Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T08:40:22.588Z Has data issue: false hasContentIssue false

A theory of visual stability across saccadic eye movements

Published online by Cambridge University Press:  04 February 2010

Bruce Bridgeman
Affiliation:
Program in Experimental Psychology, University of California, Santa Cruz, CA 95064 Electronic mail: [email protected]
A. H. C. Van der Heijden
Affiliation:
Department of Psychology, Leiden University, 2333 AK Leiden, The Netherlands Electronic mail: [email protected]
Boris M. Velichkovsky
Affiliation:
Center for Interdisciplinary Research, University of Bielefeld, D-33615 Bielefeld, Germany; Department for Psychology and Engineering of Knowledge, Moscow State University, Moscow 103009, Russia Electronic mail: [email protected]

Abstract

We identify two aspects of the problem of maintaining perceptual stability despite an observer's eye movements. The first, visual direction constancy, is the (egocentric) stability of apparent positions of objects in the visual world relative to the perceiver. The second, visual position constancy, is the (exocentric) stability of positions of objects relative to each other. We analyze the constancy of visual direction despite saccadic eye movements.

Three information sources have been proposed to enable the visual system to achieve stability: the structure of the visual field, proprioceptive inflow, and a copy of neural efference or outflow to the extraocular muscles. None of these sources by itself provides adequate information to achieve visual direction constancy; present evidence indicates that all three are used.

Our final question concerns how information processing operations result in a stable world. The three traditionally suggested means have been elimination, translation, or evaluation. All are rejected. From a review of the physiological and psychological evidence we conclude that no subtraction, compensation, or evaluation need take place. The problem for which these solutions were developed turns out to be a false one. We propose a “calibration” solution: correct spatiotopic positions are calculated anew for each fixation. Inflow, outflow, and retinal sources are used in this calculation: saccadic suppression of displacement bridges the errors between these sources and the actual extent of movement.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, R. A. & Langraf, J. Z. (1990) Differential use of distance and location information for spatial localization. Perception & Psychophysics 47:349–59. [PD]CrossRefGoogle ScholarPubMed
Aguilonius, F. (1613) Opticorum libri sex. Moretus. [O-JG]Google Scholar
Allport, D. A. (1987) Selection for action: Some behavioral and neurophysiological considerations of attention and action. In: Perspectives on perception and action, ed. Heuer, H. & Sanders, A. F.. Erlbaum. [aBB]Google Scholar
Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. (1990) Eye position effects on visual, memory, and saccade-related activities in areas LIP and 7a of macaque. Journal of Neuroscience 10:1176–96. [JTE, CP]Google Scholar
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985) The encoding of spatial location by posterior parietal neurons. Science 230:456–58. [aBB]Google Scholar
Andersen, R. A. & Zipser, D. (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Canadian Journal of Physiology and Pharmacology 66:488501. [AP]CrossRefGoogle ScholarPubMed
Aubert, H. (1888) Purkinje's Mitteilungen über Scheinbewegungen und über den Schwindel aus den Bulletins der Schlesischen Gesellschaft von 1825 und 1826. In: Physiologische Stttdien über die Orientierung. Laupp. [O-JG]Google Scholar
Bahill, A. T., Brockenbrough, A. & Troost, B. T. (1981) Variability and development of a normative data base for saccadic eye movements. Investigative Ophthalmology 21:116–25. [LRH]Google ScholarPubMed
Ballard, D. H. & Brown, C. M. (1992) Principles of animate vision. Computer Vision, Graphics and Image Processing 56:321. [APP]Google Scholar
Balonov, L. J. (1971) Posledovatel'nije obrazy [After-images]. Nauka. [rBB]Google Scholar
Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Anderson, R. A. (1991) Saccade-related activity in the lateral intraparietal area: Spatial properties. Journal of Neurophysiology 66:1109–24. [JTE]CrossRefGoogle ScholarPubMed
Bell, C. (1823) On the; motions of the eye, and illustrations of the uses of muscles and nerves of the orbit. Philosophical Transactions of the Royal Society (London) 113:166–68. [O-JG]Google Scholar
Berthoz, A. (1991) Reference frames for the perception and control of movement. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JP]Google Scholar
Bischof, N. & Kramer, E. (1968) Untersuchungen und überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychologische Forschung 32:185218. [arBB]Google Scholar
Blouin, J., Bard, C., Teasdale, N., Paillard, J., Fleury, M., Forget, R. & LaMarre, Y. (1993) Reference systems for coding spatial information in normal subjects and a deafferented patient. Experimental Brain Research 93:324–31. [JP]Google Scholar
Bock, O. (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Experimental Brain Research 64:476–82. [JBJS]Google Scholar
Bonnet, C. (1977) Visual motion detection models: Feature and frequency. Perception 6:491500. [JP]Google Scholar
Brandt, T., Dichgans, J. & Koenig, E. (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research 16:476–91. [LRH]Google Scholar
Breitmeyer, B. G. (1984) Visual masking: An interactive approach. Oxford University Press. [aBB]Google Scholar
Breitmeyer, B. G., Kropfl, W. & Julesz, B. (1982) The existence and role of retinotopic and spatiotopic forms of visual persistence. Acta Psychologica 52:175–96. [aBB]Google Scholar
Brenner, E. (1991) Judging object motion during smooth pursuit eye movements: The role of optic flow. Vision Research 31:18931902. [JBJS]Google Scholar
Brenner, E. & Smeets, J. B. J. (1993) Hitting a running spider on a moving background. Investigative Ophthalmology and Visual Science 34:706. [JBJS]Google Scholar
