Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T02:07:43.484Z Has data issue: false hasContentIssue false

A unified framework for addiction: Vulnerabilities in the decision process

Published online by Cambridge University Press:  29 July 2008

A. David Redish
Affiliation:
Department of Neuroscience, University of Minnesota, Minneapolis, MN [email protected]://umn.edu/~redish/
Steve Jensen
Affiliation:
Graduate Program in Computer Science, University of Minnesota, Minneapolis, MN [email protected]
Adam Johnson
Affiliation:
Graduate Program in Neuroscience and Center for Cognitive Sciences, University of Minnesota, Minneapolis, MN [email protected]

Abstract

The understanding of decision-making systems has come together in recent years to form a unified theory of decision-making in the mammalian brain as arising from multiple, interacting systems (a planning system, a habit system, and a situation-recognition system). This unified decision-making system has multiple potential access points through which it can be driven to make maladaptive choices, particularly choices that entail seeking of certain drugs or behaviors. We identify 10 key vulnerabilities in the system: (1) moving away from homeostasis, (2) changing allostatic set points, (3) euphorigenic “reward-like” signals, (4) overvaluation in the planning system, (5) incorrect search of situation-action-outcome relationships, (6) misclassification of situations, (7) overvaluation in the habit system, (8) a mismatch in the balance of the two decision systems, (9) over-fast discounting processes, and (10) changed learning rates. These vulnerabilities provide a taxonomy of potential problems with decision-making systems. Although each vulnerability can drive an agent to return to the addictive choice, each vulnerability also implies a characteristic symptomology. Different drugs, different behaviors, and different individuals are likely to access different vulnerabilities. This has implications for an individual's susceptibility to addiction and the transition to addiction, for the potential for relapse, and for the potential for treatment.

Type
Main Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. D. & Dickinson, A. (1981) Instrumental responding following reinforcer devaluation. Quarterly Journal of Experimental Psychology: Comparative and Physiological Psychology 33(B):109–22.CrossRefGoogle Scholar
Adams, S., Kesner, R. P. & Ragozzino, M. E. (2001) Role of the medial and lateral caudate-putamen in mediating an auditory conditional response association. Neurobiology of Learning and Memory 76:106–16.CrossRefGoogle ScholarPubMed
Aggleton, J. P. (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends in Neurosciences 16(8):328–33.CrossRefGoogle ScholarPubMed
Agster, K. L., Fortin, N. J. & Eichenbaum, H. (2002) The hippocampus and disambiguation of overlapping sequences. Journal of Neuroscience 22(13):5760–68.CrossRefGoogle ScholarPubMed
Ahmed, S. H. & Koob, G. F. (1997) Cocaine- but not food-seeking behavior is reinstated by stress after extinction. Psychopharmacology 132(3):289–95.CrossRefGoogle Scholar
Ahmed, S. H. & Koob, G. F. (1998) Transition from moderate to excessive drug intake: Change in hedonic set point. Science 282:298300.CrossRefGoogle ScholarPubMed
Ahmed, S. H. & Koob, G. F. (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146(3):303–12.CrossRefGoogle ScholarPubMed
Ahmed, S. H. & Koob, G. F. (2004) Vertical shifts in dose-injection curves reflect reward allostasis not sensitization. Psychopharmacology 171:354–55.Google Scholar
Ahmed, S. H. & Koob, G. F. (2005) Transition to drug addiction: A negative reinforcement model based on an allostatic decrease in reward function. Psychopharmacology 180:473–90.CrossRefGoogle Scholar
Ainslie, G. (1992) Picoeconomics: The strategic interaction of successive motivational states within the person. Cambridge University Press.Google Scholar
Ainslie, G. (2001) Breakdown of will. Cambridge University Press.CrossRefGoogle Scholar
Ainslie, G. & Monterosso, J. (2004) Behavior: A marketplace in the brain? Science 306(5695):421–23.CrossRefGoogle ScholarPubMed
Alessi, S. M. & Petry, N. M. (2003) Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioural Processes 64(3):345–54.Google Scholar
Altman, J., Everitt, B. J., Robbins, T. W., Glautier, S., Markou, A., Nutt, D., Oretti, R. & Phillips, G. D. (1996) The biological, social and clinical bases of drug addiction: Commentary and debate. Psychopharmacology 125(4):285345.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2000) Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-IV-TR™), 4th edition.American Psychiatric Association.Google Scholar
Anagnostaras, S. G., Schallert, T. & Robinson, T. E. (2002) Memory processes governing amphetamine-induced psychomotor sensitization. Neuropsychopharmacology 26(6):703–15.CrossRefGoogle ScholarPubMed
Arbib, M., ed. (1995) The handbook of brain theory and neural networks. MIT Press.Google Scholar
Arbisi, P. A., Billington, C. J. & Levine, A. S. (1999) The effect of naltrexone on taste detection and recognition threshold. Appetite 32(2):241–49.CrossRefGoogle ScholarPubMed
Arbuthnott, G. W. & Wickens, J. (2007) Space, time and dopamine. Trends in Neurosciences 30(2):6269.CrossRefGoogle ScholarPubMed
Arnsten, A. F. T., Cai, J. X., Murphy, B. L. & Goldman-Rakic, P. S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–51.CrossRefGoogle ScholarPubMed
Averbeck, B. B. & Lee, D. (2007) Prefrontal neural correlates of memory for sequences. Journal of Neuroscience 27(9):2204–11.CrossRefGoogle ScholarPubMed
Azolosa, J. L., Stitzer, M. L. & Greenwald, M. K. (1994) Opioid physical dependence development: Effects of single versus repeated morphine pretreatments and of subjects' opioid exposure history. Psychopharmacology 114(1):7180.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (1986) Working memory. Oxford University Press.Google ScholarPubMed
Balfour, D. J. K. & Fagerström, K. O. (1996) Pharmacology of nicotine and its therapeutic use in smoking cessation and neurodegenerative disorders. Pharmacology and Therapeutics 72(1):5181.CrossRefGoogle ScholarPubMed
Balfour, D. J. K., Wright, A. E., Benwell, M. E. M. & Birrell, C. E. (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behavioural Brain Research 113(1–2):7383.CrossRefGoogle ScholarPubMed
Balleine, B. W. & Dickinson, A. (1998) Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4–5):407–19.CrossRefGoogle ScholarPubMed
Balleine, B. W. & Ostlund, S. B. (2007) Still at the choice-point: Action selection and initiation in instrumental conditioning. Annals of the New York Academy of Sciences 1104:147–71.CrossRefGoogle Scholar
Bals-Kubik, R., Herz, A. & Shippenberg, T. (1989) Evidence that the aversive effects of opioid antagonists and κ-agonists are centrally mediated. Psychopharmacology 98:203206.CrossRefGoogle ScholarPubMed
Balster, R. L. (1973) Fixed-interval schedule of cocaine reinforcement: Effect of dose and infusion duration. Journal of Experimental Analysis of Behavior 20(1):119–29.CrossRefGoogle ScholarPubMed
Barkley, R. A. (2001) The executive functions and self-regulation: An evolutionary neuropsychological perspective. Neuropsychology Review 11(1):129.Google Scholar
Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K. & Metevia, L. (2001) Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Journal of Abnormal Child Psychology 29(6):541–56.CrossRefGoogle ScholarPubMed
Barnes, C. A. (1979) Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology 93:74104.Google Scholar
Barnes, C. A., Nadel, L. & Honig, W. K. (1980) Spatial memory deficit in senescent rats. Canadian Journal of Psychology 34(1):2939.Google Scholar
Barnes, T. D., Kubota, Y., Hu, D., Jin, D. Z. & Graybiel, A. M. (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–61.CrossRefGoogle ScholarPubMed
Barto, A. G. (1995) Adaptive critics and the basal ganglia. In: Models of information processing in the basal ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G., pp. 215–32. MIT Press.Google Scholar
Bayer, H. M. & Glimcher, P. (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–41.Google Scholar
Bechara, A. (2005) Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience 8(11):1458–63.CrossRefGoogle ScholarPubMed
Bechara, A., Dolan, S., Denburg, N., Hindes, A., Andersen, S. W. & Nathan, P. E. (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–89.Google Scholar
Becker, G. S., Grossman, M. & Murphy, K. M. (1994) An empirical analysis of cigarette addiction. The American Economic Review 84(3):396418.Google Scholar
Becker, G. S. & Murphy, K. M. (1988) A theory of rational addiction. Journal of Political Economy 96(4):675700.CrossRefGoogle Scholar
Beiser, D. G., Hua, S. E. & Houk, J. C. (1997) Network models of the basal ganglia. Current Opinion in Neurobiology 7(2):185–90.CrossRefGoogle ScholarPubMed
Benowitz, N. L. (1996) Pharmacology of nicotine: Addiction and therapeutics. Annual Review of Pharmacology and Toxicology 36:597613.CrossRefGoogle ScholarPubMed
Berke, J. D. (2003) Learning and memory mechanisms involved in compulsive drug use and relapse. In: Drugs of abuse: Analysis of neurological effects, ed. Wang, J., pp. 75102. Humana Press.Google Scholar
Bernheim, B. D. & Rangel, A. (2004) Addiction and cue-triggered decision processes. The American Economic Review 94(5):1558–90.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2007) The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology 191(3):391431.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (1998) What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28:309–69.CrossRefGoogle ScholarPubMed
Berridge, K. C. & Robinson, T. E. (2003) Parsing reward. Trends in Neurosciences 26(9):507–13.CrossRefGoogle ScholarPubMed
Bickel, W. K. & Marsch, L. A. (2001) Toward a behavioral economic understanding of drug dependence: Delay discounting processes. Addiction 96:7386.Google Scholar
Bickel, W. K., Miller, M. L., Yi, R., Kowal, B. P., Lindquist, D. M. & Pitcock, J. A. (2007) Behavioral and neuroeconomics of drug addiction: Competing neural systems and temporal discounting processes. Drug and Alcohol Dependence 90(S1):S85S91.Google Scholar
Bobo, J. K. & Husten, C. (2001) Sociocultural influences on smoking and drinking. Alcohol Research and Health 24(4):225–32.Google Scholar
Bolles, R. C. (1967) Theory of motivation. Harper & Row.Google Scholar
Bolles, R. C. (1972) Reinforcement, expectancy, and learning. Psychological Review 79(5):394409.CrossRefGoogle Scholar
Bossert, J. M., Ghitza, U. E., Lu, L., Epstein, D. H. & Shaham, Y. (2005) Neurobiology of relapse to heroin and cocaine seeking: An update and clinical implications. European Journal of Pharmacology 526(1–3):3650.Google Scholar
Bouton, M. E. (2002) Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction. Biological Psychiatry 52:976–86.Google Scholar
Bouton, M. E. (2004) Context and behavioral processes in extinction. Learning and Memory 11(5):485–94.Google Scholar
Broom, D. C., Jutkiewicz, E. M., Folk, J. E., Traynor, J. R., Rice, K. C. & Woods, J. H. (2002) Nonpeptidic δ-opioid receptor agonists reduce immobility in the forced swim assay in rats. Neuropsychopharmacology 26:744–55.Google Scholar
Brown, M. F. (1992) Does a cognitive map guide choices in the radial-arm maze? Journal of Experimental Psychology 18(1):5666.Google ScholarPubMed
Buckner, R. L. & Carroll, D. C. (2007) Self-projection and the brain. Trends in Cognitive Sciences 11(2):4957.CrossRefGoogle ScholarPubMed
Buzsáki, G. (1996) The hippocampo-neocortical dialogue. Cerebral Cortex 6(2):8192.CrossRefGoogle ScholarPubMed
Cagniard, B., Beeler, J. A., Britt, J. P., McGehee, D. S., Marinelli, M. & Zhuang, X. (2006) Dopamine scales performance in the absence of new learning. Neuron 51(5):541–47.CrossRefGoogle ScholarPubMed
Caillé, S. & Parsons, L. H. (2003) SR141716A reduces the reinforcing properties of heroin but not heroin-induced increases in nucleus accumbens dopamine in rats. European Journal of Neuroscience 18(11):3145–49.CrossRefGoogle Scholar
Capaldi, E. J. (1957) The effect of different amounts of alternating partial reinforcement on resistance to extinction. American Journal of Psychology 70(3):451–52.CrossRefGoogle ScholarPubMed
