Press. [taJAH]Google Scholar
Pompeiano, O. & Hosino, K. (1976) Central control of posture: Reciprocal discharge by two pontine neuronal groups leading to suppression of decerebrate rigidity. Brain Research 116:131–38. [tarJAH]CrossRefGoogle ScholarPubMed
Pompeiano, O. & Valentinuzzi, M. (1976) A mathematical model for the mechanism of rapid eye movements induced by an anticholinesterase in the decerebrate cat. Archives Italiennes de Biologie 114:103–54. [taJAH]Google ScholarPubMed
Popper, K. (1962) Conjectures and refutations. Basic Books. [taJAH]Google Scholar
Popper, K. (1974) Replies to my critics. In: The philosophy of Karl Popper, Book 2, ed. Schilpp, P. A.. Open Court Publishers. [taJAH]Google Scholar
Prosser, R., Kittrell, E. M. W. & Satinoff, E. (1984) Circadian body temperature rhythms in cats with suprachiasmatic nuclear lesions. In: Thermal physiology, ed. Hales, J. R. S.. Raven Press. [taJAH]Google Scholar
Puizillout, J. J., Gaudin-Chazal, C., Sayadi, A. & Vigier, D. (1981) Serotoninergic mechanisms and sleep. Journal de Physiologie (Paris) 77:415–24. [JMM]Google ScholarPubMed
Ramón y Cajal, S. (1952) Histologie du système nerveux, vol. 1. Consejo Superior de Investigaciones Cientificas. [taJAH]Google Scholar
Reppert, S. M., Artman, H. C., Swaminathan, S. & Fisher, D. A. (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not in blood. Science 213:1256–57. [taJAH]CrossRefGoogle Scholar
Richter, C. P. (1965) Biological clocks in medicine and psychiatry. C. C. Thomas. [rJAH]Google Scholar
Riou, F., Cespuglio, R. & Jouvet, M. (1982) Endogenous peptides and sleep in the rat. III. The hypnogenic properties of vasoactive intestinal polypeptide. Neuropeptides 2:265–77. [WF]CrossRefGoogle Scholar
Roberts, M. H. T. & Straughan, D. W. (1967) Excitation and depression of cortical neurons by 5-hydroxytryptamine. Journal of Physiology (London) 193:269–94. [CHV]CrossRefGoogle ScholarPubMed
Robinson, T. E., Kramis, R. C. & Vanderwolf, C. H. (1977) Two types of cerebral activation during active sleep: Relations to behavior. Brain Research 124:544–49. [CHV]CrossRefGoogle ScholarPubMed
Roffwarg, H. (1979) Glossary of terms used in sleep disorders classification. Sleep 2:123–29. [taJAH]Google Scholar
Roffwarg, H., Dement, W., Muzio, T. & Fisher, C. (1962) Dream imagery: Relationship to rapid eye movements. Archives of General Psychiatry 7:235–38. [RG]CrossRefGoogle ScholarPubMed
Roflwarg, H., Herman, J. & Lamstein, S. (1975) The middle ear muscles: Predictability of their phasic activity in REM sleep and dream material. Sleep Research 4:165. [RG]Google Scholar
Roffwarg, H. P., Muzio, J. M. & Dement, W. C. (1966) Ontogenetic development of the human sleep-dream cycle. Science 152:604–19. [JRN]CrossRefGoogle ScholarPubMed
Romo, B., Cheramy, A., Godehev, G. & Glowinski, J. (1986) Physiological presynaptic facilitation of dopamine release in the cat candate nucleus. Journal of Physiology (Paris), in press. [rJAH]Google Scholar
Roney, K. J., Scheibel, A. B. & Shaw, G. L. (1979) Dendrite bundles: Survey of anatomical experiments and physiological theories. Brain Research Reviews 1:225–71. [ABS]CrossRefGoogle Scholar
Rønnekleiv, O. K., Kelly, M. J. & Wuttke, W. (1980) Single unit recordings in the rat pineal gland: Evidence for habenulo-pineal neural connections. Experimental Brain Research 39:187–92. [JRN]CrossRefGoogle ScholarPubMed
Rosenberg, P. A., Schweitzer, J. S. & Dichter, M. C. (1985) Effects of norepinephrine on rat neocortical neurons in dissociated cell culture. Brain Research 344:369–72. [MS]CrossRefGoogle ScholarPubMed
Rossi, C. F. & Brodal, A. (1956) Corticofugal fibers to the brain stem reticular formation: An experimental study in the cat. Journal of Anatomy 90:4262. [taJAH]Google Scholar
Ruch-Monachon, M. A., Jalfre, M. & Haefely, W. (1976) Drugs and PGO waves in the lateral geniculate body of the curarized rat. I–V. Archives Internationales de Pharmacodynamia et de Thérapie 219:251346. [WH, PJM]Google Scholar