Bridgeman, B. (1977) Reply to Brooks and Fuchs: Exogenous and endogenous contributions to saccadic suppression. Vision Research 17:323–24. [rBB]CrossRefGoogle ScholarPubMed
Bridgeman, B. (1981) Cognitive factors in subjective stabilization of the visual world. Acta Psychologica 48:111–21. [arBB]CrossRefGoogle ScholarPubMed
Bridgeman, B. (1983) Mechanisms of space constancy. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [arBB, HM]Google Scholar
Bridgeman, B. (1986) Multiple sources of outflow in processing spatial information. Acta Psychologica 63:3548. [aBB]Google Scholar
Bridgeman, B. (1989) Separate visual representations for perception and for visually guided behavior. In: Spatial display and spatial instruments. NASA. [JP]Google Scholar
Bridgeman, B. (1991) Complementary cognitive and motor image processing. In: Presbyopia research: From molecular biology to visual adaptation, ed. Obrecht, G. & Stark, L. W.. Plenum Press. [rBB]Google Scholar
Bridgeman, B. (1992) Conscious vs. unconscious processes: The case of vision. Theory & Psychology 2:7378. [aBB]Google Scholar
Bridgeman, B. & Fisher, B. (1990) Saccadic suppression of displacement is stronger in central vision. Perception 19:102–11. [rBB]CrossRefGoogle ScholarPubMed
Bridgeman, B. & Graziano, J. A. (1989) Effect of context and efference copy on visual straight ahead. Vision Research 12:1729–36. [aBB]CrossRefGoogle Scholar
Bridgeman, B., Hendry, D. & Stark, L. (1975) Failure to detect displacement of visual world during saccadic eye movements. Vision Research 15:719–22. [aBB, HD, JBJS]Google Scholar
Bridgeman, B., Kirch, M. & Sperling, A. (1981) Segregation of cognitive and motor aspects of visual function using induced motion. Perception & Psychophysics 29:336–42. [PD, JBJS]CrossRefGoogle Scholar
Bridgeman, B., Lewis, S., Heit, G. & Nagle, M. (1979) Relationship between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance 5:692700. [rBB, PD]Google Scholar
Bridgeman, B. & Mayer, M. (1983) Failure to integrate visual information from successive fixations. Bulletin of the Psychonomic Society 21:285–86. [aBB]Google Scholar
Bridgeman, B. & Stark, L. (1979) Omnidirectional increase in threshold for image shifts during saccadic eye movements. Perception & Psychophysics 25:241–43. [rBB]CrossRefGoogle ScholarPubMed
Bridgeman, B. & Stark, L. (1981) Efferent copy and visual detection. Investigative Ophthalmology and Visual Science 20:55. [aBB]Google Scholar
Bridgeman, B. & Stark, L. (1991) Ocular proprioception and efference copy in registering visual direction. Vision Research 31:1903–13. [arBB, PD, JTE, HM]Google Scholar
Brooks, B. A. & Fuchs, A. (1975) The influence of stimulus parameters on visual sensitivity during saccadic eye movements. Vision Research 15:1389–98. [EC]Google Scholar
Brooks, R. A. (1991) Intelligence without reason. A. I. Memo No. 1293. Massachusetts Institute of Technology. [APP]Google Scholar
Brune, F. & Lücking, C. H. (1969) Okulomotorik, Bewegungswahrnehmung und Raumkonstanz der Sehdinge. Der Nervenarzt 40:692700. [rBB]Google Scholar
Campbell, F. W. & Wurtz, R. H. (1978) Saccadic omission: Why we do not see a grey-out during saccadic eye movement. Vision Research 18:12971303. [EC, CP]CrossRefGoogle ScholarPubMed
Chekaluk, E. & Llewellyn, K. R. (1990) Visual stimulus input, saccadic suppression, and detection of information from the postsaccade scene. Perception & Psychophysics 48:135–42. [EC]Google Scholar
Clancey, W. J. (1991) The frame of reference problem in the design of intelligent machines. In: Architectures for intelligence, ed. Van Lehn, K.. Erlbaum. [WLS]Google Scholar
Clark, M. R. & Stark, L. (1975) Time optimal behavior of human saccadic eye movements. IEEE Transactions on Automatic Control AC-20:345–48. [aBB]CrossRefGoogle Scholar
Collewijn, H., Ferman, L. & van den Berg, A. V. (1988) The behavior of human gaze in three dimensions. Annals of the New York Academy of Sciences 545:105–27. [JBJS]CrossRefGoogle ScholarPubMed
Collewijn, H., Steinman, R. & van der Steen, J. (1985) The performance of the smooth pursuit eye movement system during passive and self-generated stimulus motion. Journal of Physiology (London) 351:217–50. [aBB]Google Scholar
Coltheart, M. (1980) Iconic memory and visual persistence. Perception & Psychophysics 27:183228. [aBB]Google Scholar
Conti, P. & Beaubaton, D. (1980) Role of structured visual field and visual reafference in accuracy of pointing movements. Perceptual and Motor Skills 50:239–44. [PD]CrossRefGoogle ScholarPubMed
Darwin, E. (1794/1796) Zoonomia, or the laws of organic life, vol. 2. Johnson. (Reprint: AMS Press 1974.) [O-JG]Google Scholar
Dassonville, P., Schlag, J. & Schlag-Rey, M. (1992) Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. Visual Neuroscience 9:261–69. [PD, CP]CrossRefGoogle ScholarPubMed
Dassonville, P., Schlag, J. & Schlag-Rey, M. (1993) Direction constancy in the oculomotor system. Current Directions in Psychological Science 2:143–47. [PD]Google Scholar
Davidson, M. L., Fox, M. J. & Dick, A. O. (1973) Effect of eye movements on backward masking and perceived location. Perception & Psychophysics 14:110–16. [aBB]CrossRefGoogle Scholar
Dennett, D. C. & Kinsbourne, M. (1992) Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences 15:183201. [aBB]Google Scholar
Deubel, H. (1991) Adaptive control of saccade metrics. In: Presbyopia research, ed. Obrecht, G. & Stark, L. W.. Plenum Press. [HD]Google Scholar
Deubel, H., Wolf, W. & Hauske, G. (1984) The evaluation of the oculomotor error signal. In: Theoretical and applied aspects of eye movement research, ed. Gale, A. G. & Johnson, F.. Elsevier North Holland. [HD]Google Scholar
Dichgans, J., Held, H., Young, L. & Brandt, T. (1972) Moving visual scenes influence the apparent direction of gravity. Science 178:1217–19. [CP]Google Scholar
Droulez, J. & Berthoz, A. (1990) The concept of dynamic memory in sensorimotor control. In: Disorders of posture and gait, ed. Bles, W. & Brandt, T.. Elsevier. [JF]Google Scholar