Cappendijk, S. L., Hurd, Y. L., Nylander, I., van Ree, J. M. & Terenius, L. (1999) A heroin-, but not a cocaine-expecting, self-administration state preferentially alters endogenous brain peptides. European Journal of Pharmacology 365(2–3):175–82.CrossRefGoogle Scholar
Carelli, R. M. (2002) Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. “natural” reinforcement. Physiology and Behavior 76(3):379–87.Google Scholar
Carelli, R. M., Ijames, S. G. & Crumling, A. J. (2000) Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. Journal of Neuroscience 20(11):4255–66.CrossRefGoogle ScholarPubMed
Carelli, R. M. & West, M. O. (1991) Representation of the body by single neurons in the dosolateral striatum of the awake, unrestrained rat. Journal of Comparative Neurology 309:231–49.CrossRefGoogle Scholar
Carelli, R. M. & Wondolowski, J. (2003) Selective encoding of cocaine versus natural rewards by nucleus accumbens neurons is not related to chronic drug exposure. Journal of Neuroscience 23(35):11214–23.CrossRefGoogle Scholar
Carr, H. & Watson, J. B. (1908) Orientation in the white rat. Journal of Comparative Neurology and Psychology 18:2744.Google Scholar
Centonze, D., Gubellini, P., Picconi, B., Calabresi, P., Giacomini, P. & Bernardi, G. (1999) Unilateral dopamine denervation blocks corticostriatal LTP. Journal of Neurophysiology 82(6):3575–79.Google Scholar
Chamberlain, S. R., Muller, U., Robbins, T. W. & Sahakian, B. J. (2006) Neuropharmacological modulation of cognition. Current Opinion in Neurology 19(6):607–12.CrossRefGoogle ScholarPubMed
Chang, Q. & Gold, P. E. (2004) Inactivation of dorsolateral striatum impairs acquisition of response learning in cue-deficient, but not cue-available, conditions. Behavioral Neuroscience 118(2):383–88.CrossRefGoogle Scholar
Chastain, G. (2006) Alcohol, neurotransmitter systems, and behavior. Journal of General Psychology 133(4):329–35.CrossRefGoogle ScholarPubMed
Chavkin, C., James, I. F. & Goldstein, A. (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215(4531):413–15.CrossRefGoogle ScholarPubMed
Chen, R., Tilley, M. R., Wei, H., Zhou, F., Zhou, F.-M., Ching, S., Quan, N., Stephens, R. L., Hill, E. R., Nottoli, T., Han, D. D. & Gu, H. H. (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proceedings of the National Academy of Sciences, USA 103(24):9333–38.CrossRefGoogle ScholarPubMed
Chiamulera, C. (2005) Cue reactivity in nicotine and tobacco dependence: A “multiple-action” model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli. Brain Research Reviews 48(1):7497.CrossRefGoogle ScholarPubMed
Childress, A. R., Ehrman, R., Rohsenow, D. J., Robbins, S. J. & O'Brien, C. P. (1992) Classically conditioned factors in drug dependence. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P. & Millman, R. B., pp. 5669. Williams and Wilkins.Google Scholar
Childress, A. R., Hole, A. V., Ehrman, R. N., Robbins, S. J., McLellan, A. T. & O'Brien, C. P. (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Research Monographs 137:7394.Google ScholarPubMed
Childress, A. R., McLellan, A. T., Ehrman, R. & O'Brien, C. P. (1988) Classically conditioned responses in opioid and cocaine dependence: A role in relapse? NIDA Research Monographs 84:2543.Google Scholar
Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M. & O'Brien, C. P. (1999) Limbic activation during cue-induced cocaine craving. The American Journal of Psychiatry 156:1118.CrossRefGoogle ScholarPubMed
Ciraulo, D. A., Piechniczek-Buczek, J. & Iscan, E. N. (2003) Outcome predictors in substance use disorders. The Psychiatric Clinics of North America 26:381409.CrossRefGoogle ScholarPubMed
Clark, L. & Robbins, T. W. (2002) Decision-making deficits in drug addiction. Trends in Cognitive Sciences 6(9):361–63.CrossRefGoogle ScholarPubMed
Clark, R. E. & Squire, L. R. (1998) Classical conditioning and brain systems: The role of awareness. Science 280:7781.CrossRefGoogle ScholarPubMed
Cohen, N. J. & Eichenbaum, H. (1993) Memory, amnesia, and the hippocampal system. MIT Press.Google Scholar
Cohen, N. J. & Squire, L. R. (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science 210:207–10.CrossRefGoogle ScholarPubMed
Colwill, R. M. & Rescorla, R. A. (1985) Post-conditioning devaluation of a reinforcer affects instrumental responding. Journal of Experimental Psychology: Animal Behavior Processes 11:120–32.Google Scholar
Colwill, R. M. & Rescorla, R. A. (1990) Effect of reinforcer devaluation on discriminative control of instrumental behavior. Journal of Experimental Psychology: Animal Behavior Processes 16(1):4047.Google ScholarPubMed
Corbit, L. H. & Balleine, B. W. (2000) The role of the hippocampus in instrumental conditioning. Journal of Neuroscience 20(11):4233–39.CrossRefGoogle ScholarPubMed
Corbit, L. H., Muir, J. L. & Balleine, B. W. (2001) The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. Journal of Neuroscience 21(9):3251–60.CrossRefGoogle ScholarPubMed
Corbit, L. H., Ostlund, S. B. & Balleine, B. W. (2002) Sensitivity to instrumental contingency degradation is mediated by the entorhinal cortex and its efferents via the dorsal hippocampus. Journal of Neuroscience 22(24):10976–84.Google Scholar
Coutureau, E. & Killcross, S. (2003) Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behavioural Brain Research 146:167–74.Google Scholar
Crabbe, J. C. (2002) Genetic contributions to addiction. Annual Review of Psychology 53(1):435–62.Google Scholar
Cummings, K. M. (2002) Programs and policies to discourage the use of tobacco products. Oncogene 21(48):7349–64.CrossRefGoogle ScholarPubMed
Curran, T. (1995) On the neural mechanisms of sequence learning. Psyche 2(12). (Online publication). Available at: http://psyche.cs.monash.edu.au/v2/psyche-2–12-curran.html.Google Scholar
Curran, T. (2001) Implicit learning revealed by the method of opposition. Trends in Cognitive Science 5(12):503504.CrossRefGoogle ScholarPubMed
Custer, R. L. (1984) Profile of the pathological gambler. Journal of Clinical Psychiatry 45( 12, Suppl. 2):3538.Google ScholarPubMed
Dalley, J. W., Cardinal, R. N. & Robbins, T. W. (2004) Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews 28(7):771–84.Google Scholar
Daly, J. W. & Fredholm, B. B. (1998) Caffeine – an atypical drug of dependence. Drug and Alcohol Dependence 51:199206.CrossRefGoogle ScholarPubMed
Dani, J. A. & Heinemann, S. (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905908.Google Scholar
Davis, J. B., Donahue, R. J., Discenza, C. B., Waite, A. A. & Ramus, S. J. (2006) Hippocampal dependence of anticipatory neuronal firing in the orbitofrontal cortex of rats learning an odor-sequence memory task. Society for Neuroscience Abstracts, Program No. 66.7.Google Scholar
Davis, J. R. & Tunks, E. (1991) Environments and addiction: A proposed taxonomy. The International Journal of the Addictions 25(7A & 8A):805–26.Google Scholar
Daw, N. D. (2003) Reinforcement learning models of the dopamine system and their behavioral implications. Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.Google Scholar
Daw, N. D., Courville, A. C. & Touretzky, D. S. (2006) Representation and timing in theories of the dopamine system. Neural Computation 18:1637–77.CrossRefGoogle ScholarPubMed
Daw, N. D., Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience 8:1704–11.Google Scholar
Day, L. B., Weisend, M., Sutherland, R. J. & Schallert, T. (1999) The hippocampus is not necessary for a place response but may be necessary for pliancy. Behavioral Neuroscience 113(5):914–24.Google Scholar
Dayan, P. & Balleine, B. W. (2002) Reward, motivation, and reinforcement learning. Neuron 36:285–98.CrossRefGoogle ScholarPubMed
Dayan, P., Kakade, S. & Montague, P. R. (2000) Learning and selective attention. Nature Neuroscience 3:1218–23.Google Scholar
DeFeudis, F. V. (1978) Environmental theory of drug addiction. General Pharmacology 9(5):303306.CrossRefGoogle ScholarPubMed
de la Fuente-Fernandez, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J. & Stoessl, A. J. (2002) Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research 136:359–63.Google Scholar
Dennis, W. (1932) Multiple visual discrimination in the block elevated maze. Journal of Comparative and Physiological Psychology 13:391–96.CrossRefGoogle Scholar
Deroche-Gamonet, V., Belin, D. & Piazza, P. V. (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–17.Google Scholar
Devan, B. D. & White, N. M. (1999) Parallel information processing in the dorsal striatum: Relation to hippocampal function. Journal of Neuroscience 19(7):2789–98.Google Scholar
Devenport, L. D. (1979) Superstitious bar pressing in hippocampal and septal rats. Science 205(4407):721–23.Google Scholar
Devenport, L. D. (1980) Response-reinforcer relations and the hippocampus. Behavioral and Neural Biology 29(1):105–10.Google Scholar
Devenport, L. D., Devenport, J. A. & Holloway, F. A. (1981a) Necessity of the hippocampus for alcohol's indirect but not behavioral action. Behavioral and Neural Biology 33(4):476–87.Google Scholar
Devenport, L. D., Devenport, J. A. & Holloway, F. A. (1981b) Reward-induced stereotypy: Modulation by the hippocampus. Science 212(4500):1288–89.Google Scholar
Devenport, L. D. & Holloway, F. A. (1980) The rat's resistance to superstition: Role of the hippocampus. Journal of Comparative Physiology and Psychology 94(4):691705.Google Scholar
De Vries, T. J. & Shippenberg, T. S. (2002) Neural systems underlying opiate addiction. Journal of Neuroscience 22(9):3321–25.Google Scholar
de Wit, H., & Stewart, J. (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology 75(2):134–43.CrossRefGoogle ScholarPubMed
Di Chiara, G. (1997) Alcohol and dopamine. Alcohol Research and Health 21(2):108–13.Google Scholar
Di Chiara, G. (1999) Drug addiction as dopamine-dependent associative learning disorder. European Journal of Pharmacology 375(1–3):1330.Google Scholar
Dick, D. M., Jones, K., Saccone, N., Hinrichs, A., Wang, J. C., Goate, A., Bierut, L., Almasy, L., Schuckit, M., Hesselbrock, V., Tischfield, J., Foroud, T., Edenberg, H., Porjesz, B. & Begleiter, H. (2006) Endophenotypes successfully lead to gene identification: Results from the collaborative study on the genetics of alcoholism. Behavior Genetics 36(1):112–26.Google Scholar
Dickerson, M. & O'Connor, J. (2006) Gambling as an addictive behavior. Cambridge University Press.Google Scholar
Dickinson, A. (1980) Contemporary animal learning theory. Cambridge University Press.Google Scholar
Dickinson, A. (1985) Actions and habits: The development of behavioural autonomy. Philosophical Transactions of the Royal Society, London B 308:6778.Google Scholar
Dickinson, A., Wood, N. & Smith, J. W. (2002) Alcohol seeking by rats: Action or habit? The Quarterly Journal of Experimental Psychology: Section B 55(4):331–48.Google Scholar
DiMattia, B. V. D. & Kesner, R. P. (1988) Spatial cognitive maps: Differential role of parietal cortex and hippocampal formation. Behavioral Neuroscience 102(4):471–80.Google Scholar
Domjan, M. (1998) The principles of learning and behavior, 4th edition.Brooks/Cole.Google Scholar
Dowling, N., Smith, D. & Thomas, T. (2005) Electronic gaming machines: Are they the “crack cocaine” of gambling? Addiction 100(1):3345.CrossRefGoogle ScholarPubMed
Doya, K. (2000a) Metalearning, neuromodulation, and emotion. In: Affective minds, ed. Hatano, G., Okada, N. & Tanabe, H., pp. 101104. Elsevier.Google Scholar
Doya, K. (2000b) Reinforcement learning in continuous time and space. Neural Computation 12:219–45.Google Scholar
Doya, K. (2002) Metalearning and neuromodulation. Neural Networks 15(4–6):495506.Google Scholar
Doyon, J., Laforce, R., Bouchard, G., Gaudreau, D., Roy, J., Poirer, M., Bedard, P. J., Bedard, F. & Bouchard, J. P. (1998) Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia 36(7):625–41.CrossRefGoogle ScholarPubMed
Drummond, D. C. (2001) Theories of drug craving, ancient and modern. Addiction 96(1):3346.CrossRefGoogle ScholarPubMed
Dudish-Poulsen, S. A. & Hatsukami, D. K. (1997) Dissociation between subjective and behavioral responses after cocaine stimuli presentations. Drug and Alcohol Dependence 47(1):19.Google Scholar