Ruch-Monachon, M. A., Jalfre, M. & Haefely, W. (1976) Drugs and PGO waves in the lateral geniculate body of the curarized rat, 5. Synopsis of the role of central neurotransmitters on PGO wave activity. Archives Internationales de Pharmacoydnamie et de Thérapie 219:326–46. [taJAH]Google Scholar
Saito, H., Sakai, K. & Jouvet, M. (1977) Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Research 134:5972. [taJAH, MS]CrossRefGoogle ScholarPubMed
Sakai, K. (1980) Some anatomical and physiological properties of pontomesencephalic tegmental neurons with special reference to the PGO waves and postural atonia during paradoxical sleep in the cat. In: The reticular formation revisited, ed. Hobson, J. A. & Brazier, M. A. B.. Raven Press. [RC, taJAH, BEJ]Google Scholar
Sakai, K. (1984) Central mechanisms of paradoxical sleep. In: Experimental brain research. Supplement 8, Sleep mechanisms, ed. Borbély, A. & Valatx, J. L.. Springer. [taJAH]Google Scholar
Sakai, K. (1985a) Anatomical and physiological basis of paradoxical sleep. In: Brain mechanisms of sleep, ed. McGinty, D. J., Drucker-Colin, R., Morrison, A. & Parmeggiani, L.. Raven Press. [JMS, KS, MS, ZE]Google Scholar
Sakai, K. (1985b) Neurons responsible for paradoxical sleep. In: Sleep: Neurotransmitters and neuromodulators, ed. Wauquier, A., Gaillard, J. M., Monti, J. M. & Radulovacki, M.. Raven Press. [KS]Google Scholar
Sakai, K. (1985c) Neurons responsible for paradoxical sleep. In: Sleep: Neurotransmitters and neuromodulators, ed. Wauguier, A., Manti, J. M., Gaillard, J. M. & Radulovacki, M.. Raven Press. [tarJAH, BEJ]Google Scholar
Sakai, K., Kanamori, N. & Jouvet, M. (1979) Activités unitaires spécifiques du sommeil paradoxal dans la formation réticulée bulbaires chez le chat nonrestreint. Comptes Rendues de l'Académie des Sciences, Série D 289:557–61. [KS]Google Scholar
Sakai, K., Salvert, D., Touret, M. & Jouvet, M. (1977) Afferent connections of the nucleus raphe dorsalis in the cat as visualized by the horseradish peroxidase technique. Brain Research 137:1135. [taJAH, MS]CrossRefGoogle ScholarPubMed
Sakai, K., Sastre, J.-P., Kanamori, N. & Jouvet, M. (1981) State-specific neurons in the ponto-medullary reticular formation with special reference to the postural atonia during paradoxical sleep in the cat. In: Brain mechanisms and perceptual awareness, ed. Pompeiano, O. & Marsan, C. Ajmone. Raven Press. [taJAH]Google Scholar
Sakai, K., Sastre, J. P., Salvert, D., Touret, M., Tohyama, M. & Jouvet, M. (1979) Tegmentoreticular projections with special reference to the muscular atonia during paradoxical sleep in the cat: An HRP study. Brain Research 176:233–54. [taJAH]CrossRefGoogle Scholar
Sakai, K., Touret, M., Salvert, D., Leger, L. & Jouvet, M. (1977) Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Research 119:2141. [taJAH]CrossRefGoogle Scholar
Sakai, K., Vanni-Mercier, G. & Jouvet, M. (1983) Evidence for the presence of PS-off neurons in the ventromedial oblongata of freely moving cats. Experimental Brain Research 49:311–14. [taJAH]CrossRefGoogle ScholarPubMed
Sakakura, H. (1968) Spontaneous and evoked unitary activation of cat lateral geniculate neurons in sleep and wakefulness. Japanese Journal of Physiology 18:2342. [taJAH]Google ScholarPubMed
Sakamoto, T., Atsuta, Y. & Mori, S. (1986) Long-lasting excitability changes of soleus alpha-motoneuron induced by midpontine stimulation in decerebrate, standing cat. Journal of Neurophysiology 55(3), in press. [SM]CrossRefGoogle ScholarPubMed
Sallanon, M., Buda, C., Janin, M. & Jouvet, M. (1985) Implication of serotonin in sleep mechanisms: Induction, facilitation? In: Sleep: Neurotransmitters and neuromodulators, ed. Wauquier, A., Monti, J. M., Gaillard, J. M. & Radulovacki, M.. Raven Press. [JMM]Google Scholar