Duhamel, J.-H., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:9092. [arBB, JTE, CP, GWS, AT]Google Scholar
Enright, J. T. (1984) Changes in vergence mediated by saccades. Journal of Physiology (London) 350:931. [JTE]Google Scholar
Enright, J. T. (1988) The cyclopean eye and its implications: Vergence state and visual direction. Vision Research 28:925–30. [JTE]CrossRefGoogle ScholarPubMed
Enright, J. T. (1992) The remarkable saccades of asymmetrical vergence. Vision Research 32:2261–76. [JTE]Google Scholar
Epstein, W. (1973) The process of “taking-into-account” in visual perception. Perception 2:267–85. [WLS]Google Scholar
Erkelens, C. J. & Collewijn, H. (1985) Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Research 25:16891700. [JBJS]CrossRefGoogle ScholarPubMed
Ettlinger, G. (1990) Object vision and spatial vision: The neuropsychological evidence for the distinction. Cortex 26:319–41. [aBB]CrossRefGoogle ScholarPubMed
Feldman, J. A. (1985) Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences 8:265–89. [aBB]CrossRefGoogle Scholar
Ferman, L., Collewijn, H., Jansen, T. C. & van den Berg, A. V. (1987) Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional seleral induction coil technique. Vision Research 27:811–28. [JBJS]CrossRefGoogle Scholar
Fetz, E. (1992) Are movement parameters recognizably coded in the activity of single neurons? Behavioral and Brain Sciences 15:679–90. [aBB]Google Scholar
Fischer, B. & Weber, H. (1993) Express saccades and visual attention. Behavioral and Brain Sciences 16:553610. [rBB]Google Scholar
Galleti, C. & Battaglini, P. (1989) Gaze-dependent visual neurons in area V3a of monkey prestriate cortex. Journal of Neuroscience 9:1112–25. [AP]Google Scholar
Gauthier, C., Nommay, P. & Vercher, J. (1988) Ocular muscle proprioception and visual localization in man. Journal of Physiology (London) 406:24. [aBB, HM]Google Scholar
Gibson, J. J. (1950) The perception of the visual world. Houghton Mifflin. [aBB]Google Scholar
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton Mifflin. [aBB, DAO, WLS]Google Scholar
Gibson, J. J. (1979) The ecological approach to visual perception. Houghton Mifflin. [aBB, DAO, WLS]Google Scholar
Gnadt, J. W. & Anderson, R. A. (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. [JTE]Google Scholar
Gogel, W. C. (1978) The adjacency principle in visual perception. Scientific American 238:126–39. [PD]CrossRefGoogle Scholar
Goldman-Rakic, P. S., Funahashi, S. & Bruce, C. J. (1990) Neocortical memory circuits. Cold Spring Harbor Symposia in Quantitative Biology 55:1025–38. [JTE]Google Scholar
Goldstein, B. E. (1984) Sensation and perception. Wadsworth. [aBB]Google Scholar
Goodale, M. A., Pélisson, D. & Prablanc, C. (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–50. [CP]Google Scholar
Goodman, S. & Andersen, H. (1990) Algorithm programmed by a neural model for coordinate transformation. In: International Joint Conference on Neural Networks (IJCNN), San Diego. [AP]CrossRefGoogle Scholar
Gregory, R. L. (1966) Eye and brain. McGraw-Hill. [aBB]Google Scholar
Groh, J. M. & Sparks, D. L. (1992) Two models for transforming auditory signals from head-centered to eye-centered coordinates. Biological Cybernetics 67:291302. [HM]CrossRefGoogle ScholarPubMed
Grüsser, O.-J. (1986) Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. Acta Psychologica 63:321. [aBB, O-JG]Google Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1969) Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungsspezifische Neurone im visuellen System. Reviews of Physiology, Biochemistry and Experimental Pharmacology 61:168265. [O-JG]Google Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1973) Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Handbook of sensory physiology, vol. 7 (3A), ed. Jung, R.. Springer. [aBB, O-JG]Google Scholar
Grüsser, O.-J., Krizič, A. & Weiss, L.-R. (1987) Afterimage movement during saccades in the dark. Vision Research 27:215–26. [aBB, JTE, O-JG]Google Scholar
Gurfinkel, V. S. & Levick, Y. S. (1991) Perceptual and automatic aspects of the postural body scheme. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JP]Google Scholar
Haber, R. N. (1983) The impending demise of the icon: The role of iconic processes in information processing theories of perception. Behavioral and Brain Sciences 6:155. [aBB]Google Scholar
Hallett, P. E. & Lightstone, A. D. (1976) Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research 16:99106. [PD, CP]Google Scholar
Hansen, R. M. & Skavenski, A. A. (1977) Accuracy of eye-position information for motor control. Vision Research 17:919–26. [JBJS]CrossRefGoogle ScholarPubMed
Hansen, R. M. & Skavenski, A. A. (1985) Accuracy of spatial localizations near the time of saccadic eye movements. Vision Research 25:1077–82. [aBB, PD]Google Scholar
Harris, L. R. & Jenkin, M. (1993) Spatial vision in humans and robots. In: Spatial vision in humans and robots, ed. Harris, L. R. & Jenkin, M.. Cambridge University Press. [LRH]Google Scholar
Haustein, W. & Mittelstaedt, H. (1990) Evaluation of retinal orientation and gaze direction in the perception of the vertical. Vision Research 30:255–65. [HM]CrossRefGoogle ScholarPubMed
Hayhoe, M. M., Lachter, J. & Feldman, J. (1991) Integration of form across saccadic eye movements. Perception 20:393402. [KSK]CrossRefGoogle ScholarPubMed
Hayhoe, M. M., Lachter, J. & Møller, P. (1992) Spatial memory and integration across saccadic eye movements. In: Eye movements and visual cognition, ed. Rayner, K.. Springer-Verlag. [PD, KSK]Google Scholar
Hayhoe, M. M., Møller, P., Ballard, D. & Albano, J. E. (1990) Guidance of saccades to remembered targets and the precision of spatial position. Investigative Ophthalmology and Visual Science (Supplement) 31:603. [KSK]Google Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. [aBB]Google Scholar
Held, R. (1968) Dissociation of functions by deprivation and rearrangement. Psychologische Forschung 31:338–48. [aBB]Google Scholar