Durstewitz, D., Kelc, M. & Gunturkun, O. (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. Journal of Neuroscience 19(7):2807–22.Google Scholar
Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. (2000) Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology 83(3):1733–50.CrossRefGoogle Scholar
Ehrman, R., Ternes, J., O'Brien, C. P. & McLellan, A. T. (1992) Conditioned tolerance in human opiate addicts. Psychopharmacology 108(1–2):218–24.Google Scholar
Eichenbaum, H., Stewart, C. & Morris, R. G. M. (1990) Hippocampal representation in place learning. Journal of Neuroscience 10(11):3531–42.Google Scholar
Epstein, D. H. & Preston, K. L. (2003) The reinstatement model and relapse prevention: A clinical perspective. Psychopharmacology 168:3141.Google Scholar
Evans, S. M. (1998) Behavioral pharmacology of caffeine. In: Handbook of substance abuse: Neurobehavioral pharmacology, ed. Tarter, R. E., Ammerman, R. T. & Ott, P. J., pp. 6996. Plenum.CrossRefGoogle Scholar
Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R. Wynne, K., Baker, N. B., Hunter, J., Carthy, T., Booker, E., London, M., Deakin, J. F., Sahakian, B. J. & Robbins, T. W. (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–39.Google Scholar
Everitt, B. J., Dickinson, A. & Robbins, T. W. (2001) The neuropsychological basis of addictive behavior. Brain Research Reviews 36:129–38.CrossRefGoogle Scholar
Everitt, B. J. & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience 8(11):1481–89.Google Scholar
Everitt, B. J. & Wolf, M. E. (2002) Psychomotor stimulant addiction: A neural systems perspective. Journal of Neuroscience 22(9):3312–20.Google Scholar
Faure, A., Haberland, U., Fran, C. C. & Massioui, N. E. (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. Journal of Neuroscience 25:2771–80.Google Scholar
Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L. & Mainen, Z. F. (2006) Representation of spatial goals in rat orbitofrontal cortex. Neuron 60(4):495507.CrossRefGoogle Scholar
Ferbinteanu, J., Kennedy, P. J. & Shapiro, M. L. (2006) Episodic memory – from brain to mind. Hippocampus 16(9):704–15.Google Scholar
Ferbinteanu, J. & Shapiro, M. L. (2003) Prospective and retrospective memory coding in the hippocampus. Neuron 40(6):1227–39.CrossRefGoogle ScholarPubMed
Ferraro, F. R., Balota, D. A. & Connor, L. T. (1993) Implicit memory and the formation of new associations in non-demented Parkinson's disease individuals and individuals with senile dementia of the Alzheimer type: A serial reaction time (SRT) investigation. Brain and Cognition 21(2):163–80.Google Scholar
Ferster, C. B. & Skinner, B. F. (1957) Schedules of reinforcement. Appleton-Century-Crofts.Google Scholar
Finch, D. M. (1996) Neurophysiology of converging synaptic inputs from rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 6:495512.Google Scholar
Fiore, M. C., ed. (2000) Treating tobacco use and dependence. U.S. Department of Health and Human Services, Public Health Service.Google Scholar
Flores, C. M., Dávila-García, M. I., Ulrich, Y. M. & Kellar, K. J. (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. Journal of Neurochemistry 69:2216–19.Google Scholar
Forkstam, C. & Petersson, K. M. (2005) Towards an explicit account of implicit learning. Current Opinion in Neurology 18(4):435–41.Google Scholar
Fortin, N. J., Agster, K. L. & Eichenbaum, H. B. (2002) Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience 5(5):458–62.Google Scholar
Frank, M. J., Seeberger, L. C. & O'Reilly, R. C. (2004) By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science 306(5703):1940–43.Google Scholar
Frederick, S., Loewenstein, G. & O'Donoghue, T. (2002) Time discounting and time preference: A critical review. Journal of Economic Literature 40(2):351401.Google Scholar
Fuster, J. M. (1997) The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe, 3rd edition. Lippincott-Raven.Google Scholar
Garavan, H., Pankiewicz, J., Bloom, A., Cho, J.-K., Sperry, L., Ross, T. J., Salmeron, B. J., Risinger, R., Kelley, D. & Stein, E. A. (2000) Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli. American Journal of Psychiatry 157(11):1789–98.Google Scholar
Gardiner, T. W. & Kitai, S. T. (1992) Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head-movement. Experimental Brain Research 88:517–30.Google Scholar
Gawin, F. H. (1991) Cocaine addiction: Psychology and neuropsychology. Science 251(5001):1580–86.Google Scholar
Georges, F., Moine, C. L. & Aston-Jones, G. (2006) No effect of morphine on ventral tegmental dopamine neurons during withdrawal. Journal of Neuroscience 26:5720–26.CrossRefGoogle ScholarPubMed
German, P. W. & Fields, H. L. (2007a) How prior reward experience biases exploratory movements: A probabilistic model. Journal of Neurophysiology 97(3):2083–93.Google Scholar
German, P. W. & Fields, H. L. (2007b) Rat nucleus accumbens neurons persistently encode locations associated with morphine reward. Journal of Neurophysiology 97(3):2094–106.Google Scholar
Gigerenzer, G. (2001) The adaptive toolbox: Toward a Darwinian rationality. Nebraska Symposium on Motivation 47:113–46.Google Scholar
Gigerenzer, G. & Goldstein, D. G. (1996) Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review 103:650–69.CrossRefGoogle ScholarPubMed
Giordano, L. A., Bickel, W. K., Loewenstein, G., Jacobs, E. A., Marsch, L. & Badger, G. J. (2002) Mild opioid deprivation increases the degree that opioid-dependent outpatients discount delayed heroin and money. Psychopharmacology 163(2):174–82.Google Scholar
Glimcher, P. W. (2003) Decisions, uncertainty, and the brain: The science of neuroeconomics. MIT Press.CrossRefGoogle Scholar
Glimcher, P. W. & Rustichini, A. (2004) Neuroeconomics: The consilience of brain and decision. Science 306(5695):447–52.Google Scholar
Gold, M. S. (1997) Cocaine (and crack): Clinical aspects. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 181–99. Williams and Wilkins.Google Scholar
Gold, P. (2004) Coordination of multiple memory systems. Neurobiology of Learning and Memory 82(3):230–42.Google Scholar
Goldman, D., Oroszi, G. & Ducci, F. (2005) The genetics of addictions: Uncovering the genes. Nature Reviews Genetics 6(7):521–32.Google Scholar
Goldman, M. S., Boca, F. K. D. & Darkes, J. (1999) Alcohol expectancy theory: The application of cognitive neuroscience. In: Psychological theories of drinking and alcoholism, ed. Leonard, K. E. & lsn, H. T., pp. 203–46. Guilford Press.Google Scholar
Goldman, M. S., Brown, S. A. & Christiansen, B. A. (1987) Expectancy theory: Thinking about drinking. In: Psychological theories of drinking and alcoholism, ed. lsn, H. T. & lsn, K. E. , pp. 181226. Guilford Press.Google Scholar
Goldman, P. S., Rosvold, H. E. & Mishkin, M. (1970) Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey. Journal of Comparative and Physiological Psychology 70(3):454–63.Google Scholar
Goldman-Rakic, P. S., Funahashi, S. & Bruce, C. J. (1990) Neocortical memory circuits. Cold Spring Harbor Symposia on Quantitative Biology 55:1025–38.Google Scholar
Goldstein, A. (2000) Addiction: From biology to drug policy. Oxford University Press.Google Scholar
Goodwin, D. W. & Gabrielli, W. F. (1997) Alcohol: Clinical aspects. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 142–48. Williams and Wilkins.Google Scholar
Goto, Y. & Grace, A. A. (2005a) Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: Disruption by cocaine sensitization. Neuron 47(2):255–66.Google Scholar
Goto, Y. & Grace, A. A. (2005b) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nature Neuroscience 8(6):805–12.CrossRefGoogle ScholarPubMed
Grant, J. E., Potenza, M. N., Hollander, E., Cunningham-Williams, R., Nurminen, T., Smits, G. & Kallio, A. (2006) Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. American Journal of Psychiatry 163(2):303–12.Google Scholar
Grant, S., Contoreggi, C. & London, E. D. (2000) Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38(8):1180–87.Google Scholar
Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., Phillips, R. L., Kimes, A. S. & Margolin, A. (1996) Activation of memory circuits during cue-elicited cocaine craving. Proceedings of the National Academy of Sciences USA 93(21):12040–45.Google Scholar
Gray, J. A. (1975) Elements of a two-process theory of learning. Academic Press.Google Scholar
Gray, J. A. & McNaughton, N. (2000) The neuropsychology of anxiety. Oxford University Press.Google Scholar
Greden, J. F. & Walters, A. (1997) Caffeine. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 294307. Williams and Wilkins.Google Scholar
Griffiths, M. D. (1994) The role of cognitive bias and skill in fruit machine gambling. British Journal of Psychology 85(3):351–70.Google Scholar
Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. (2001) Neuroadaptation: Incubation of cocaine craving after withdrawal. Nature 412:141–42.Google Scholar
Grossberg, S. (1976) Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biological Cybernetics 23:121–34.Google Scholar
Grossman, M. & Chaloupka, F. J. (1998) The demand for cocaine by young adults: A rational addiction approach. Journal of Health Economics 17:427–74.Google Scholar
Guthrie, E. R. (1935) The psychology of learning. Harpers.Google Scholar
Gutkin, B. S., Dehaene, S. & Changeux, J.-P. (2006) A neurocomputational hypothesis for nicotine addiction. Proceedings of the National Academy of Sciences USA 103(4):1106–11.Google Scholar
Haber, S. N., Fudge, J. L. & McFarland, N. R. (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience 20(6):2369–82.Google Scholar
Halikas, J. A. (1997) Craving. In: Substance abuse: A comprehensive textbook, 3rd edition, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 8590. Williams and Wilkins.Google Scholar
Hanson, K., Allen, S., Jensen, S. & Hatsukami, D. (2003) Treatment of adolescent smokers with the nicotine patch. Nicotine and Tobacco Research 5(4):515–26.Google Scholar
Harris, A. C. & Gewirtz, J. C. (2005) Acute opioid dependence: Characterizing the early adaptations underlying drug withdrawal. Psychopharmacology 178(4):353–66.Google Scholar
Hasselmo, M. E. (1993) Acetylcholine and learning in a cortical associative memory. Neural Computation 5:3244.Google Scholar
Hasselmo, M. E. & Bower, J. M. (1993) Acetylcholine and memory. Trends in Neurosciences 16(6):218–22.Google Scholar
Hastie, R. (2001) Problems for judgment and decision making. Annual Review of Psychology 52:653–83.Google Scholar
Hauser, K. F., McLaughlin, P. J. & Zagon, I. S. (1987) Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Research 416(1):157–61.Google Scholar
Hauser, K. F., McLaughlin, P. J. & Zagon, I. S. (1989) Endogenous opioid systems and the regulation of dendritic growth and spine formation. Journal of Comparative Neurology 281(1):1322.Google Scholar
Hebb, D. O. (1949/2002) The organization of behavior. Erlbaum. (Original work published in 1949)Google Scholar
Heishman, S. J. & Henningfield, J. E. (2000) Tolerance to repeated nicotine administration on performance, subjective, and physiological responses in nonsmokers. Psychopharmacology 152(3):321–34.Google Scholar
Hemby, S., Martin, T., Co, C., Dworkin, S. & Smith, J. (1995) The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. The Journal of Pharmacology and Experimental Therapeutics 273(2):591–98.Google Scholar
Herrnstein, R. J. (1997) The matching law. Harvard University Press.Google Scholar
Hertz, J., Krogh, A. & Palmer, R. G. (1991) Introduction to the theory of neural computation. Addison-Wesley.Google Scholar
Herz, A. (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology 129:99111.Google Scholar
Herz, A. (1998) Opioid reward mechanisms: A key role in drug abuse? Canadian Journal of Physiology and Pharmacology 76(3):252–58.Google Scholar
Heyman, G. M. (1996) Resolving the contradictions of addiction. Brain and Behavioral Sciences 19(4):561–74.Google Scholar
Heyman, G. M. (2000) An economic approach to animal models of alcoholism. Alcohol Research and Health 24(2):132–39.Google Scholar
Higgins, S. T., Alessi, S. M. & Dantona, R. L. (2002) Voucher-based incentives: A substance abuse treatment innovation. Addictive Behaviors 27:887910.Google Scholar
Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K. & Lu, X. (1998) Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiology of Learning and Memory): 70(1–2):137–49.CrossRefGoogle ScholarPubMed
Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., Miyachi, S. & Doya, K. (1999) Parallel neural networks for learning sequential procedures. Trends in Neurosciences 22(10):464–71.Google Scholar
Hikosaka, O., Nakamura, K. & Nakahara, H. (2006) Basal ganglia orient eyes to reward. Journal of Neurophysiology 95:567–84.Google Scholar
Hiroi, N. & Agatsuma, S. (2005) Genetic susceptibility to substance dependence. Molecular Psychiatry 10:336–44.Google Scholar
Hirsh, R. (1974) The hippocampus and contextual retrieval of information from memory: A theory. Behavioral Biology 12:421–44.Google Scholar
Hoffmann, K. L. & McNaughton, B. L. (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297(5589):2070–73.Google Scholar
Holden, C. (2001) “Behavioral” addictions: Do they exist? Science 294:980–82.Google Scholar
Holland, P. C. & Rescorla, R. A. (1975) The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes 1:355–63.Google Scholar
Holland, P. C. & Straub, J. J. (1979) Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes 5:6578.Google Scholar
Hommer, D. W. (1999) Functional imaging of craving. Alcohol Research and Health 23(3):187–96.Google Scholar
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA 79:2554–58.Google Scholar
Houk, J. C., Adams, J. L. & Barto, A. G. (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Models of information processing in the basal ganglia, ed. Houk, J. C., Davis, J. L. & Beiser, D. G., pp. 249–70. MIT Press.Google Scholar
Hu, D. & Amsel, A. (1995) A simple test of the vicarious trial-and-error hypothesis of hippocampal function. Proceedings of the National Academy of Sciences, USA 92:55065509.Google Scholar
Hu, D., Xu, X. & Gonzalez-Lima, F. (2006) Vicarious trial-and-error behavior and hippocampal cytochrome oxidase activity during Y-maze discrimination learning in the rat. International Journal of Neuroscience 116(3):265–80.Google Scholar
Huang, Y.-Y., Kandel, E. R., Vashavsky, L., Brandon, E. P., Qi, M., Idzerda, R. L., McKnight, G. S. & Bourtchouladze, R. (1995) A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83:1211–22.Google Scholar
Hughes, J. R. & Hatsukami, D. (1986) Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry 43(3):289–94.Google Scholar
Hull, C. L. (1943) Principles of behavior. Appleton-Century-Crofts.Google Scholar
Hull, C. L. (1952) A behavior system: An introduction to behavior theory concerning the individual organism. Yale University Press.Google Scholar
Hunt, W. A. (1998) Pharmacology of alcohol. In: Handbook of substance abuse: Neurobehavioral pharmacology, ed. Tarter, R. E., Ammerman, R. T. & Ott, P. J., pp. 722. Plenum.Google Scholar
Hurd, Y. L. & Herkenham, M. (1993) Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13(4):357–69.Google Scholar
Hursh, S. R. (1991) Behavioral economics of drug self-administration and drug abuse policy. Journal of Experimental Analysis of Behavior 56(2):377–93.Google Scholar
Hursh, S. R., Galuska, C. M., Winger, G. & Woods, J. H. (2005) The economics of drug abuse: A quantitative assessment of drug demand. Molecular Interventions 5:2028.Google Scholar
Husain, M., Parton, A., Hodgson, T. L., Mort, D. & Rees, G. (2003) Self-control during response conflict by human supplementary eye field. Nature Neuroscience 6:117–18.Google Scholar
Hyman, S. E. (2005) Addiction: A disease of learning and memory. American Journal of Psychiatry 162:1414–22.Google Scholar
Ikemoto, S. & Panksepp, J. (1999) The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews 31(1):641.Google Scholar
Ikemoto, S., Qin, M. & Liu, Z.-H. (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. Journal of Neuroscience 26:723–30.Google Scholar
Irvin, J. E. & Brandon, T. H. (2000) The increasing recalcitrance of smokers in clinical trials. Nicotine and Tobacco Research 2(1):7984.Google Scholar
Irvin, J. E., Hendricks, P. S. & Brandon, T. H. (2003) The increasing recalcitrance of smokers in clinical trials: II. Pharmacotherapy trials. Nicotine and Tobacco Research 5(1):2735.Google Scholar
Isoda, M. & Hikosaka, O. (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nature Neuroscience 10:240–48.Google Scholar
Ito, R., Dalley, J. W., Howes, S. R., Robbins, T. W. & Everitt, B. J. (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. Journal of Neuroscience 20(19):7489–95.Google Scholar
Ito, R., Dalley, J. W., Robbins, T. W. & Everitt, B. J. (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. Journal of Neuroscience 22(14):6247–53.Google Scholar
Itoh, H., Nakahara, H., Hikosaka, O., Kawagoe, R., Takikawa, Y. & Aihara, K. (2003) Correlation of primate caudate neural activity and saccade parameters in reward-oriented behavior. Journal of Neurophysiology 89(4):1774–83.Google Scholar
Iversen, S. D. & Mishkin, M. (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research 11(4):376–86.Google Scholar
Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L. & Kennard, C. (1995) Serial reaction time learning and Parkinson's disease: Evidence for a procedural learning deficit. Neuropsychologia 33(5):577–93.Google Scholar
Jaffe, J. H. (1992) Current concepts of addiction. In: Research publications: Association for research in nervous and mental disease, vol. 70, ed. O'Brien, C. P. & Jaffe, J. H., pp. 121. Raven.Google Scholar
Jaffe, J. H., Knapp, C. M. & Ciraulo, D. A. (1997) Opiates: Clinical aspects. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrood, J. G., pp. 158–66. Williams and Wilkins.Google Scholar
Jensen, O. & Lisman, J. E. (1998) An oscillatory short-term memory buffer model can account for data on the Sternberg task. Journal of Neuroscience 18(24):10688–99.Google Scholar
Jensen, O. & Lisman, J. E. (2005) Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences 28(2):6772.Google Scholar
Jentsch, J. D., Olausson, P., Garza, R. D. L. & Taylor, J. R. (2002) Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys. Neuropsychologia 26:183–90.Google Scholar
Jentsch, J. D. & Taylor, J. R. (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–90.Google Scholar
Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V. & Graybiel, A. M. (1999) Building neural representations of habits. Science 286:1746–49.Google Scholar
Johanson, C.-E. & Fischman, M. W. (1989) The pharmacology of cocaine related to its abuse. Pharmacological Reviews 41(1):352.Google Scholar
Johnson, A. & Redish, A. D. (2005) Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model. Neural Networks 18(9):1163–71.Google Scholar
Johnson, A. & Redish, A. D. (2007) Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. Journal of Neuroscience 27(45):12176–89.Google Scholar
Johnson, S. W. & North, R. A. (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. Journal of Neuroscience 12:483–88.Google Scholar
Jones, B. T., Corbin, W. & Fromme, K. (2001) A review of expectancy theory and alcohol consumption. Addiction 96:5772.Google Scholar
Jung, M. W., Qin, Y., McNaughton, B. L. & Barnes, C. A. (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cerebral Cortex 8:437–50.Google Scholar
Kahneman, D. & Frederick, S. (2002) Representativeness revisited: Attribute substitution in intuitive judgment. In: Heuristics and biases: The psychology of intuitive judgment, ed. Gilovich, T., Griffin, D. & Kahneman, D., pp. 4981. Cambridge University Press.Google Scholar
Kahneman, D., Slovic, P. & Tversky, A., eds. (1982) Judgement under uncertainty: Heuristics and biases. Cambridge University Press.CrossRefGoogle Scholar
Kahneman, D. & Tversky, A. eds. (2000) Choices, values, and frames. Cambridge University Press.Google Scholar
Kalivas, P. W., Peters, J. & Knackstedt, L. (2006) Animal models and brain circuits in drug addiction. Molecular Interventions 6:339–44.Google Scholar
Kalivas, P. W. & Volkow, N. D. (2005) The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry 162(8):1403–13.Google Scholar
Kalivas, P. W., Volkow, N. D. & Seamans, J. (2005) Unmanageable motivation in addiction: A pathology in prefrontal-accumbens glutamate transmission. Neuron 45(5):647–50.Google Scholar
Katz, J. L. & Higgins, S. T. (2003) The validity of the reinstatement model of craving and relapse. Psychopharmacology 168:2130.Google Scholar
Kawagoe, R., Takikawa, Y. & Hikosaka, O. (2004) Reward-predicting activity of dopamine and caudate neurons – a possible mechanism of motivational control of saccadic eye movement. Journal of Neurophysiology 91(2):1013–24.Google Scholar
Kelley, A. E. (1999a) Functional specificity of ventral striatal compartments in appetitive behaviors. Annals of the New York Academy of Sciences 877:7190.Google Scholar
Kelley, A. E. (1999b) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27(2):198213.Google Scholar
Kelley, A. E. (2004a) Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron 44:161–79.Google Scholar
Kelley, A. E. & Berridge, K. C. (2002) The neuroscience of natural rewards: Relevance to addictive drugs. Journal of Neuroscience 22(9):3306–11.Google Scholar
Kelley, A. E., Bakshi, V. P., Haber, S. N., Steininger, T. L., Will, M. J. & Zhang, M. (2002) Opioid modulation of taste hedonics within the ventral striatum. Physiology and Behavior 76(3):365–77.Google Scholar
Kenny, P. J. & Markou, A. (2005) Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. Journal of Neuroscience 25(26):6208–12.Google Scholar
Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–95.Google Scholar
Kermadi, I. & Joseph, J. P. (1995) Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology 74(3):911–33.Google Scholar
Kermadi, I., Jurquet, Y., Arzi, M. & Joseph, J. (1993) Neural activity in the caudate nucleus of monkeys during spatial sequencing. Experimental Brain Research 94:352–56.Google Scholar
Kesner, R. P., Farnsworth, G. & DiMattia, B. V. (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience 103(5):956–61.Google Scholar
Kiefer, F. & Mann, K. (2005) New achievements and pharmacotherapeutic approaches in the treatment of alcohol dependence. European Journal of Pharmacology 526(1–3):163–71.Google Scholar
Kieffer, B. L. (1999) Opioids: First lessons from knockout mice. Trends in Pharmacological Sciences 20(1):1926.Google Scholar
Killcross, S. & Coutureau, E. (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex 13(8):400408.Google Scholar
Kirby, K. N., Petry, N. M. & Bickel, W. K. (1999) Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. Journal of Experimental Psychology: General 128(1):7887.Google Scholar
Kiyatkin, E. A. (1994) Behavioral significance of phasic changes in mesolimbic dopamine-dependent electrochemical signal associated with heroin self-injections. Journal of Neural Transmission, General Section 96(3):197214.Google Scholar
Kiyatkin, E. A. & Gratton, A. (1994) Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food. Brain Research 652:225–34.Google Scholar
Kiyatkin, E. A. & Rebec, G. V. (1997) Activity of presumed dopamine neurons in the ventral tegmental area during heroin self-administration. NeuroReport 8(11):2581–85.Google Scholar
Kiyatkin, E. A. & Rebec, G. V. (2001) Impulse activity of ventral tegmental area neurons during heroin self-administration in rats. Neuroscience 102(3):565–80.Google Scholar
Kleber, H. D., Califano, J. A. & Demers, J. C. (1997) Clinical and societal implications of drug legalization. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 855–64. Williams and Wilkins.Google Scholar
Knopman, D. S. & Nissen, M. J. (1987) Implicit learning in patients with probable Alzheimer's disease. Neurology 37(5):784–88.Google Scholar
Knopman, D. S. & Nissen, M. J. (1991) Procedural learning is impaired in Huntington's disease: Evidence from the serial reaction time task. Neuropsychologia 29(3):245–54.Google Scholar
Knowlton, B. J., Squire, L. R. & Gluck, M. A. (1994) Probabilistic classification learning in amnesia. Learning and Memory 1(2):106–20.Google Scholar
Koene, R. A., Gorchetchnikov, A., Cannon, R. C. & Hasselmo, M. E. (2003) Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Networks 16(5–6):577–84.Google Scholar
Kohonen, T. (1984) Self-organization and associative memory. Springer-Verlag.Google Scholar