Sastre, J. P., Sakai, K. & Jouvet, M. (1981) Are the gigantocellular tegmental field neurons responsible for paradoxical sleep? Brain Research 229:147–61. [taJAH, WBM, JMS, PJS, RRV]CrossRefGoogle ScholarPubMed
Satoh, K., Armstrong, D. M. & Fibiger, H. C. (1983) A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Research Bulletin 11:693720. [BEJ]CrossRefGoogle ScholarPubMed
Scheibel, M. E., Davies, T. & Scheibel, A. B. (1973) Maturation of reticular dendrites: Loss of spines and development of bundles. Experimental Neurology 38:301–10. [ABS]CrossRefGoogle ScholarPubMed
Scheibel, M. E. & Scheibel, A. B. (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Reticular formation of the brain, ed. Jasper, H. H., Proctor, L. D., Knighton, R. S., Noshay, W. S. & Costello, R. T.. Little, Brown. [taJAH, ABS]Google Scholar
Scheibel, M. E. & Scheibel, A. B. (1973) The cellular basis of sleep cycle control. BIS Conference Report #33. 14. [rJAH]Google Scholar
Scheibel, M. E., Tomiyasu, U. & Scheibel, A. B. (1975) Do raphe nuclei of the reticular formation have a neurosecretory or vascular sensor function? Experimental Neurology 47:316–29. [ABS]CrossRefGoogle ScholarPubMed
Scherschlicht, R., Pole, P., Schneeberger, J., Steiner, M. & Haefely, W. (1982) Selective suppression of rapid eye movement sleep (REMS) in cats by typical and atypical antidepressants. In: Typical and atypical antidepressants: Molecular mechanisms, ed. Costa, E. & Racagni, G.. Raven Press. [WH]Google Scholar
Schulz, H., Dirlich, G., Balteskonis, S. & Zulley, J. (1980) The REM–NREM sleep cycle: Renewal process or periodically driven process? Sleep 2:319–28. [taJAH]CrossRefGoogle ScholarPubMed
Segal, M. (1979) Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli. Journal of Physiology (London) 286:401–15. [taJAH]CrossRefGoogle ScholarPubMed
Semba, J., Toru, M. & Malaga, N. (1984) Twenty-four hour rhythms of norepinephrine and serotonin in nucleus suprachiasmaticus, raphe nuclei, and locus coeruleus in the rat. Sleep 7:211–18. [taJAH]CrossRefGoogle ScholarPubMed
Shimazu, H. (1983) Neuronal organization of the premotor system controlling horizontal conjugate eye movements and vestibular nystagmus. In: Motor control mechanisms in health and disease, ed. Desmedt, J. E.. Raven Press. [rJAH]Google Scholar
Shiromani, P. (1983) Long-term cholinergic stimulation of pontine nuclei: Effects on paradoxical sleep and memory. Ph.D. diss., City University of New York. [PJS]Google Scholar
Shiromani, P., Armstrong, D. M., Groves, P. M. & Gillin, J. C. (1986) Combined neurophysiological and immunohistochemical mapping of the medial-lateral pontine reticular formation: Relationship of REM-on cells with respect to cells containing choline-acetyltransferase. Sleep Research 15, in press. [PJS]Google Scholar
Shiromani, P., Barnett, J. & Fishbein, W. (1982) Cholinergic stimulation of pontine cells by mini-pump infusion augments paradoxical sleep for fourteen days. Society for Neuroscience Abstracts 8:845. [WF]Google Scholar
Shiromani, P. & Fishbein, W. (1980) Cholinergic stimulation of pontine brainstem cells by mini-pump infusion augments paradoxical sleep for five days. Society for Neuroscience Abstracts 6:708. [WF]Google Scholar
Shiromani, P. & Fishbein, W. (1986) Continuous pontine cholinergic microinfusion via mini-pump induces sustained alterations in rapid eye movement sleep. Submitted for publication. [WF]CrossRefGoogle Scholar
Shiromani, P. & McGinty, D. J. (1983) Pontine sites for cholinergic PGO waves and atonia: Localization and blockade with scopolamine. Society for Neuroscience Abstracts 9:1203. [taJAH, PJS]Google Scholar
Shiromani, P. & McGinty, D. J. (1986) Pontine neuronal response to local cholinergic infusion: Relation to REM sleep. Brain Research, accepted for publication. [PJS]CrossRefGoogle Scholar
Shiromani, P., Siegel, J. M. & McGinty, D. J. (1984) Pontine carbachol microinfusions produce REM related decreases in blood pressure. Society for Neuroscience Abstracts 10:504. [taJAH]Google Scholar