Henn, V. (1969) Materialien zur Vorgeschichte der Kybernetik. Studium Generale 22:164–90. [O-JG]Google Scholar
Hering, E. (1861) Der Ortssinn der Netzhaut. Engelmann. [JTE]Google Scholar
Hochberg, J. (1968) In the mind's eye. In: Contemporary theory and research in visual perception, ed. Haber, R. N.. Holt, Rinehart & Winston. [aBB]Google Scholar
Hochberg, J. (1970) Attention, organization and consciousness. In: Attention: Contemporary theory and analysis, ed. Mostofsky, D. I.. Appleton-Century-Crofts. [aBB]Google Scholar
Honda, H.(1990a) Eye movements to a visual stimulus flashed before, during or after a saccade. In: Attention and performance XIII: Motor representations and control, ed. Jeannerod, M.. Erlbaum. [PD, CP]Google Scholar
Honda, H.(1990b) The extraretinal signal from the pursuit-eye-movement system: Its role in the perceptual and the egocentric localization systems. Perception & Psychophysics 48:509–15. [aBB]CrossRefGoogle ScholarPubMed
Honda, H. (1993) Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Research 33:709–16. [SM]Google Scholar
Horster, W., Rivers, A., Schuster, B., Ettlinger, G., Skreczek, W. & Hesse, W. (1989) The neural structures involved in cross-modal recognition and tactile discrimination performance: An investigation using 2-DG. Behavioral Brain Research 3:209–27. [aBB]CrossRefGoogle Scholar
Hubel, D. H. & Livingstone, M. S. (1987) Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7:33783415. [aBB]Google Scholar
Ilg, U. J., Bridgeman, B. & Hoffman, K. P. (1989) Influence of mechanical disturbance on oculomotor behavior. Vision Research 29:545–51. [aBB]CrossRefGoogle ScholarPubMed
Irwin, D. E. (1991) Information integration across saccadic eye movements. Cognitive Psychology 23:420–56. [aBB, DEI]Google Scholar
Irwin, D. E.(1992a) Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition 18:307–17. [DEI]Google Scholar
Irwin, D. E.(1992b) Perceiving an integrated visual world. In: Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, ed. Meyer, D. E. & Kornblum, S.. MIT Press. [DEI, JKO]Google Scholar
Irwin, D. E.(1992c) Visual memory within and across fixations. In: Eye movements & visual cognition, ed. Rayner, K.. Springer-Verlag. [KSK]Google Scholar
Irwin, D. E., Brown, J. S. & Sun, J. S. (1988) Visual masking and visual integration across saccadic eye movements. Journal of Experimental Psychology: General 117:276–87. [aBB]Google Scholar
Irwin, D. E., Yantis, S. & Jonides, J. (1983) Evidence against visual integration across saccadic eye movements. Perception & Psychophysics 34:4957. [aBB]CrossRefGoogle ScholarPubMed
Irwin, D. E., Zacks, J. L. & Brown, J. S. (1990) Visual memory and the perception of a stable visual environment. Perception & Psychophysics 47:3546. [aBB, AES, AT]CrossRefGoogle ScholarPubMed
Jaeger, W. (1976) Die Illustrationen von Peter Paul Rubens zum Lehrbuch der Optik des Franciscus Aguilonius 1613. Brausdruck. [O-JG]Google Scholar
James, W. (1890) Principles of psychology, vols. 1 & 2. Macmillan. [O-JG]Google Scholar
Jami, L. (1992) Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions. Physiological Reviews 72:623–66. [PVD]CrossRefGoogle ScholarPubMed
Jeannerod, M. (1988) The neural and behavioural organization of goal-directed movements. Clarendon Press. [JP]Google Scholar
Johansson, G. (1973) Visual perception of biological motion and a model for its analysis. Perception & Psychophysics 14:201–11. [DAO]CrossRefGoogle Scholar
Johansson, G. (1985) About visual event perception. In: Persistence and change: Proceedings of the First International Conference on Event Perception, ed. Warren, W. H. Jr., & Shaw, R. E.. Erlbaum. [DAO]Google Scholar
Jonides, J., Irwin, D. & Yantis, S. (1982) Integrating visual information from successive fixations. Science 215:192–94. [aBB]CrossRefGoogle ScholarPubMed
Jüttner, M. (in preparation) Spatial, temporal and decision factors for transsaccadic information processing. [MJ]Google Scholar
Jüttner, M. & Röhler, R. (1993) Lateral information transfer across saccadic eye movements. Perception & Psychophysics 53:210–20. [MJ]CrossRefGoogle ScholarPubMed
Kaas, J. H. (1987) The organization of neocortex in mammals: Implications for theories of brain function. Annual Review of Psychology 38:129–51. [aBB]CrossRefGoogle ScholarPubMed
Kant, I. (1787) Kritik der reinen Vernunft, 2nd ed. (Reprint: Meiner 1952.) [O-JG]Google Scholar
Karn, K. S., Møller, P. & Hayhoe, M. M. (1993) Precision of the eye position signal. In: Perception and cognition: Advances in eye movement research. Vol. 4: Studies in visual information processing, ed. d'Ydewalle, G. & Van Rensbergen, J.. Elsevier Science. [KSK]Google Scholar
Keller, E. L. (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology 37:316–32. [JTE]CrossRefGoogle ScholarPubMed
Kinsbourne, M. (1987) The material basis of mind. In: Matters of intelligence, ed. Vaina, L. M.. D. Reidel. [aBB]Google Scholar
Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4:219–27. [aBB]Google ScholarPubMed
Koenderink, J. J. (1990) Some theoretical aspects of optic flow. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [WLS]Google Scholar
Kohler, I. (1951) Über Aufbau und Wandlungen der Wahrnehmungswelt. Österreichische Akademie der Wissenschaften, Sitzungsberichte, philosophisch-historische Klasse 227:1118. [JKO]Google Scholar
Kolers, P. A. (1964) The illusion of movement. Scientific American 211(4):98106. [AES]Google Scholar
Kornheiser, A. S. (1976) Adaptation to laterally displaced vision: A review. Psychological Bulletin 83:783816. [JP]Google Scholar
Lachter, J., Hayhoe, M. & Feldman, J. (1991) Capacity limitations in the integration of information across saccades. Investigative Ophthalmology and Visual Science (Supplement) 32:1025. [KSK]Google Scholar
Lal, R. & Friedlander, M. (1989) Gating of retinal transmission by afferent eye position and movement signals. Science 243:9396. [AP]Google Scholar