Kolb, B. (1990) Prefrontal cortex. In: The cerebral cortex of the rat, ed. Kolb, B. & Tees, R. C., pp. 437–58. MIT Press.Google Scholar
Koob, G. F. & Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–23.Google Scholar
Koob, G. F. & Le Moal, M. (1997) Drug abuse: Hedonic homeostatic dysregulation. Science 278(5335):5258.Google Scholar
Koob, G. F. & Le Moal, M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97129.Google Scholar
Koob, G. F. & Le Moal, M. (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nature Neuroscience 8(11):1442–44.Google Scholar
Koob, G. F. & Le Moal, M. (2006) Neurobiology of addiction. Elsevier Academic.Google Scholar
Kreek, M. J., Nielsen, D. A., Butelman, E. R. & LaForge, K. S. (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience 8:1450–57.Google Scholar
Kuhar, M. J., Ritz, M. C. & Sharkey, J. (1988) Cocaine receptors on dopamine transporters mediate cocaine-reinforced behavior. In: Mechanisms of cocaine abuse and toxicity, ed. Clouet, D., Asghar, K. & Brown, R., pp. 1422. National Institute on Drug Abuse.Google Scholar
Laing, C. R. & Chow, C. C. (2001) Stationary bumps in networks of spiking neurons. Neural Computation 13(7):1473–14.Google Scholar
Langer, E. J. & Roth, J. (1975) Heads I win, tails it's chance: The illusion of control as a function of the sequence of outcomes in a purely chance task. Journal of Personality and Social Psychology 32(6):951–55.Google Scholar
Lavoie, A. M. & Mizumori, S. J. Y. (1994) Spatial-, movement- and reward-sensitive discharge by medial ventral striatum neurons in rats. Brain Research 638:157–68.Google Scholar
Leri, F., Bruneau, J. & Stewart, J. (2003) Understanding polydrug use: Review of heroin and cocaine co-use. Addiction 98(1):723.Google Scholar
LeSage, M. G., Burroughs, D., Dufek, M., Keyler, D. E. & Pentel, P. R. (2004) Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacology, Biochemistry, and Behavior 79(3):507–13.Google Scholar
Lesieur, H. (1977) The chase: Career of the compulsive gambler. Anchor.Google Scholar
Letchworth, S. R., Nader, M. A., Smith, H. R., Friedman, D. P. & Porrino, L. J. (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. Journal of Neuroscience 21(8):27992807.Google Scholar
Levine, A. S. & Billington, C. J. (2004) Opioids as agents of reward-related feeding: A consideration of the evidence. Physiology and Behavior 82:5761.Google Scholar
Levy, W. B. (1996) A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6(6):579–91.Google Scholar
Levy, W. B., Sanyal, A., Rodriguez, P., Sullivan, D. W. & Wu, X. B. (2005) The formation of neural codes in the hippocampus: Trace conditioning as a prototypical paradigm for studying the random recoding hypothesis. Biological Cybernetics 92:409–26.Google Scholar
Li, Y., Acerbo, M. J. & Robinson, T. E. (2004) The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens. European Journal of Neuroscience 20(6):1647–54.Google Scholar
Liao, D., Lin, H., Law, P. Y. & Loh, H. H. (2005) Mu-opioid receptors modulate the stability of dendritic spines. Proceedings of the National Academy of Sciences, USA 102(5):1725–30.Google Scholar
Lisman, J. E. & Grace, A. A. (2005) The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 46(5):703–13.Google Scholar
Littleton, J. (1998) Neurochemical mechanisms underlying alcohol withdrawal. Alcohol Research and Health 22(1):1324.Google Scholar
Liu, J.-L., Liu, J.-T., Hammit, J. K. & Chou, S.-Y. (1999) The price elasticity of opium in Taiwan, 1914–1942. Journal of Health Economics 18:795810.Google Scholar
Ljungberg, T., Apicella, P. & Schultz, W. (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. Journal of Neurophysiology 67(1):145–63.Google Scholar
Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., eds. (1997) Substance abuse: A comprehensive textbook, 3rd edition.Williams and Wilkins.Google Scholar
Lubman, D. I., Peters, L. A., Mogg, K., Bradley, B. P. & Deakin, J. F. (2000) Attentional bias for drug cues in opiate dependence. Psychological Medicine 30:169–75.Google Scholar
Lubman, D. I., Yücel, M. & Pantelis, C. (2004) Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction 99:14911502.Google Scholar
MacCoun, R. J. (1993) Drugs and the law: A psychological analysis of drug prohibition. Psychological Bulletin 113(3):497512.Google Scholar
MacKillop, J., Anderson, E. J., Castelda, B. A., Mattson, R. E. & Donovick, P. J. (2006) Convergent validity of measures of cognitive distortions, impulsivity, and time perspective with pathological gambling. Psychology of Addictive Behaviors 20(1):7579.Google Scholar
MacKillop, J. & Monti, P. M. (2007) Advances in the scientific study of craving for alcohol and tobacco. In: Translation of addiction science into practice, ed. Miller, P. M. & Kavanagh, D., Ch. 10, pp. 187–207. Elsevier.Google Scholar
Mackintosh, N. J. (1974) The psychology of animal learning. Academic Press.Google Scholar
Maddahian, E., Newcomb, M. D. & Bentler, P. M. (1986) Adolescents' substance use: Impact of ethnicity, income, and availability. Advances in Alcohol and Substance Abuse 5(3):6378.Google Scholar
Madden, G. J., Bickel, W. K. & Critchfield, T., eds. (in press) Impulsivity: Theory, science, and neuroscience of discounting. APA Books.Google Scholar
Madden, G. J., Bickel, W. K. & Jacobs, E. A. (1999) Discounting of delayed rewards in opioid-dependent outpatients exponential or hyperbolic discounting functions? Experimental and Clinical Psychopharmacology 7(3):284–93.Google Scholar
Madden, G. J., Petry, N. M., Badger, G. J. & Bickford, W. K. (1997) Impulsive and self-control choices in opioid-dependent patients and non-drug-using control patients: Drug and monetary rewards. Experimental and Clinical Psychopharmacology 5(3):256–62.Google Scholar
Mansvelder, H. D. & McGehee, D. S. (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–57.Google Scholar
Mansvelder, H. D. & McGehee, D. S. (2002) Cellular and synaptic mechanisms of nicotine addiction. Journal of Neurobiology 53(4):606–17.Google Scholar
Mark, T. L., Woody, G. E., Juday, T. & Kleber, H. D. (2001) The economic costs of heroin addiction in the United States. Drug and Alcohol Dependence 61(2):195206.Google Scholar
Marks, M. J., Pauly, J. R., Gross, S. D., Deneris, E. S., Hermans-Borgmeyer, I., Heinemann, S. F. & Collins, A. C. (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. Journal of Neuroscience 12:2765–84.Google Scholar
Marr, D. (1971) Simple memory: A theory of archicortex. Philosophical Transactions of the Royal Society of London 262(841):2381.Google Scholar
Martin, P. D. (2001) Locomotion towards a goal alters the synchronous firing of neurons recorded simultaneously in the subiculum and nucleus accumbens of rats. Behavioral Brain Research 124(1):1928.Google Scholar
Martin, P. D. & Ono, T. (2000) Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. Behavioural Brain Research 116:2338.Google Scholar
Martinez, D., Narendran, R., Foltin, R. W., Slifstein, M., Hwang, D.-R., Broft, A., Huang, Y., Cooper, T. B., Fischman, M. W., Kleber, H. D. & Laruelle, M. (2007) Amphetamine-induced dopamine release: Markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. American Journal of Psychiatry 164(4):622–29.Google Scholar
Mas-Nieto, M., Wilson, J., Cupo, A., Roques, B. P. & Noble, F. (2002) Chronic morphine treatment modulates the extracellular levels of endogenous enkephalins in rat brain structures involved in opiate dependence: A microdialysis study. Journal of Neuroscience 22:1034–41.Google Scholar
Matsumoto, N., Hanakawa, T., Maki, S., Graybiel, A. M. & Kimura, M. (1999) Role of nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. Journal of Neurophysiology 82(2):978–98.Google Scholar
Matthes, H. W. D., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I., Befort, K., Dierich, A., Meur, M. L., Dolĺe, P., Tzavara, E., Hanoune, J., Roques, B. P. & Kieffer, B. L. (1996) Loss of morphine-induced analgesia, reward effect, and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:819–23.CrossRefGoogle ScholarPubMed
Mazur, J. E. (2001) Hyperbolic value addition and general models of animal choice. Psychological Review 108(1):96112.Google Scholar
McCaul, M. E. & Petry, N. M. (2003) The role of psychosocial treatments in pharmacotherapy for alcoholism. The American Journal on Addictions 12:S41S52.Google Scholar
McClure, S. M., Berns, G. S. & Montague, P. R. (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–46.Google Scholar
McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306(5695):503507.Google Scholar
McDonald, R. J. & White, N. M. (1994) Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral and Neural Biology 61:260–70.Google Scholar
McFarland, K. & Kalivas, P. W. (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. Journal of Neuroscience 21(21):8655–63.Google Scholar
McFarland, K., Lapish, C. C. & Kalivas, P. W. (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. Journal of Neuroscience 23(8):3531–37.Google Scholar
McGeorge, A. J. & Faull, R. L. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29(3):503–37.Google Scholar
Meunzinger, K. F. (1938) Vicarious trial and error at a point of choice. I. A general survey of its relation to learning efficiency. Journal of Genetic Psychology 53:7586.Google Scholar
Meyer, R. & Mirin, S. (1979) The heroin stimulus. Plenum.Google Scholar
Milad, M. R. & Quirk, G. J. (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:7074.Google Scholar
Miles, F. J., Everitt, B. J. & Dickinson, A. (2003) Oral cocaine seeking by rats: Action or habit? Behavioral Neuroscience 117(5):927–38.Google Scholar
Mirenowicz, J. & Schultz, W. (1994) Importance of unpredictability for reward responses in primate dopamine neurons. Journal of Neurophysiology 72(2):1024–27.Google Scholar
Mishkin, M. & Appenzeller, T. (1987) The anatomy of memory. Scientific American 256(6):8089.Google Scholar
Mishkin, M., Malamut, B. & Bachevalier, J. (1984) Memories and habits: Two neural systems. In: Neurobiology of learning and memory, ed. Lynch, G., McGaugh, J. L. & Weinberger, N. M., pp. 6577. nGuilford.Google Scholar
Miyachi, S., Hikosaka, O., Miyashita, K., Kárádi, Z. & Rand, M. K. (1997) Differential roles of monkey striatum in learning of sequential hand movement. Experimental Brain Research 115:15.Google Scholar
Miyazaki, K., Mogi, E., Araki, N. & Matsumoto, G. (1998) Reward-quality dependent anticipation in rat nucleus accumbens. NeuroReport 9:3943–48.Google Scholar
Moak, D. H. & Anton, R. F. (1999) Alcohol. In: Addictions: A comprehensive textbook, ed. McCrady, B. S. & Epstein, E. E., pp. 7595. Oxford University Press.Google Scholar
Mogenson, G. J. (1984) Limbic-motor integration – with emphasis on initiation of exploratory and goal-directed locomotion. In: Modulation of sensorimotor activity during alterations in behavioral states, ed. Bandler, R., pp. 121–38. Liss.Google Scholar
Mogenson, G. J., Jones, D. L. & Yim, C. Y. (1980) From motivation to action: Functional interface between the limbic system and the motor system. Progress in Neurobiology 14:6997.Google Scholar
Montague, P. R., Dayan, P., Person, C. & Sejnowski, T. J. (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377(6551):725–28.Google Scholar
Montague, P. R., Dayan, P. & Sejnowski, T. J. (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience 16(5):1936–47.Google Scholar
Monti, P. M. & MacKillop, J. (2007) Advances in the treatment of craving for alcohol and tobacco. In: Translation of addiction science into practice, ed. Miller, P. M. & Kavanagh, D., Ch. 11, pp. 209–35. Elsevier.Google Scholar
Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O., Nader, S. H., Buchheimer, N., Ehrenkaufer, R. L. & Nader, M. A. (2002) Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration. Nature Neuroscience 5(2):169–74.Google Scholar
Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O'Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83.Google Scholar
Mucha, R. F. & Herz, A. (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274–80.Google Scholar
Munn, N. L. (1950) Handbook of psychological research on the rat. Houghton Mifflin.Google Scholar