Shiromani, P., Siegel, J., Tomaszewski, K. & McGinty, D. (1986) Alterations in blood pressure and REM sleep following pontine carbachol microinfusion. Experimental Neurology 91:285–92. [PJS]CrossRefGoogle ScholarPubMed
Siegel, J. M. (1979a) Behavioral functions of the reticular formation. Brain Research Reviews 1:69105. [PJS]CrossRefGoogle Scholar
Siegel, J. M. (1979b) Unit activity in the reticular formation and REM sleep. In: The functions of sleep, ed. Drucker-Colin, R., Sterman, M. B. & Shkurovich, M.. Academic Press. [JMS]Google Scholar
Siegel, J. M. & McGinty, D. J. (1977) Pontine reticular formation neurons: Relationship of discharge to motor activity. Science 196:678–80. [taJAH, BEJ, JMS, PJS, WBM]CrossRefGoogle ScholarPubMed
Siegel, J. M., McGinty, D. J. & Breedlove, S. M. (1977) Sleep and waking activity of pontine gigantocellular field neurons. Experimental Neurology 56:533–73. [taJAH, RRV, JMS]CrossRefGoogle ScholarPubMed
Siegel, J. M., Nienhuis, R. & Tomaszewski, K. S. (1984) REM sleep signs rostral to chronic transections at the pontomedullary junction. Neuroscience Letters 45:241–46. [JMS]CrossRefGoogle ScholarPubMed
Siegel, J. M. & Tomaszewski, K. S. (1983) Behavioral organization of reticular formation: Studies in the unrestrained cat. I. Cells related to axial, limb, eye, and other movements. Journal of Neurophysiology 50:696716. [JMS]CrossRefGoogle ScholarPubMed
Siegel, J. M., Tomaszewski, K. S. & Nienhuis, R. (1986) Behavioral states in the chronic medullary and mid-pontine cat. Electroencephalography and Clinical Neurophysiology 63:279–88. [JMS]CrossRefGoogle Scholar
Siegel, J. M., Tomaszewski, K. S. & Wheeler, R. L. (1983) Behavioral organization of reticular formation: Studies in the unrestrained cat, 2. Cells related to facial movements. Journal of Neurophysiology 50:717–23. [JMS]CrossRefGoogle Scholar
Silberman, E. K., Vivaldi, E., Gasfield, J., McCarley, R. W. & Hobson, J. A. (1980) Carbachol triggering of desynchronized sleep via small volume infusions. Brain Research 191:215–24. [KS]CrossRefGoogle ScholarPubMed
Simon, R. P., Gershon, M. P. & Brooks, D. C. (1973) The role of the raphe nuclei in the regulation of ponto-geniculo-occipital wave activity. Brain Research 58:313–30. [taJAH]CrossRefGoogle ScholarPubMed
Sitaram, N., Nurnberger, J. I. Jr., Gershon, E. S. & Gillin, J. C. (1982) Cholinergic regulation of mood and REM sleep: Potential model and marker of vulnerability to affective disorder. American Journal of Psychiatry 139:571–76. [taJAH]Google ScholarPubMed
Sitaram, N., Wyatt, R. J., Dawson, S. & Gillin, J. C. (1976) REM sleep induction by physostigmine infusion during sleep. Science 191:1281–83. [taJAH]CrossRefGoogle ScholarPubMed
Skagerberg, G., Björklund, A., Lindvall, O. & Schmidt, R. H. (1982) Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Research Bulletin 9:237–44. [JMM]CrossRefGoogle ScholarPubMed
Sladek, J. R. Jr. (1971) Difference in the distribution of catecholamine varicosities in cat and rat reticular formation. Science 174:410–12. [taJAH]CrossRefGoogle Scholar
Slozarska, M. & Zernicki, B. (1973) Chronic pretrigeminal and cerveau isolé cats. Acta Neurobiologiae Experimentalis 33:811–27. [HK]Google Scholar
Sofroniew, M. V. (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. Progress in Brain Research 60:101–14. [JRN]CrossRefGoogle ScholarPubMed
Sofroniew, M. V., Priestley, J. V., Consolazione, A., Eckenstein, F. & Cuello, A. C. (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry. Brain Research 329:213–23. [taJAH]CrossRefGoogle Scholar
Speck, D. F. & Feldman, J. C. (1982) The effects of microstimulation and microlesions in the ventral and dorsal respiratory groups in mcdulla of cat. Journal of Neuroscience 2:744–57. [taJAH]CrossRefGoogle ScholarPubMed