Lehmkuhle, S. & Baro, J. (1991) The influence of eye position on the responses of x and y cells in the dorsal lateral geniculate nucleus of the awake behaving cat. In: Society for Neuroscience Abstract 17:629. [AP]Google Scholar
Lemij, H. G. & Collewijn, H. (1989) Differences in accuracy of human saccades between stationary and jumping targets. Vision Research 29:1737–48. [JBJS]CrossRefGoogle ScholarPubMed
Leukel, F. (1972) Introduction to physiological psychology. Mosby. [aBB]Google Scholar
Lincke, F. (1879) Das mechanische Relais. Verein Deutscher Ingenieure-Zeitschrift 23:509–24;577616. (Reprinted as a book, Gaertner 1880.) [O-JG]Google Scholar
Livingstone, M. & Hubel, C. (1988) Segregation of form, color, movement and depth: Anatomy, physiology, and perception. Science 240:740–49. [aBB]CrossRefGoogle ScholarPubMed
Lockhart, R. S. & Craik, F. I. M. (1990) Levels of processing: A retrospective commentary on a framework for memory research. Canadian Journal of Psychology 44:87112. [rBB]CrossRefGoogle Scholar
Ludvigh, E. (1952a) Control of ocular movements and visual interpretation of environment. A. M. A. Archives of Ophthalmology, 48:442–48. [HM]Google Scholar
Ludvigh, E. (1952b) Possible role of proprioception in the extraocular muscles. A. M. A. Archives of Ophthalmology 48:436–41. [HM]Google Scholar
Luria, A. R. (1976) Basic problems of neurolinguistics. Mouton. [aBB]CrossRefGoogle Scholar
Mach, E. (1885) Die Analyse der Empfindungen. Fischer. [aBB]Google Scholar
Mach, E. (1906) Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen, 5th ed.Fischer. [O-JG]Google Scholar
Mack, A. (1970) An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception & Psychophysics 8:291–98. [aBB]CrossRefGoogle Scholar
MacKay, D. M. (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminant objects. Nature (London) 181:506–8. [JTE]Google Scholar
MacKay, D. M. (1962) Theoretical models of space perception. In: Aspects of the theory of artificial intelligence, ed. Muses, C. A.. Plenum Press. [aBB]Google Scholar
MacKay, D. M. (1973) Visual stability and voluntary eye movements. In: Handbook of sensory physiology, vol. 7 (3), ed. Jung, R.. Springer. [arBB, JTE, DEI, JKO, CP, PVD]Google Scholar
MacKay, D. M. & Mittelstaedt, H. (1974) Visual stability and motor control (reafference revisited). In: Kybernetik und Bionik, ed. Keidel, W. D., Händler, W. & Spreng, M.. Oldenbourg. [MJ]Google Scholar
Mandriota, F. J., Mintz, D. E. & Notterman, J. M. (1962) Visual velocity discrimination: Effects of spatial and temporal cues. Science 138:437–38. [DNR]Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman. [DAO]Google Scholar
Mateeff, S. (1978) Saccadic eye movements and localization of visual stimuli. Perception & Psychophysics 24:215–24. [SM]CrossRefGoogle ScholarPubMed
Mateeff, S. & Hohnsbein, J. (1989) The role of the adjacency between background cues and objects in visual localization during ocular pursuit. Perception 18:93104. [PD]Google Scholar
Matin, L. (1972) Eye movements and perceived visual direction. In: Handbook of sensory physiology, vol. 7 (4), ed. Jameson, D. & Hurvitch, L.. Springer. [aBB, PD]Google Scholar
Matin, L. (1976) Saccades and extraretinal signal for visual direction. In: Eye movements and psychological processes, ed. Monty, R. A. & Senders, J. W.. Erlbaum. [aBB]Google Scholar
Matin, L. & Li, W. (1992) Light and dark adaptation of egocentric spatial location. Investigative Ophthalmology and Visual Science (Supplement) 33:959. [KSK]Google Scholar
Matin, L., Picoult, E., Stevens, J. R., Edwards, M., Young, D. & MacArthur, R. (1982) Oculoparalytic illusion: Visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216:198201. [aBB, JP]CrossRefGoogle ScholarPubMed
Maturana, H. R. (1983) What is it to see? Archivos de Biologia y Medicina Experimentales 16:255–69. [WLS]Google Scholar
Maunsell, J. H. R. & Gibson, J. R. (1992) Visual response latencies in striate cortex of the macaque monkey. journal of Neurophysiology 68:1332–44. [aBB]Google Scholar
McConkie, G. W. (1991) Perceiving a stable visual world. In: Proceedings of the sixth European conference on eye movements, ed. Van Rensbergen, J., Devijver, M. & d'Ydewalle, G.. Laboratory of Experimental Psychology, University of Leuven, Belgium. [DEI]Google Scholar
Melzack, R. (1990) Phantom limbs and the concept of a nouromatrix. Trends in Neurosciences 13:8892. ]JP]CrossRefGoogle Scholar
Merigan, W. H. & Maunsell, J. H. B. (1993) How parallel are primate visual pathways? Animal Review of Neurosciences 16:369402. [rBB]CrossRefGoogle ScholarPubMed
Metzger, W. (1953) Gesetze des Sehens. Kramer. [aBB]Google Scholar
Miller, G. A. (1956) The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63:8197. [KSK]CrossRefGoogle ScholarPubMed
Miller, J. M. (in press) Egocentric localization of a perisaccadic flash by manual pointing. Vision Research. [PD]Google Scholar
Milner, A. D. & Goodale, M. A. (1993) Visual pathways to perception and action. In: The visually responsive neuron: From basic neurophysiology to behavior, ed. Hicks, T. P., Molotehnikoff, S. & Ono, T.. Elsevier. (Progress in Brain Research 95:317–37.) [arBB]Google Scholar
Mishkin, M., Ungerleider, L. G. & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways? Trends in Neurosciences 6:414–17. [arBB]Google Scholar
Mittelstaedt, H. (1960) The analysis of behavior in terms of control systems. In: Group processes; Transactions of the Fifth Conference (Conference held October, 1958, sponsored by The Josiah Macy, Jr. Foundation), ed. B. Schaffner. Josiah Macy, Jr. Foundation. [HM]Google Scholar
Mittelstaedt, H. (1971) Reafferenzprinzip – Apologie und Kritik. In: Vorträge der crlangener Physiologentagung 1970, ed. Kreidel, W. D. & Platig, K. H.. Springer. [aBB, PVD]Google Scholar
Mittelstaedt, H. (1990) Basic solutions to the problem of head-centric visual localization. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [HM, PVD]Google Scholar
Mittelstaedt, H. & Eggert, T. (1989) How to transform topographically ordered spatial information into motor commands. In: Visuomotor coordination: Amphibians, comparisons, models, and robots, ed. Arbib, M. A. & Ewert, J.-P.. Plenum Press. [HM]Google Scholar