Murphy, B. L., Arnsten, A. F. T., Goldman-Rakic, P. S. & Roth, R. H. (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proceedings of the National Academy of Sciences, USA 93(3):1325–29.Google Scholar
Mushiake, H., Saito, M., Sakamoto, K., Itoyama, Y. & Tanji, J. (2006) Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50(4):631–41.Google Scholar
Myers, K. M. & Davis, M. (2002) Behavioral and neural analysis of extinction. Neuron 36(4):567–84.Google Scholar
Myers, K. M. & Davis, M. (2007) Mechanisms of fear extinction. Molecular Psychiatry 12:120–50.Google Scholar
Nadel, L. (1994) Multiple memory systems: What and why, an update. In: Memory systems 1994, ed. Schacter, D. L. & Tulving, E., pp. 3964. MIT Press.Google Scholar
Nadel, L. & Bohbot, V. (2001) Consolidation of memory. Hippocampus 11:5660.Google Scholar
Nadel, L. & Moscovitch, M. (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology 7:217–27.Google Scholar
Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–80.Google Scholar
Negus, S., Henriksen, S., Mattox, A., Pasternak, G., Portoghese, P., Takemori, A., Weinger, M. & Koob, G. (1993) Effect of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats. The Journal of Pharmacology and Experimental Therapeutics 265(3):1245–52.Google Scholar
Nehlig, A. (1999) Are we dependent upon coffee and caffeine? A review on human and animal data. Neuroscience and Biobehavioral Reviews 23(4):563–76.Google Scholar
Nehlig, A. & Boyet, S. (2000) Dose-response study of caffeine effects on cerebral functional activity with a specific focus on dependence. Brain Research 858(1):7177.Google Scholar
Nelson, A. & Killcross, S. (2006) Amphetamine exposure enhances habit formation. Journal of Neuroscience 26(14):3805–12.Google Scholar
Nicola, S. M. & Malenka, R. C. (1998) Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. Journal of Neurophysiology 79:1768–76.Google Scholar
Nilsson, O. G., Shapiro, M. L., Gage, F. H., Olton, D. S. & Bjorklund, A. (1987) Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Experimental Brain Research 67:195215.Google Scholar
Nishioku, T., Shimazoe, T., Yamamoto, Y., Nakanishi, H. & Watanabe, S. (1999) Expression of long-term potentiation of the striatum in methamphetamine-sensitized rats. Neuroscience Letters 268(2):8184.Google Scholar
Nissen, M. J. & Bullemer, P. (1987) Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology 19:132.Google Scholar
Nissen, M. J., Knopman, D. S. & Schacter, D. L. (1987) Neurochemical dissociation of memory systems. Neurology 37(5):789–94.Google Scholar
Niv, Y., Daw, N. D., Joel, D. & Dayan, P. (2007) Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology 191(3):507–20.Google Scholar
Nurnberger, J. I. & Bierut, L. (2007) Seeking the connections: Alcoholism and our genes. Scientific American 296(4):4653.Google Scholar
O'Brien, C. P. (2005) Anticraving medications for relapse prevention: A possible new class of psychoactive medications. American Journal of Psychiatry 162:1423–31.Google Scholar
O'Brien, C. P., Childress, A. R., McLellan, A. T. & Ehrman, R. (1992) A learning model of addiction. In: Research publications: Association for research in nervous and mental disease, vol. 70, ed. O'Brien, C. P. & Jaffe, J. H., pp. 157–77. Raven.Google Scholar
O'Brien, C. P., Testa, T., O'Brien, T. J., Brady, J. P. & Wells, B. (1977) Conditioned narcotic withdrawal in humans. Science 195:10001002.Google Scholar
O'Brien, C. P., Volpicelli, L. A. & Volpicelli, J. R. (1996) Naltrexone in the treatment of alcoholism: A clinical review. Alcohol 13(1):3539.Google Scholar
O'Doherty, J. P. (2004) Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology 14:769–76.Google Scholar
O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K. & Dolan, R. J. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304(5669):452–54.Google Scholar
O'Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Clarendon Press.Google Scholar
O'Tuatheigh, C. M. P., Salum, C., Young, A. M. J., Pickering, A. D., Joseph, M. H. & Moran, P. M. (2003) The effect of amphetamine on Kamin blocking and overshadowing. Behavioral Pharmacology 14:315–22.Google Scholar
Odum, A. L., Madden, G. J. & Bickel, W. K. (2002) Discounting of delayed health gains and losses by current, never-and ex-smokers of cigarettes. Nicotine and Tobacco Research 4:295303.Google Scholar
Oei, T. P. S. & Baldwin, A. R. (2002) Expectancy theory: A two-process model of alcohol use and abuse. Journal of Studies on Alcohol 55:525–34.Google Scholar
Olmstead, M. C., Lafond, M. V., Everitt, B. J. & Dickinson, A. (2001) Cocaine seeking by rats is a goal-directed action. Behavioral Neuroscience 115(2):394402.Google Scholar
Oscar-Berman, M. & Marinkovic, K. (2003) Alcoholism and the brain: An overview. Alcohol Research and Health 27(2):125–34.Google Scholar
Ostlund, S. & Balleine, B. W. (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. Journal of Neuroscience 27(18):4819–25.Google Scholar
Owen, A. M. (1997) Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology 53(4):431–50.Google Scholar
Packard, M. G. (1999) Glutamate infused post-training into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Sciences, USA 96(22):12881–86.Google Scholar
Packard, M. G. & McGaugh, J. L. (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behavioral Neuroscience 106(3):439–46.Google Scholar
Packard, M. G. & McGaugh, J. L. (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory 65:6572.Google Scholar
Padoa-Schioppa, C. & Assad, J. A. (2006) Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26.Google Scholar
Paine, T. A., Dringenberg, H. C. & Olmstead, M. C. (2003) Effects of chronic cocaine on impulsivity: Relation to cortical serotonin mechanisms. Behavioural Brain Research 147(1–2):135–47.Google Scholar
Pan, W.-X., Schmidt, R., Wickens, J. R. & Hyland, B. I. (2005) Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. Journal of Neuroscience 25(26):6235–42.Google Scholar
Paré, D., Quirk, G. J. & Ledoux, J. E. (2004) New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology 92:19.Google Scholar
Parke, J. & Griffiths, M. (2004) Gambling addiction and the evolution of the “near miss.” Addiction Research and Theory 12(5):407–11.Google Scholar
Pavlides, C. & Winson, J. (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. Journal of Neuroscience 9(8):2907–18.Google Scholar
Pavlov, I. (1927) Conditioned reflexes. Oxford University Press.Google Scholar
Pennartz, C. M. A., Groenewegen, H. J. & Lopes da Silva, F. H. (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological, and anatomical data. Progress in Neurobiology 42:719–61.Google Scholar
Pennartz, C. M. A., Lee, E., Verheul, J., Lipa, P., Barnes, C. A. & McNaughton, B. L. (2004) The ventral striatum in off-line processing: Ensemble reactivation during sleep and modulation by hippocampal ripples. Journal of Neuroscience 24(29):6446–56.Google Scholar
Peoples, L. L., Uzwiak, A. J., Gee, F. & West, M. O. (1999) Tonic firing of rat nucleus accumbens neurons: Changes during the first two weeks of daily cocaine self-administration sessions. Brain Research 822:231–36.Google Scholar
Perkins, K. A. (2001) Reinforcing effects of nicotine as a function of smoking status. Experimental and Clinical Psychopharmacology 9 (8):250.Google Scholar
Perkins, K. A., Grobe, J. E., Weiss, D., Fonte, C. & Caqquila, A. (1996) Nicotine preference in smokers as a function of smoking abstinence. Pharmacology Biochemistry and Behavior 55(2):257–63.Google Scholar
Perry, J. L., Larson, E. B., German, J. P., Madden, G. J. & Carroll, M. E. (2005) Impulsivity (delay discounting) as a predictor of acquisition of IV cocaine self-administration in female rats. Psychopharmacology 178(2–3):193201.Google Scholar
Petry, N. M. (2001) Pathological gamblers, with and without substance abuse disorders, discount delayed rewards at high rates. Journal of Abnormal Psychology 110(3):482–87.Google Scholar
Petry, N. M. & Bickel, W. K. (1998) Polydrug abuse in heroin addicts: A behavioral economic analysis. Addiction 93(3):321–35.Google Scholar
Petry, N. M., Bickel, W. K. & Arnett, M. (1998) Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction 93(5):729–38.Google Scholar
Phelps, E. A. & LeDoux, J. E. (2005) Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron 48(2):175–87.Google Scholar
Phillips, P. E. M., Stuber, G. D., Heien, M. L. A. V., Wightman, R. M. & Carelli, R. M. (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–18.Google Scholar
Picconi, B., Centonze, D., Håkansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A. & Calabresi, P. (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience 6(5):501506.Google Scholar
Pidoplichko, V. I., DeBiasi, M., Williams, J. T. & Dani, J. A. (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401404.Google Scholar
Plassmann, H., O'Doherty, J. & Rangel, A. (2007) Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience 27(37):9984–88.Google Scholar
Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C. & Gluck, M. A. (2001) Interactive memory systems in the human brain. Nature 414:546–50.Google Scholar
Poldrack, R. A. & Packard, M. G. (2003) Competition among multiple memory systems: Converging evidence from animal and human studies. Neuropsychologia 41:245–51.Google Scholar
Porrino, L. J., Daunais, J. B., Smith, H. R. & Nader, M. A. (2004a) The expanding effects of cocaine: Studies in a nonhuman primate model of cocaine self-administration. Neuroscience and Biobehavioral Reviews 27(8):813–20.Google Scholar
Porrino, L. J., Lyons, D., Smith, H. R., Daunais, J. B. & Nader, M. A. (2004b) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. Journal of Neuroscience 24(14):3554–62.Google Scholar
Potegal, M. (1972) The caudate nucleus egocentric localization system. Acta Neurobiological Experiments 32:479–94.Google Scholar
Potenza, M. N. (2006) Should addictive disorders include non-substance-related conditions? Addiction 101(S1):142–51.Google Scholar
Potenza, M. N., Kosten, T. R. & Rounsaville, B. J. (2001) Pathological gambling. Journal of the American Medical Association 286(2):141–44.Google Scholar
Poulos, C. X., Le, A. D. & Parker, J. L. (1995) Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behavioral Pharmacology 6(8):810–14.Google Scholar
Preuschoff, K., Bossaerts, P. & Quartz, S. R. (2006) Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51:381–90.Google Scholar
Quirk, G. J., Garcia, R. & González-Lima, F. (2006) Prefrontal mechanisms in extinction of conditioned fear. Biological Psychiatry 60(4):337–43.Google Scholar
Ragozzino, M. E., Detrick, S. & Kesner, R. P. (1999) Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience 19:4585–94.Google Scholar
Ragozzino, M. E., Jih, J. & Tzavos, A. (2002a) Involvement of the dorsomedial striatum in behavioral flexibility: Role of muscarinic cholinergic receptors. Brain Research 953(1–2):205–14.Google Scholar
Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J. Y. & Kesner, R. P. (2002b) The role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behavioral Neuroscience 116:105–15.CrossRefGoogle ScholarPubMed
Ranaldi, R., Bauco, P., McCormick, S., Cools, A. R. & Wise, R. A. (2001) Equal sensitivity to cocaine reward in addiction-prone and addiction-resistant rat genotypes. Behavioural Pharmacology 12(6–7):527–34.Google Scholar
Rand, M. K., Hikosaka, O., Miyachi, S., Lu, X. & Miyashita, K. (1998) Characteristics of a long-term procedural skill in the monkey. Experimental Brain Research 118:293–97.Google Scholar
Rand, M. K., Hikosaka, O., Miyachi, S., Lu, X., Nakamura, K., Kitaguchi, K. & Shimo, Y. (2000) Characteristics of sequential movements during early learning period in monkeys. Experimental Brain Research 131:293304.Google Scholar
Rapoport, A. & Wallsten, T. S. (1972) Individual decision behavior. Annual Review of Psychology 23:131–76.Google Scholar
Raylu, N. & Oei, T. P. S. (2002) Pathological gambling. A comprehensive review. Clinical Psychology Review 22(7):1009–61.Google Scholar
Redish, A. D. (1999) Beyond the cognitive map: From place cells to episodic memory. MIT Press.Google Scholar
Redish, A. D. (2004) Addiction as a computational process gone awry. Science 306(5703):1944–47.Google Scholar
Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. (2007) Reconciling reinforcement learning models with behavioral extinction and renewal: Implications for addiction, relapse, and problem gambling. Psychological Review 114(3):784805.Google Scholar
Redish, A. D. & Johnson, A. (2007) A computational model of craving and obsession. Annals of the New York Academy of Sciences 1104(1):324–39.Google Scholar
Redish, A. D. & Kurth-Nelson, Z. (in press) Neural models of temporal discounting. In: Impulsivity: Theory, science, and neuroscience of discounting, ed. Madden, G., Bickel, W. & Critchfield, T.. APA Books.Google Scholar
Redish, A. D., Rosenzweig, E. S., Bohanick, J. D., McNaughton, B. L. & Barnes, C. A. (2000) Dynamics of hippocampal ensemble realignment: Time vs. space. Journal of Neuroscience 20(24):9289–309.Google Scholar
Redish, A. D. & Touretzky, D. S. (1998) The role of the hippocampus in solving the Morris water maze. Neural Computation 10(1):73111.Google Scholar
Rescorla, R. A. (1988) Pavlovian conditioning: It's not what you think it is. American Psychologist 43(3):151–60.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical conditioning II: Current research and theory, ed. Black, A. H. & Prokesy, W. F., pp. 6499. Appleton Century Crofts.Google Scholar
Restle, F. (1957) Discrimination of cues in mazes: A resolution of the “place-vs-response” question. Psychological Review 64:217–28.Google Scholar
Reynolds, B. R. (2006) A review of delay-discounting research with humans: Relations to drug use and gambling. Behavioural Pharmacology 17(8):651–67.Google Scholar
Reynolds, J. N. J., Hyland, B. I. & Wickens, J. R. (2001) A cellular mechanism of reward-related learning. Nature 413:6770.Google Scholar
Reynolds, J. N. J. & Wickens, J. R. (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks 15(4–6):507–21.Google Scholar
Rice, M. E. & Cragg, S. J. (2004) Nicotine enhances reward-related dopamine signals in striatum. Nature Neuroscience 7(6):583–84.Google Scholar
Rich, E. & Knight, K. (1991) Artificial intelligence. McGraw-Hill.Google Scholar
Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–23.Google Scholar
Robbins, T. W. & Everitt, B. J. (1999) Drug addiction: Bad habits add up. Nature 398(6728):567–70.Google Scholar
Robbins, T. W. & Everitt, B. J. (2006) A role for mesencephalic dopamine in activation: Commentary on Berridge. Psychopharmacology 191(3):433–37.Google Scholar
Robinson, T. E. (2004) Neuroscience: Addicted rats. Science 305(5686):951–53.Google Scholar
Robinson, T. E. & Berridge, K. C. (1993) The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews 18(3):247336.Google Scholar
Robinson, T. E. & Berridge, K. C. (2001) Mechanisms of action of addictive stimuli: Incentive sensitization and addiction. Addiction 96:103–14.Google Scholar
Robinson, T. E. & Berridge, K. C. (2003) Addiction. Annual Reviews of Psychology 54(1):2553.Google Scholar
Robinson, T. E. & Berridge, K. C. (2004) Incentive-sensitization and drug “wanting” (Reply). Psychopharmacology 171:352–53.Google Scholar
Robinson, T. E., Gorny, G., Mitton, E. & Kolb, B. (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39(3):257–66.Google Scholar
Robinson, T. E., Gorny, G., Savage, V. R. & Kolb, B. (2002) Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46(4):271–79.Google Scholar
Robinson, T. E. & Kolb, B. (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. European Journal of Neuroscience 11(5):15981604.Google Scholar
Rodrigues, S. M., Schafe, G. E. & LeDoux, J. E. (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44(1):7591.Google Scholar
Roesch, M. R., Calu, D. J. & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neuroscience 10:1615–24.Google Scholar
Roitman, M. F., Stuber, G. D., Phillips, P. E. M., Wightman, R. M. & Carelli, R. M. (2004) Dopamine operates as a subsecond modulator of food seeking. Journal of Neuroscience 24(6):1265–71.Google Scholar
Rose, J. E., Herskovic, J. E., Trilling, Y. & Jarvik, M. E. (1985) Transdermal nicotine reduces cigarette craving and nicotine preference. Clinical Pharmacology and Therapeutics 38(4):450–56.Google Scholar
Rumelhart, D. E. & McClelland, J. L. (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press.Google Scholar
Rushworth, M. F. S., Buckley, M. J., Behrens, T. E. J., Walton, M. E. & Bannerman, D. M. (2007) Functional organization of the medial frontal cortex. Current Opinion in Neurobiology 17(2):220–27.Google Scholar
Russell, M. A. H. (1990) The nicotine addiction trap: A 40-year sentence for four cigarettes. British Journal of Addiction 85:293300.Google Scholar
Russell, S. J. & Norvig, P. (2002) Artificial intelligence: A modern approach. Prentice Hall.Google Scholar
Saint-Cyr, J. A., Taylor, A. E. & Lang, A. E. (1988) Procedural learning and neostriatal dysfunction in man. Brain 111:941–59.Google Scholar
Saitz, R. (1998) Introduction to alcohol withdrawal. Alcohol Research and Health 22(1):512.Google Scholar
Sakagami, M. & Pan, X. (2007) Functional role of the ventrolateral prefrontal cortex in decision making. Current Opinion in Neurobiology 17(2):228–33.Google Scholar
Sakagami, M., Pan, X. & Uttl, B. (2006) Behavioral inhibition and prefrontal cortex in decision-making. Neural Networks 19(8):1255–65.Google Scholar
Salamone, J. D. & Correa, M. (2002) Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research 137(1–2):325.Google Scholar
Salamone, J. D., Correa, M., Farrar, A. & Mingote, S. M. (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191(3):461–82.Google Scholar
Salamone, J. D., Correa, M., Mingote, S. M. & Weber, S. M. (2005) Beyond the reward hypothesis: Alternative functions of nucleus accumbens dopamine. Current Opinion Pharmacology 5(1):3441.Google Scholar
Samejima, K., Ueda, Y., Doya, K. & Kimura, M. (2005) Representation of action-specific reward values in the striatum. Science 310(5752):1337–40.Google Scholar
Sanfey, A. G., Loewenstein, G., McClure, S. M. & Cohen, J. D. (2006) Neuroeconomics: Crosscurrents in research on decision-making. Trends in Cognitive Sciences 10(3):108–16.Google Scholar
Sayette, M. A., Shiffman, S., Tiffany, S. T., Niaura, R. S., Martin, C. S. & Shadel, W. G. (2000) The measurement of drug craving. Addiction 95(Suppl. 2):S189S210.Google Scholar
Schacter, D. L. (2001) The seven sins of memory. Houghton Mifflin.Google Scholar
Schmitz, J. M., Schneider, N. G. & Jarvik, M. E. (1997) Nicotine. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 276–94. Williams and Wilkins.Google Scholar
Schmitz, J. M., Stotts, A. L., Rhoades, H. M. & Grabowski, J. (2001) Naltrexone and relapse prevention treatment for cocaine-dependent patients. Addictive Behaviors 26(2):167–80.Google Scholar
Schmitzer-Torbert, N. C. & Redish, A. D. (2002) Development of path stereotypy in a single day in rats on a multiple-T maze. Archives Italiennes de Biologie 140:295301.Google Scholar
Schmitzer-Torbert, N. C. & Redish, A. D. (2004) Neuronal activity in the rodent dorsal striatum in sequential navigation: Separation of spatial and reward responses on the multiple-T task. Journal of Neurophysiology 91(5):2259–72.Google Scholar
Schneider, J. & Irons, R. (2001) Assessment and treatment of addictive sexual disorders: Relevance for chemical dependency relapse. Substance Use and Misuse 36(13):17951820.Google Scholar
Schneider, W. & Chein, J. M. (2003) Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science 27(3):525–59.Google Scholar
Schneider, W. & Shiffrin, R. M. (1977) Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review 84(1):166.Google Scholar
Schoenbaum, G. & Roesch, M. (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47(5):633–36.Google Scholar
Schoenbaum, G., Roesch, M. & Stalnaker, T. A. (2006a) Orbitofrontal cortex, decision making, and drug addiction. Trends in Neurosciences 29(2):116–24.Google Scholar
Schoenbaum, G., Setlow, B., Saddoris, M. P. & Gallagher, M. (2006b) Encoding changes in orbitofrontal cortex in reversal-impaired aged rats. Journal of Neurophysiology 95(3):1509–17.Google Scholar
Schoenbaum, G., Stalnaker, T. A. & Roesch, M. R. (2006c) Ventral striatum fails to represent bad outcomes after cocaine exposure. Society for Neuroscience Abstracts. Program No. 485.16.Google Scholar
Schoenbaum, G., Setlow, B. & Ramus, S. J. (2003) A systems approach to orbitofrontal cortex function: Recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research 146(1–2):1929.Google Scholar
Schoenmakers, T., Wiers, R. W., Jones, B. T., Bruce, G. & Jansen, A. T. M. (2007) Attentional re-training decreases attentional bias in heavy drinkers without generalization. Addiction 102:399405.Google Scholar
Schöne, H. (1984) Spatial orientation, trans. Strausfeld, C.. Princeton University Press.Google Scholar
Schreiber, C. A. & Kahneman, D. (2000) Determinants of the remembered utility of aversive sounds. Journal of Experimental Psychology: General 129(1):2742.Google Scholar
Schulteis, G., Heyser, C. J. & Koob, G. F. (1997) Opiate withdrawal signs precipitated by naloxone following a single exposure to morphine: Potentiation with a second morphine exposure. Psychopharmacology 129(1):5665.Google Scholar
Schultz, W. (1998) Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80:127.Google Scholar
Schultz, W. (2002) Getting formal with dopamine and reward. Neuron 36:241–63.CrossRefGoogle ScholarPubMed
Schultz, W., Apicella, P., Scarnati, E. & Ljungberg, T. (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. Journal of Neuroscience 12(12):4595–610.Google Scholar
Schultz, W. & Dickinson, A. (2000) Neuronal coding of prediction errors. Annual Review of Neuroscience 23(1):473500.Google Scholar
Schultz, W., Dayan, P. & Montague, R. (1997) A neural substrate of prediction and reward. Science 275:1593–99.CrossRefGoogle ScholarPubMed
Schweighofer, N., Tanaka, S. C., Asahi, S., Okamoto, Y., Doya, K. & Yamawaki, S. (2004) An fMRI study of the delay discounting of reward after tryptophan depletion and loading: I. Decision-making. Society for Neuroscience Abstracts, Program Number 776.14.Google Scholar
Seamans, J. K., Gorelova, N., Durstewitz, D. & Yang, C. R. (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. Journal of Neuroscience 21(10):3628–38.Google Scholar
Seamans, J. K. & Yang, C. R. (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology 74:157.Google Scholar
Self, D. W. & Nestler, E. J. (1998) Relapse to drug-seeking: Neural and molecular mechanisms. Drug and Alcohol Dependence 51:4960.Google Scholar
Seymour, B., O'Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., Friston, K. J. & Frackowlak, R. S. (2004) Temporal difference models describe higher-order learning in humans. Nature 429:664–67.Google Scholar
Shaham, Y., Erb, S. & Stewart, J. (2000) Stress-induced relapse to heroin and cocaine seeking in rats: A review. Brain Research Reviews 33:1333.Google Scholar
Shaham, Y., Shalev, U., Lu, L., de Wit, H. & Stewart, J. (2003) The reinstatement model of drug relapse: History, methodology and major findings. Psychopharmacology 168:320.Google Scholar
Shalev, U., Grimm, J. W. & Shaham, Y. (2002) Neurobiology of relapse to heroin and cocaine seeking: A review. Pharmacological Reviews 54(1):142.Google Scholar
Shalev, U., Highfield, D., Yap, J. & Shaham, Y. (2000) Stress and relapse to drug seeking in rats: Studies on the generality of the effect. Psychopharmacology 150(3):337–46.Google Scholar
Shippenberg, T. S., Chefer, V. I., Zapata, A. & Heidbreder, C. A. (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems. Annals of the New York Academy of Sciences 937(1):5073.Google Scholar
Siegel, S. (1988) Drug anticipation and the treatment of dependence. NIDA Research Monographs 84:124.Google Scholar
Simon, H. (1955) A behavioral model of rational choice. The Quarterly Journal of Economics 69:99118.Google Scholar
Sinha, R. & O'Malley, S. (1999) Craving for alcohol: Findings from the clinic and the laboratory. Alcohol and Alcoholism 34(2):223–30.Google Scholar
Slovic, P., Fischhoff, B. & Lichtenstein, S. (1977) Behavioral decision theory. Annual review of Psychology 28:139.Google Scholar
Smith, M. A., Brandt, J. & Shadmehr, R. (2000) Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 403:544–49.Google Scholar