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative Physiology and Psychology 43:482–39. [taJAH]CrossRefGoogle ScholarPubMed
Sprague, J. M. (1966) Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153:1544–47. [taJAH]CrossRefGoogle ScholarPubMed
Steinfels, G. F., Heym, J., Strecker, R. E. & Jacobs, B. L. (1983) Raphe unit activity in freely moving cats is altered by manipulations of central but not peripheral motor systems. Brain Research 279:7784. [taJAH]CrossRefGoogle Scholar
Steriade, M. (1978) Cortical long-axoned cells and putative interneurons during the sleep-waking cycle. Behavioral and Brain Sciences 3:465514. [tarJAH]CrossRefGoogle Scholar
Steriade, M. (1981) Mechanisms underlying cortical activation: Neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei. In: Brain mechanisms and perceptual awareness, ed. Pompeiano, O. & Marsan, C. Ajmone. Raven Press. [taJAH]Google Scholar
Steriade, M. (1984) The excitatory–inhibitory response sequence in thalamic and neocortical cells: State related changes and regulatory systems. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley. [taJAH]Google Scholar
Steriade, M. & Deschenes, M. (1974) Inhibitory and interneuronal apparatus in motor cortex during sleep and waking, 2. Recurrent and afferent inhibition of pyramidal tract neurons. Journal of Neurophysiology 37:10931113. [taJAH]CrossRefGoogle Scholar
Steriade, M. (1984) The thalamus as a neuronal oscillator. Brain Research Reviews 8:163. [taJAH]CrossRefGoogle Scholar
Steriade, M., Deschenes, M. & Oakson, G. (1974) Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking, I. Background firing and responsiveness of pyramidal tract neurons and interneurons. Journal of Neurophysiology 37:1065–92. [taJAH]CrossRefGoogle ScholarPubMed
Steriade, M. & Glenn, L. L. (1982) Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. Journal of Neurophysiology 48:352–71. [taJAH]CrossRefGoogle ScholarPubMed
Steriade, M. & Hobson, J. A. (1976) Neuronal activity during the sleep-waking cycle. Progress in Neurobiology 6:153376. [tarJAH]CrossRefGoogle ScholarPubMed
Steriade, M., losif, G. & Apostol, V. (1969) Responsiveness of thalamic and motor relays during arousal and various stages of sleep. Journal of Neurophysiology 32:251–65. [taJAH]CrossRefGoogle ScholarPubMed
Steriade, M., Kitsikis, A. & Oakson, G. (1978) Thalamic inputs and subcortical targets of cortical neurons in areas 5 and 7 of cat. Experimental Neurology 60:420–42. [taJAH]CrossRefGoogle ScholarPubMed
Steriade, M., Kitsikis, A. & Oakson, G. (1979) Excitatory–inhibitory processes in parietal association neurons during reticular activation and sleep–waking cycle. Sleep 1:339–55. [taJAH]CrossRefGoogle ScholarPubMed
Steriade, M., Oakson, G. & Ropert, N. (1982) Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep–waking cycle. Experimental Brain Research 46:3751. [taJAH]CrossRefGoogle ScholarPubMed
Steriade, M., Ropert, N., Kitsikis, A. & Oakson, G. (1980) Ascending activation neuronal networks in midbrain reticular core and related rostral systems. In: The reticular formation revisited, ed. Hobson, J. A. & Brazier, M. A. B.. Raven Press. [taJAH]Google Scholar
Steriade, M., Sakai, K. & Jouvet, M. (1984) Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep. Experimental Brain Research 54:463–75. [taJAH, ZE]CrossRefGoogle ScholarPubMed
Sterman, M. B., McGinty, D. J. & Iwamura, Y. (1974) Modulation of trigeminal reflexes during the REM state in brain transected cats. Archines of Italian Biology 112:278–97. [JMS]Google Scholar
Stewart, D. J., MacFabe, D. F. & Vanderwolf, C. H. (1984) Cholinergic activation of the electrocorticogram: Role of the substantia innominata and effects of atropine and quinuclidinyl benzilate. Brain Research 322:219–32. [CHV]CrossRefGoogle ScholarPubMed
Strahlendorf, J. C., Strahlendorf, H. K., Kingsley, R. E., Gintautus, J. & Barnes, C. D. (1980) Facilitation of the lumbar monosynaptic reflexes by locus coeruleus stimulation. Neuropharmacology 19:225–30. [rJAH]CrossRefGoogle ScholarPubMed