Møller, P., Hayhoe, M., Ballard, D. & Albano, J. E. (1989) Spatial memory and the accuracy of saccades to remembered visual targets. Investigative Ophthalmology and Visual Science (Supplement) 30:456. [KSK]Google Scholar
Morgan, C. L. (1978) Constancy of egocentric visual direction. Perception & Psychophysics 23:6168. [aBB]Google Scholar
Munoz, D. P., Guitton, D. & Péllison, D. (1991) Control of orienting gaze-shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharge. Journal of Neurophysiology 66:1642–66. [AT]CrossRefGoogle Scholar
Nagle, M., Bridgeman, B. & Stark, L. (1980) Voluntary nystagmus, saccadic suppression and stabilization of the visual world. Vision Research 20:717–21. [rBB]Google Scholar
Nakayama, K. (1979) Biological image motion processing: A review. Vision Research 25:625–60. [LRH]CrossRefGoogle Scholar
Neisser, U. (1967) Cognitive psychology. Appleton-Century-Crofts. [aBB]Google Scholar
Nelson, M. E. & Bower, J. M. (1990) Brain maps and parallel computers. Trends in Ncuroscienccs 13:403–8. [PVD]CrossRefGoogle ScholarPubMed
Notterman, J. M., Cicala, C. A. & Page, D. E. (1960) Demonstration of the influence of stimulus and response categories upon difference limens. Science 131:983–84. [DNH]Google Scholar
O'Regan, J. K. (1992) Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology 46:461–88. [KSK, JKO]Google Scholar
Owens, D. A. (1987) Oculomotor information and perception of three-dimensional space. In: Perspectives on perception and action, ed. Heuer, H. & Sanders, A. F.. Erlbaum. [DAO]Google Scholar
Owens, O. A., Hahn, J. P., Francis, E. L. & Wist, E. R. (1990) Binocular vergence and perceived object velocity: A new illusion. Investigative Ophthalmology & Visual Science (Supplement) 31:93. [DAO]Google Scholar
OwensD, A. D, A. & Leibowitz, H. W. (1980) Accommodation, convergence, and distance perception in low illumination. American Journal of Optometry & Physiological Optics 57:540–50. [DAO]Google Scholar
Paillard, J. (1987) Cognitive versus sensorimotor encoding of spatial information. In: Cognitive processes and spatial orientation in animal and man, ed. Ellen, P. & Thinus-Blanc, C.. Martinus Nijhoff. [aBB]Google Scholar
Paillard, J. (1991) Motor and representational framing of space. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JP]CrossRefGoogle Scholar
Paillard, J. & Amblard, B. (1985) Static versus kinetic visual cues for the processing of spatial relationships. In: Brain mechanisms and spatial vision, ed. Ingle, D. J., Jeannerod, M. & Lee, D. N.. Martinus Nijhoff. [JP]Google Scholar
Paillard, J. & Brouchon, M. (1974) A proprioceptive contribution to the spatial encoding of position cues for ballistic movements. Brain Research 71:273–84. [JP]CrossRefGoogle Scholar
Parks, T. E. (1965) Post-retinal visual storage. American Journal of Psychology 78:145–47. [rBB]CrossRefGoogle ScholarPubMed
Pelz, J. B. & Hayhoe, M. M. (1991) Influence of the visual scene and eye position signals in space constancy. Investigative Ophthalmology and Visual Science (Supplement) 32:1025. [KSK]Google Scholar
Perenin, M. T. & Vighetto, A. (1983) Optic ataxia: A specific disorder in visuomotor coordination. in: Spatially oriental behavior, ed. Hein, A. & Jeannerod, M.. Springer. [CP]Google Scholar
Petrov, A. P. (1992) Gaze direction and stereosynthesis. In: Intellectual processes and simulation, ed. Chernavsky, A. V.. Nauka. [APP]Google Scholar
Petrov, A. P. & Zeukin, G. M. (1973) Torsional eye movements and constancy of the visual field. Vision Research 13:2465–77. [APP]CrossRefGoogle ScholarPubMed
Petrov, A. P. & Zeukin, G. M.(1976a) Transformations of afterimage caused by viewers' movements, and context-independent mechanism of stability of the visual field. Physiology of Man 2:925–31. [APP]Google Scholar
Petrov, A. P. & Zeukin, G. M.(1976b) The invariant stereosynthesis and stability of the visual field at saccadic eye movements. In: Proceedings of the Fourth Symposium on Physiology of Sensory Systems, Leningrad. [APP]Google Scholar
Pigarev, I. N. & Rodionova, E. I. (1988) Neurons with visual receptive fields independent of the position of eyes in cat parietal cortex. Sensory Systems (Moscow): 245–54 (in Russian). [arBB, CP, ENS]Google Scholar
Pollatsck, A., Rayner, K. & Henderson, J. M. (1990) Role of spatial location in integration of pictorial information across saccades. Journal of Experimental Psychology: Human Perception and Performance 16:199210. [aBB]Google Scholar
Post, R. B. & Leibowitz, H. W. (1985) A revised analysis of the role of efference in motion perception. Perception 14:631–43. [DAO]Google Scholar
Pouget, A., Fisher, S. & Sejnowski, S. (1993) Egocentric spatial representation in early vision. Journal of Cognitive Neuroscience 5:150–61. [AP]Google Scholar
Prablanc, C. & Martin, O. (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology 67:455–69. [CP]Google Scholar
Pribram, K. H. (1988) Holonomic brain theory: Coopcrativity and reciprocity in processing the configural and cognitive aspects of perception. Erlbaum. [WLS]Google Scholar
Purkinje, J. (1825) Über die Scheinbewegungen, welche im subjectiven Umfang des Gesichtssinnes vorkommen. Bulletin der naturwissenschaftlichen Section der Schlesischen Gesellschaft 4:910. [O-JG]Google Scholar
Pylyshyn, Z. W. & Storm, R. W. (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:179–97. [KSK]Google Scholar
Rayner, K. & Pollatsek, A. (1983) Is visual information integrated across saccades? Perception & Psychophysics 34:3948. [aBB]Google Scholar
Reed, E. S. (1982) An outline of a theory of action systems. Journal of Motor Behavior 14(2):98134. [DAO]CrossRefGoogle ScholarPubMed
Reed, E. S. (1988) James J. Gibson and the psychology of perception. Yale University Press. [DAO]Google Scholar
Reed, E. S. (1989) Changing theories of postural development. In: Development of posture and gait across the life span, ed. Woollacott, M. H. & Shumway-Cook, A.. University of South Carolina Press. [DAO]Google Scholar