Solomon, R. L. & Corbit, J. D. (1973) An opponent-process theory of motivation: II. Cigarette addiction. Journal of Abnormal Psychology 81(2):158–71.Google Scholar
Solomon, R. L. & Corbit, J. D. (1974) An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review 81(2):119–45.Google Scholar
Sozou, P. D. (1998) On hyperbolic discounting and uncertain hazard rates. The Royal Society London B 265:2015–20.Google Scholar
Squire, L. R. (1987) Memory and brain. Oxford University Press.Google Scholar
Squire, L. R., Cohen, N. J. & Nadel, L. (1984) The medial temporal region and memory consolidation: A new hypothesis. In: Memory consolidation: Psychobiology of cognition, ed. Weingartner, H. & Parker, E. S., pp. 185210. Erlbaum.Google Scholar
Stalnaker, T. A., Roesch, M. R., Franz, T. M., Burke, K. A. & Schoenbaum, G. (2006) Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. European Journal of Neuroscience 24(9):2643–53.Google Scholar
Stefani, M. R. & Moghaddam, B. (2006) Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. Journal of Neuroscience 26(34):8810–18.Google Scholar
Steiner, H. & Gerfen, C. R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Experimental Brain Research 123(1–2):6076.Google Scholar
Stephens, D. W. & Krebs, J. R. (1987) Foraging theory. Princeton.Google Scholar
Stewart, R. B. & Li, T.-K. (1997) The neurobiology of alcoholism in genetically selected rat models. Alcohol Research and Health 21(2):169–76.Google Scholar
Stuber, G. D., Roitman, M. F., Phillips, P. E. M., Carelli, R. M. & Wightman, R. M. (2004) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology pp. 111.Google Scholar
Stuber, G. D., Wightman, R. M. & Carelli, R. M. (2005) Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46:661–69.Google Scholar
Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. (2005) Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology 75(6):406–33.Google Scholar
Suri, R. E. & Schultz, W. (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91(3):871–90.Google Scholar
Sutton, R. S. & Barto, A. G. (1998) Reinforcement learning: An introduction. MIT Press.Google Scholar
Swanson, L. W. (2000) Cerebral hemisphere regulation of motivated behavior. Brain Research 886(1–2):113–64.Google Scholar
Swift, R. & Davidson, D. (1998) Alcohol hangover: Mechanisms and mediators. Alcohol Research and Health 22(1):5460.Google Scholar
Sylvain, C., Ladouceur, R. & Biosvert, J.-M. (1997) Cognitive and behavioral treatment of pathological gambling: A controlled study. Journal of Consulting and Clinical Psychology 65(5):727–32.Google Scholar
Tanaka, S. C. (2002) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15(4–6):573–82.Google Scholar
Tanaka, S. C. (2006) Dopaminergic control of working memory and its relevance to schizophrenia: A circuit dynamics perspective. Neuroscience 139(1):153–71.Google Scholar
Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y. & Yamawaki, S. (2004a) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience 7:887–93.Google Scholar
Tanaka, S. C., Schweighofer, N., Asahi, S., Okamoto, Y. & Doya, K. (2004b) An fMRI study of the delay discounting of reward after tryptophan depletion and loading: II. Reward-expectation. Society for Neuroscience Abstracts, Program Number 776.17.Google Scholar
Tanda, G., Pontieri, F. E. & Chiara, G. D. (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science 276(5321):2048–50.CrossRefGoogle ScholarPubMed
Tang, C., Pawlak, A.P., Volodymyr, P. & West, M. O. (2007) Changes in activity of the striatum during formation of a motor habit. European Journal of Neuroscience 25(4):9091252.Google Scholar
Tarter, R. E., Ammerman, R. T. & Ott, P. J., eds. (1998) Handbook of substance abuse: Neurobehavioral pharmacology. Plenum.Google Scholar
Thomas, M. J., Beurrier, C., Bonci, A. & Malenka, R. (2001) Long-term depression in the nucleus accumbens: A neural correlate of behavioral sensitization to cocaine. Nature Neuroscience 4(12):1217–23.CrossRefGoogle ScholarPubMed
Tiffany, S. T. (1990) A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychological Review 97(2):147–68.CrossRefGoogle ScholarPubMed
Tindell, A. J., Berridge, K. C. & Aldridge, J. W. (2004) Ventral pallidal representation of pavlovian cues and reward: Population and rate codes. Journal of Neuroscience 24(5):1058–69.Google Scholar
Tindell, A. J., Smith, K. S., Pecina, S., Berridge, K. C. & Aldridge, J. W. (2006) Ventral pallidum firing codes hedonic reward: When a bad taste turns good. Journal of Neurophysiology 96(5):23992409.Google Scholar
Tolman, E. C. (1938) The determiners of behavior at a choice point. Psychological Review 45(1):141.Google Scholar
Tolman, E. C. (1939) Prediction of vicarious trial and error by means of the schematic sowbug. Psychological Review 46:318–36.Google Scholar
Tolman, E. C. (1948) Cognitive maps in rats and men. Psychological Review 55:189208.Google Scholar
Tolman, E. C., Ritchie, B. F. & Kalish, D. (1946) Studies in spatial learning. II. Place learning versus response learning. Journal of Experimental Psychology 36:221–29.Google Scholar
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Myashita, Y. (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699703.Google Scholar
Toneatto, T., Blitz-Miller, T., Calderwood, K., Dragonetti, R. & Tsanos, A. (1997) Cognitive distortions in heavy gambling. Journal of Gambling Studies 13(3):253–66.Google Scholar
Tremblay, L., Hollerman, J. R. & Schultz, W. (1998) Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology 80:964–77.Google Scholar
Tzschentke, T. M. (1998) Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Progress in Neurobiology 56:613–72.Google Scholar
Ungless, M. A., Magill, P. J. & Bolam, J. P. (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303(5666):2040–42.Google Scholar
Valenzuela, C. F. & Harris, R. A. (1997) Alcohol: Neurobiology. In: Substance abuse: A comprehensive textbook, ed. Lowinson, J. H., Ruiz, P., Millman, R. B. & Langrod, J. G., pp. 119–42. Williams and Wilkins.Google Scholar
Vanderschuren, L. J. M. J. & Everitt, B. J. (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5686):1017–19.Google Scholar
van Ree, J.M., Gerrits, M. A. F. M. & Vanderschuren, L. J. M. J. (1999) Opioids, reward and addiction: An encounter of biology, psychology, and medicine. Pharmacological Reviews 51(2):341–96.Google Scholar
Verdejo-Garcia, A., Rivas-Pérez, C., López-Torrecillas, F. & Pérez-Garcia, M. (2006) Differential impact of severity of drug use on frontal behavioral symptoms. Addictive Behaviors 31(8):1373–82.Google Scholar
Volkow, N. D. & Fowler, J. S. (2000) Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex. Cerebral Cortex 10(3):318–25.Google Scholar
Volkow, N. D., Fowler, J. S. & Wang, G.-J. (2003) The addicted human brain: Insights from imaging studies. Journal of Clinical Investigation 111(10):1444–51.Google Scholar
Volkow, N. D., Fowler, J. S., Wang, G.-J. & Swanson, J. M. (2004) Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Molecular Psychiatry 9(6):557–69.Google Scholar
Volkow, N. D. & Li, T.-K. (2005a) Drugs and alcohol: Treating and preventing abuse, addiction and their medical consequence. Pharmacological and Therapeutics 108(1):317.Google Scholar
Volkow, N. D. & Li, T.-K. (2005b) The neuroscience of addiction. Nature Neuroscience 8(11):1429–30.Google Scholar
Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. A. (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences 27(8):468–74.Google Scholar
Vuchinich, R. E. & Simpson, C. A. (1998) Hyperbolic temporal discounting in social drinkers and problem drinkers. Experimental and Clinical Psychopharmacology 6(3):292305.Google Scholar
Waelti, P., Dickinson, A. & Schultz, W. (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:4348.Google Scholar
Wagenaar, W. A. (1988) Paradoxes of gambling behavior. Erlbaum.Google Scholar
Walker, M. B. (1992a) Irrational thinking among slot machine players. Journal of Gambling Studies 8(3):245–61.Google Scholar
Watanabe, M. (2007) Role of anticipated reward in cognitive behavioral control. Current Opinion in Neurobiology 17(2):213–19.Google Scholar
Weiss, F., Ciccocioppo, R., Parsons, L. H., Katner, S., Liu, X., Zorrilla, E. P., Valdez, G. R., Ben-Shahar, O., Angeletti, S. & Richter, R. R. (2001) Compulsive drug-seeking behavior and relapse: Neuroadaptation, stress, and conditioning factors. Annals of the New York Academy of Sciences 937(1):126.Google Scholar
Weissman, B. A. & Zamir, N. (1987) Differential effects of heroin on opioid levels in the rat brain. European Journal of Pharmacology 139(1):121–23.Google Scholar
West, R. (2001) Theories of addiction. Addiction 96:313.Google Scholar
White, A. M. (2003) What happened? Alcohol, memory blackouts, and the brain. Alcohol Research and Health 27(2):186–96.Google Scholar
White, N. M. & Hiroi, N. (1998) Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proceedings of the National Academy of Sciences, USA 95:6486–91.Google Scholar
White, N. M. & McDonald, R. J. (2002) Multiple parallel memory systems in the brain of the rat. Neurobiology of Learning and Memory 77:125–84.Google Scholar
Wickens, J. (1993) A theory of the striatum. Pergamon.Google Scholar
Wickens, J. R., Reynolds, J. N. J. & Hyland, B. I. (2003) Neural mechanisms of reward-related motor learning. Current Opinion in Neurobiology 13:685–90.Google Scholar
Willingham, D. B., Nissen, M. J. & Bullemer, P. (1989) On the development of procedural knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition 15(6):1047–60.Google Scholar
Wilson, D. I. G. & Bowman, E. M. (2005) Rat nucleus accumbens neurons predominantly respond to the outcome-related properties of conditioned stimuli rather than their behavioral-switching properties. Journal of Neurophysiology 94(1):4961.Google Scholar
Wilson, H. R. & Cowan, J. D. (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12(1):124.Google Scholar
Wilson, H. R. & Cowan, J. D. (1973) A mathematical theory of the functional dynamics of cortical and thalamic tissue. Kybernetik 13:5580.Google Scholar
Wilson, M. A. & McNaughton, B. L. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–79.Google Scholar
Wise, R. A. (2004) Dopamine, learning, and motivation. Nature Reviews Neuroscience 5:112.Google Scholar
Wise, R. A., Leone, P., Rivest, R. & Leeb, K. (1995) Elevations of nucleus accumbens dopamine and DOPAC levels during intravenous heroin self-administration. Synapse 21:140–48.CrossRefGoogle ScholarPubMed
World Health Organization (1992) International classification of diseases, ICD-10. World Health Organization.Google Scholar
Wyvell, C. L. & Berridge, K. C. (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: Enhancement of reward “wanting” without enhanced “liking” or response reinforcement. Journal of Neuroscience 20(21):8122–30.Google Scholar
Xi, Z.-X., Fuller, S. A. & Stein, E. A. (1998) Dopamine release in the nucleus accumbens during heroin self-administration is modulated by kappa opioid receptors: An in vivo fast-cyclic voltammetry study. The Journal of Pharmacology and Experimental Therapeutics 284(1):151–61.Google Scholar
Yin, H. H. & Knowlton, B. J. (2004) Contributions of striatal subregions to place and response learning. Learning and Memory 11(4):459–63.Google Scholar
Yin, H. H. & Knowlton, B. J. (2006) The role of the basal ganglia in habit formation. Nature Reviews Neuroscience 7:464–76.Google Scholar
Yin, H. H., Knowlton, B. J. & Balleine, B. W. (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience 19:181–89.Google Scholar
Yin, H. H., Knowlton, B. J. & Balleine, B. W. (2005) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. European Journal of Neuroscience 22(2):505–12.Google Scholar
Yin, H. H., Knowlton, B. J. & Balleine, B. W. (2006) Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behavioural Brain Research 166(2):189–96.Google Scholar
Yu, A. J. & Dayan, P. (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–92.Google Scholar
Yun, I. A., Wakabayashi, K. T., Fields, H. L. & Nicola, S. M. (2004) The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. Journal of Neuroscience 24(12):2923–33.Google Scholar
Zilli, E. A. & Hasselmo, M. E. (2008) Modeling the role of working memory and episodic memory in behavioral tasks. Hippocampus 18(2):193209.Google Scholar