Sun, Y.-a. & Poo, M.-m. (1985) Non-quantal release of acetylcholine at a developing neuromuscular synapse in culture. Journal of Neuroscience 5:634–42. [rJAH]CrossRefGoogle Scholar
Swabb, D. F., Fliers, E., & Partiman, T. S. (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Research 342:3744. [WF]CrossRefGoogle Scholar
Swanson, L. W. (1976) The locus coeruleus: A cytoarchitectonic Golgi and immunohistochemical study in the albino rat. Brain Research 110:3956. [taJAH]CrossRefGoogle ScholarPubMed
Szafarczyk, A., Ixart, G., Malaval, F., Nouguier-Soule, J. & Assenmacher, I. (1979) Effects of lesions of the suprachiasmatic nuclel and of pchlorophenylalanine on the circadian rhythms of adreno-corticotrophic hormone and corticosterone in the plasma, and on locomotor activity of rats. Journal of Endocrinology 83:116. [taJAH]CrossRefGoogle Scholar
Szymusiak, R. & Satinoff, E. (1981) Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate. Physiology & Behavior 26:687–90. [SD]CrossRefGoogle ScholarPubMed
Taber-Pierce, E., Foote, W. E. & Hobson, J. A. (1976) The efferent connection of the nucleus raphe dorsalis. Brain Research 107:137–44. [taJAH]CrossRefGoogle Scholar
Tobler, I. (1984) Evolution of sleep processes: A phylogenetic approach. In: Experimental brain research. Supplement 8, Sleep mechanisms, ed. Borbely, A. & Valatx, J. L.. Springer. [taJAH]Google Scholar
Tohyama, M., Sakai, K., Salvert, D., Touret, M. & Jouvet, M. (1979) Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique, 1. Origins of the reticulospinal tracts and their funicular trajectories. Brain Research 173:383403. [taJAH]CrossRefGoogle ScholarPubMed
Tohyama, M., Sakai, K., Touret, M., Salvert, D. & Jouvet, M. (1979) Spinal projections from the lower brainstem in the cat as demonstrated by the horseradish peroxidase technique, 2. Projections from the dorsolateral pontine tegmentum and raphe nucleus. Brain Research 176:215–31. [taJAH]CrossRefGoogle Scholar
Trulson, M. E. & Jacobs, B. L. (1979) Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Research 163:135–50. [taJAH, JMM]CrossRefGoogle ScholarPubMed
Trulson, M. E. & Jacobs, B. L. (1981) Activity of serotonin-containing neurons in freely moving cats. In: Serotonin neurotransmission and behavior, ed. Jacobs, B. L. & Gelperin, A.. MIT Press. [CHV]Google Scholar
Trulson, M. E., Jacobs, B. L. & Morrison, A. R. (1981) Raphe unit activity during REM sleep in normal cats and in pontine cats displaying REM sleep without atonia. Brain Research 226:7591. [taJAH]CrossRefGoogle ScholarPubMed
Trulson, M. E., Preussler, D. W. & Howell, G. A. (1981) Activity of substantia nigra units across the sleep-waking cycle in freely moving cats. Neuroscience Letters 26:183–88. [JMM]CrossRefGoogle ScholarPubMed
Ursin, R. & Sterman, M. B. (1981) A manual for standardized scoring of sleep–waking states in the adult cat. Los Angeles: Brain Information Service, Brain Research Institute, University of California. [taJAH]Google Scholar
Valverdi, F. (1961) Reticular formation of the pons and medulla oblongata. A Golgi study. Journal of Comparative Neurology 116:7199. [taJAH]CrossRefGoogle Scholar
VanderMaelen, C. P. & Aghajanian, G. K. (1980) Intracellular studies showing modulation of facial motoneurone excitability by serotonin. Nature 287:346–47. [PAMvD]CrossRefGoogle ScholarPubMed
VanderMaelen, C. P. & Aghajanian, G. K. (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Research 289:109–20. [PAMvD]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1983) The role of the cerebral cortex and ascending activating systems in the control of behavior. In: Handbook of behavioral neurobiology, ed. Satinoff, E. & Teitelbaum, P.. Plenum Press. [CHV]Google Scholar
Vanderwolf, C. H. (1984) Aminergic control of the electrocorticogram. In: Neurobiology of the trace amines, ed. Boulton, A. A., Baker, C. B., Dewhurst, W. G. & Sandler, M.. Humana Press. [CHV]Google Scholar