Rentschler, I., Jüttner, M. & Caelli, T. (in press) Probabilistic analysis of human supervised learning and classification. Vision Research. [MJ]Google Scholar
Riggs, L. A., Merton, P. & Morton, H. (1974) Suppression of visual phosphenes during saccadic eye movements. Vision Research 14:9971011. [EC]Google Scholar
Rock, I. (1977) In defense of unconscious inference. In: Stability and constancy in visual perception: Mechanisms and processes, ed. Epstein, W.. Wiley. [aBB, WLS]Google Scholar
Rock, I. & Ebenholtz, S. (1962) Stroboscopic movement based on change of phenomenal location rather than retinal location. American Journal of Psychology 75:193207. [rBB]Google Scholar
Rock, I. & Kaufman, L. (1962) The moon illusion, II. Science 136:1023–31. [WLS]Google Scholar
Rosch, E. & Lloyd, B. B., eds. (1978) Cognition and categorization. Erlbaum. [CWS]Google Scholar
Rovamo, J. & Virsu, V. (1979) An estimation and application of the human cortical magnification factor. Experimental Brain Research 37:495510. [MJ]CrossRefGoogle ScholarPubMed
Salzman, C. D., Britten, K. H. & Newsome, W. T. (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–77. [aBB]Google Scholar
Schlag, J. & Schlag-Rey, M. (1990) Colliding saccades may reveal the secret of their marching orders. Trends in Neurosciences 13:410–15. [SM]Google Scholar
Sechenov, I. (1878/1968) The elements of thought. In: Selected works (English translation). Bonset. [O-JG]Google Scholar
Shebilske, W. L. (1977) Visuomotor coordination, visual direction and position constancies. In: Stability and constancy in visual perception: Mechanisms and processes, ed. Epstein, W.. Wiley. [aBB, JP, WLS]Google Scholar
Shebilske, W. L. (1981) Visual direction illusions in everyday situations: Implications for sensorimotor and ecological theories. In: Eye movements: Cognition and visual perception, ed. Fisher, D. F., Monty, R. A. & Senders, J. W.. Erlbaum. [DAO, WLS]Google Scholar
Shebilske, W. L. (1984) Efferent factors in cognition and perception. In: Cognition and motor processes, ed. Prinz, W. & Sanders, A. F.. Plenum Press. [WLS]Google Scholar
Shebilske, W. L.(1987a) An ecological efference mediation theory of natural event perception. In: Perspectives on perception and action, ed. Prinz, W. & Sanders, A. F.. Erlbaum. [DAO, WLS]Google Scholar
Shebilske, W. L.(1987b) Baseball batters support an ecological efference mediation theory of natural event perception. In: Sensorimotor interactions in space perception and action, ed. Bouwhuis, D. G., Bridgeman, B., Owens, D. A., Shebilske, W. L. & Wolff, P.. North-Holland. [WLS]Google Scholar
Shebilske, W. L. (1990) Visuomotor modularity, ontogeny, and training high-performance skills with spatial display instruments. In: Spatial displays and spatial instruments, ed. Ellis, S. R. & Kaiser, M. K.. Erlbaum. [aBB, WLS]Google Scholar
Shebilske, W. L. & Peters, P. (1993) Perception, action, and constancy. In: Handbook of perception, ed. Prinz, W. & Bridgeman, B.. Springer-Verlag. [WLS]Google Scholar
Shebilske, W. L., Proffitt, D. R. & Fisher, S. K. (1984) Efferent factors in natural event perception can be rationalized and verified: A reply to Turvey and Solomon. Journal of Experimental Psychology: Human Perception & Performance 10:455–60. [WLS]Google Scholar
Sherman, S. M. (1985) Functional organization of the W-, X-, and Y-cell pathways in the cat: A review and hypothesis. Progress in Psychobiology and Physiological Psychology 11:233314. [aBB]Google Scholar
Sherrington, C. S. (1898) Further note on the sensory nerves of the eye muscles. Proceedings of the Royal Society 64:120–21. [aBB]Google Scholar
Sherrington, C. S. (1918) Observations on the sensual role of the proprioceptive nerve supply of the extrinsic eye muscles. Brain 41:332–43. [aBB, O-JG]CrossRefGoogle Scholar
Shimojo, S., Silverman, G. H. & Nakayama, K. (1989) Occlusion and the solution to the aperture problem for motion. Vision Research 29:619–26. [aBB]CrossRefGoogle Scholar
Shults, W. T., Stark, L., Hoyt, W. F. & Ochs, A. S. (1977) Normal saccadic structure of voluntary nystagmus. Archives of Ophthalmology 95:13991404. [rBB]Google Scholar
Skavenski, A. (1990) Eye movement and visual localization of objects in space. In: Eye movements and their role in visual and cognitive processes. Vol. 4: Reviews of oculomotor research, ed. Kowler, E.. Elsevier. [aBB]Google Scholar
Smeets, J. B. J. & Brenner, E. (1994) The difference between the perception of absolute and relative motion: A reaction time study. Vision Research 34:191–95. [JBJS]Google Scholar
Sokolov, E. N. (1980) Neuronnyje mekhanismy sakkadischeskikh dviszenij glaz [Neuronal mechanisms of saccadic eye movements]. Voprosy Psykhologii 25:6477. [aBB]Google Scholar
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology 43:482–89. [aBB, O-JG]CrossRefGoogle ScholarPubMed
Stark, L. & Bridgeman, B. (1983) Role of corollary discharge in space constancy. Perception & Psychophysics 34:371–80. [arBB]CrossRefGoogle ScholarPubMed
Stein, J. F. (1992) The representation of egocentric space in the posterior parietal cortex. Behavioral and Brain Sciences 15:691700. [CP, GWS]CrossRefGoogle ScholarPubMed
Steinbach, M. J. (1987) Proprioceptive knowledge of eye position. Vision Research 27:1737–44. [aBB]Google Scholar
Steinbuch, J. C. (1811) Beytrag zur Physiologie der Sinne. Schrag. [O-JG]Google Scholar
Steinbuch, J. C. (1817) Vergiftung durch verdorbene Würste. Tübinger Blätter für Naturwissenschaften und Arzneykunde 3:2645. [O-JG]Google Scholar
Steinman, R. M. & Collewijn, H. (1980) Binocular retinal image motion during natural active head rotation. Research 20:415–29. [aBB[Google Scholar
Stevens, J. K., Emerson, R. C., Gerstein, G., Kallos, T., Neufield, G., Nichols, C. & Rosenquist, A. (1976) Paralysis of the awake human: Visual perceptions. Vision Research 16:9398. [aBB]Google Scholar
Stone, J. (1983) Parallel processing in the visual system. Plenum Press. [aBB]CrossRefGoogle Scholar