Vanderwolf, C. H. & Baker, G. B. (in press) Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Research. [CHV]Google Scholar
Vanderwolf, C. H. & Robinson, T. E. (1981) Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis. Behavioral and Brain Sciences 4:459514. [CHV]CrossRefGoogle Scholar
Van Dongen, P. A. M. (1981) The central noradrenergic transmission and the locus coeruleus: A review of the data and their implications for neurotransmission and neuromodulation. Progress in Neurobiology 16:117–43. [PAMvD]CrossRefGoogle ScholarPubMed
Van Dongen, P. A. M., Broekkamp, C. L. E. & Cools, A. R. (1978) Atonia after carbachol microinjection near the locus coeruleus in cats. Pharmacology, Biochemistry and Behaviour 8:527–32. [PAMvD]Google ScholarPubMed
Van Dongen, P. A. M., Grillner, S. & Hökfelt, T. (1986) 5-Hydroxytryptamine (serotonin) causes a reduction in the afterhyperpolarization following the action potential in lamprey motoneurons and premotor intemeurons. Brain Research, in press. [PAMvD]CrossRefGoogle Scholar
Vertes, R. P. (1977) Selective firing of rat pontine gigantocellular neurons during movement and REM sleep. Brain Research 128:146–52. [taJAH, JMS, RRV]CrossRefGoogle ScholarPubMed
Vertes, R. P. (1979) Brain stem gigantocellular neurons: Patterns of activity during behavior and sleep in the freely moving rat. Journal of Neurophysiology 42:214–28. [RPV]CrossRefGoogle ScholarPubMed
Vertes, R. P. (1980) Brain stem activation of the hippocampus: A role for the magnocellular reticular formation and the MLF. Electroencephalography and Clinical Neurophysiology 50:4858. [RPV]CrossRefGoogle ScholarPubMed
Vertes, R. P. (1981) An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. Journal of Neurophysiology 46:1140–59. [RPV]CrossRefGoogle ScholarPubMed
Vertes, R. P. (1982) Brain stem generation of the hippocampal EEC. Progress in Neurobiology 19:159–86. [RPV]CrossRefGoogle Scholar
Vertes, R. P. (1984) Brainstem control of the events of REM sleep. Progress in Neurobiology 22:241–88. [ZE, taJAH, RRV]CrossRefGoogle ScholarPubMed
Viala, D. & Buser, P. (1969) The effect of DOPA and 5-HTP on rhythmic efferent discharges in hindlimb nerves in the rabbit. Brain Research 12:437–43. [rJAH]CrossRefGoogle ScholarPubMed
Videen, T. O., Daw, N. W. & Raider, R. K. (1984) The effect of norepinephrine on visual cortical neurons in kittens and adult cats. Journal of Neuroscience 4:1607–17. [rJAH]CrossRefGoogle ScholarPubMed
Vijayashankar, N. & Brody, H. (1979) Quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. Journal of Neuropathology and experimental Neurology 38:490–97. [PAMvD]CrossRefGoogle Scholar
Villablanca, J. (1962) Electroencephalogram in the permanently isolated forebrain of the cat. Science 138:4446. [HK]CrossRefGoogle ScholarPubMed
Villablanca, J. (1965) The electrocorticogram in the chronic cerveau isolé cat. Electroencephalography and Clinical Neurophysiology 19:576–86. [HK]CrossRefGoogle ScholarPubMed
Vincent, S. R., Satoh, K., Armstrong, D. M. & Fibiger, H. C. (1983) Substance P in the ascending cholinergic reticular system. Nature 306:688–91. [taJAH, MS]CrossRefGoogle ScholarPubMed
Vivaldi, E. & Hobson, J. A. (1981) Cholinergic REM sleep induction by the muscarinic agonist dioxolane. Sleep Research 10:104. [taJAH]Google Scholar
Vivaldi, E., McCarley, R. W. & Hobson, J. A. (1980) Evocation of desynchronized sleep signs by chemical microstimulation of the pontine brainstem. In: The reticular formation revisited, ed. Hobson, J. A. & Brazier, M. A. B.. Raven Press. [taJAH]Google Scholar
Vogel, G. W., Vogel, F., McAbee, R. S. & Thurmond, A. J. (1980) Improvement of depression by REM sleep deprivation: New findings and a theory. Archives of General Psychiatry 37:247–53. [taJAH]CrossRefGoogle ScholarPubMed
Walberg, F. (1974) Crossed reticulo-reticular projections in the medulla, pons and mesencephalon. Zeitschrift für Anatomie und Entwicklungsgeschichte 143:127–34. [taJAH]CrossRefGoogle Scholar
Wamsley, J. K., Lewis, M. S., Young, W. S. & Kuhar, M. J. (1981) Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. Journal of Neuroscience 1:176–91. [PJS]CrossRefGoogle ScholarPubMed
Wang, R. Y. & Aghajanian, G. K. (1977a) Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197:8991. [JRN]CrossRefGoogle ScholarPubMed
Wang, R. Y. & Aghajanian, G. K. (1977b) Antidromically identified serotonergic neurons in the rat midbrain raphe: Evidence for collateral inhibition. Brain Research 132:186–93. [taJAH]CrossRefGoogle ScholarPubMed
Wang, R. Y., Gallager, D. W. & Aghajanian, G. K. (1976) Stimulation of pontine reticular formation suppresses firing of serotonergic neurons in the dorsal raphe. Nature (London) 12:365–68. [taJAH]CrossRefGoogle Scholar
Waterhouse, B. D., Moises, H. C. & Woodward, D. J. (1981) Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20:907–20. [PAMvD]CrossRefGoogle ScholarPubMed
Waterhouse, B. D., Moises, H. C., Yeh, H. H. & Woodward, D. J. (1982) Norepinephrine enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: Mediation by beta adrenergic receptors. Journal of Pharmacology and Experimental Therapeutics 221:495506. [PAMvD]Google ScholarPubMed
Webster, H. H., Friedman, L. & Jones, B. E. (1986) Modification of paradoxical sleep following transections of the reticular formation at the pontomedullary junction. Sleep 9:123. [BEJ]CrossRefGoogle ScholarPubMed
Wehr, T. A., Wirz-Justice, A., Goodwin, F. K., Duncan, W. & Gillin, J. C. (1979) Phase advance of the circadian sleep–wake cycle as an antidepressant. Science 206:710–13. [taJAH]CrossRefGoogle ScholarPubMed
Wever, R. A. (1984) Properties of human sleep-wake cycles: Parameters of internally synchronized free-running rhythms. Sleep 7(1):2751. [WF]CrossRefGoogle ScholarPubMed
Wiesendanger, M. (1969) The pyramidal tract: Recent investigations on its morphology and function. Ergebnisse der Physiologie 61:73136. [taJAH]Google ScholarPubMed
Wilson, P. (1985) A photographic perspective on the origins, form, course and relations of the acetylcholinesterase-containing fibres of the dorsal tegmental pathway in the rat brain. Brain Research Reviews 10:85118. [PJS]CrossRefGoogle Scholar
Wolf, N. J., Eckenstein, F. & Butcher, L. L. (1984) Cholinergic systems in the rat brain, I. Projections to the limbic telencephalon. Brain Research Reviews 13:751–84. [PJS]Google Scholar
Wood, J. D. & Mayer, C. J. (1979) Serotonergic activation of tonic-type enteric neurons in guinea-pig small bowel. Journal of Neurophysiology 42:582–93. [PAMvD]CrossRefGoogle ScholarPubMed
Yamaoka, S. (1980) Modification of circadian sleep rhythms by gonadal steroids and the neural mechanisms involved. Brain Research 185:385–98. [WF]CrossRefGoogle ScholarPubMed
Yezierski, R. P., Bowker, R. M., Kevetter, G. A., Westlund, K. N., Coulter, J. D. & Willis, W. D. (1982) Serotonergic projections to the caudal brain stem: A double label study using horseradish peroxidase and serotonin immunocytochemistry. Brain Research 239:258–64. [taJAH]CrossRefGoogle Scholar
Zepelin, H. & Rechtschaffen, A. (1974) Mammalian sleep, longevity, and energy metabolism. Brain, Behavior, and Evolution 10:425–70. [SD, rJAH]Google ScholarPubMed
Zigmond, R. E., Baldwin, C. & Bowers, C. W. (1985) Rapid recovery of pineal function after partial denervation: A possible role for heteroneuronal uptake of transmitters in modulating” synaptor efficacy. Journal of Neuroscience 5:142–50. [rJAH]CrossRefGoogle Scholar
Zulley, J. (1980) Distribution of REM sleep in entrained 24 hour and freerunning sleep-wake cycles. Sleep 2:377–89. [SD]Google ScholarPubMed
Zulley, J., Wever, R. & Aschoff, J. (1981) The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Archives 391:314–18. [taJAH]CrossRefGoogle ScholarPubMed