Stoper, A. (1967) Vision during pursuit eye movement: The role of oculomotor information. Ph.D. dissertation, Brandeis University. Michigan University Microfilms, 67–16:579. [AES]Google Scholar
Stoper, A. (1973) Apparent motion of stimuli presented stroboscopically during pursuit movement of the eye. Perception & Psychophysics 23:201–11. [AES]CrossRefGoogle Scholar
Strasburger, H., Harvey, L. O. Jr. & Rentschler, I. (1991) Contrast thresholds for identification of numeric characters in direct and eccentric view. Perception & Psychophysics 49:495508. [MJ]CrossRefGoogle ScholarPubMed
Strong, G. W. & Whitehead, B. A. (1989) A solution to the tag-assignment problem for neural networks. Behavioral and Brain Sciences 12:381433. [aBB, GWS]CrossRefGoogle Scholar
Teuber, H.-L. (1960) Perception. In: Handbook of physiology. Vol. 3: Section of neurophysiology, ed. Field, J., Magoun, H. W. & Hall, V. E.. American Physiological Society. [O-JG]Google Scholar
Thompson, P. (1980) Margaret Thatcher: A new illusion. Perception 9:483–84. [JKO]CrossRefGoogle Scholar
Toennies, J. F.(1949a) Die Erregungssteuerung im Zentralnervensystem. Erregungsfokus der Synapse und Rückmeldung als Funktionsprinzipien. Archiv Psychiatrie Zeitschrift Neurologie 182:478535. [O-JG]CrossRefGoogle Scholar
Toennies, J. F.(1949b) Die Rückmeldung als Funktionsprinzip im Zentralnervensystem. Berichte der Gesamten Physiologie 135:449. [O-JG]Google Scholar
Toennies, J. F. & Jung, R. (1948) Über rasch wiederholte Entladungen der Motoneurone und die Hemmungsphase des Beugereflexes. Pflügers Archiv 250:667–93. [O-JG]CrossRefGoogle Scholar
Trehub, A. (1977) Neuronal models for cognitive processes: Networks for learning, perception and imagination. Journal of Theoretical Biology 65:141–69. [AT]CrossRefGoogle ScholarPubMed
Trehub, A. (1991) The cognitive brain. MIT Press. [AT]Google Scholar
Trevarthen, C. (1968) Two mechanisms of vision in primates. Psychologische Forschung 31:299337. [aBB]CrossRefGoogle ScholarPubMed
Trotter, Y., Celebrini, S., Thorpe, S., Stricanne, B. & Imbert, M. (1992) Modulation of neural sterescopic processing in primate area VI by the viewing distance. Science 257:1279–81. [AP]Google Scholar
Turvey, M. T. (1977) Contrasting orientations to a theory of visual information-processing. Psychological Review 84:6788. [rBB]Google Scholar
Turvey, M. T. & Carello, C. (1986) The ecological approach to perceiving-acting: A pictorial essay. In: Sensorimotor interactions in space perception and action, ed. Bouwhuis, D. G., Bridgeman, B., Owens, D. A., Shebilske, W. L. & Wolff, P.. North-Holland. [WLS]Google Scholar
Uttal, W. R. (1979) Do central nonlinearities exist? Behavioral and Brain Sciences 2:286. [aBB]Google Scholar
Van der Heijden, A. H. C., Bridgeman, B. & Mewhort, D. J. K. (1986) Is stimulus persistence affected by eye movements? A critique of Davidson, Fox, and Dick (1973). Psychological Research 40:179–81. [aBB]Google Scholar
Velichkovsky, B. M. (1982) Visual cognition and its spatial-temporal context. In: Cognitive research in psychology, ed. Klix, F., Hoffmann, J. & Van de Meer, E.. North-Holland. [aBB]Google Scholar
Velichkovsky, B. M. (1992) The spatial representational system: A single system of perceptual-verbal access? PSYCOLOQUY 3(46) space.7. [rBB]Google Scholar
Velichkovsky, B. M. (1993) The levels endeavour in psychology and cognitive science. In: Current advances in psychological science, ed. Bertelson, P., Eelen, P. & d'Ydewalle, G.. Erlbaum. [rBB]Google Scholar
Volkman, F., Schick, A. & Riggs, L. (1968) Time course of visual inhibition during voluntary saccades. Journal of the Optical Society of America 58:1410–14. [aBB, EC]CrossRefGoogle Scholar
Von Graefe, A. (1854) Beiträge zur Physiologie und Pathologie der schiefen Augenmuskeln. Graefes Archiv für Ophthalmologie I(1):181. [O-JG]Google Scholar
Von Helmholtz, H. (1866) Handbuch der physiologischen Optik, vol. 3. Voss. [aBB, JTE, HM]Google Scholar
Von Helmholtz, H. (1896) Handbuch der physiologischcn Optik, 2nd ed.Voss. [O-JG]Google Scholar
Von Hofsten, C. (1979) Recalibration of the convergence system. Perception 8:3742. [DAO]Google Scholar
Von Holst, E. (1954) Relations between the central nervous system and the peripheral organs. British Journal of Animal Behaviour 2:8994. [O-JG]Google Scholar
Von Holst, E. & Mittelstaedt, H. (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–76. (English translation: [1980] The reafference principle. In: The organization of action, ed. C. R. Gallistel. Wiley.) [aBB, O-JG, HM, CP, PVD]Google Scholar
Von Holst, E. & Mittelstaedt, H. (1971) The principle of reafference: Interactions between the central nervous system and the peripheral organs. In: Perceptual processing: Stimulus equivalence and pattern recognition, ed. Dodwell, P. C.. Appleton. [aBB]Google Scholar
Von Kries, J. (1910) Zusätze zum Handbuch der Physiologischcn Optik (H. Von Helmholtz 1866). III. Band, III. Auflage: 458533. Leopold Voss. [HM]Google Scholar
Von Uexküll, J. (1920) Theoretischc Biologie. Paetel. [O-JG]Google Scholar
Von Uexküll, J. (1921) Umwelt und Innenwelt tier Tiere, 2nd ed.Springer. [O-JG]Google Scholar
Von Weizsäcker, V. (1948) Der Gestaltkreis. Thieme. (Reprint: Suhrkamp 1973.) [O-JG]Google Scholar
Wallach, H. & Frey, K. J. (1972) Adaptation in distance perception based on oculomotor cues. Perception & Psychophysics 11:7783. [DAO]Google Scholar
Wallach, H. & Lewis, C. (1966) The effect of abnormal displacements of the retinal image during eye movements. Perception & Psychophysics 1:2529. [AES]Google Scholar
Walls, G. L. (1942) The vertebrate eye and its adaptive radiations. Cranbrook Press. [DAO]Google Scholar
Warren, R. (1990) Preliminary questions for the study of ego-motion. In: Perception and control of self-motion, ed. Warren, R. & Wortheim, A. H.. Erlbaum. [WLS]Google Scholar
Warren, W. H. Jr. & Shaw, R. E., eds. (1985) Persistence and change: Proceedings of the First International Conference on Event Perception. Erlbaum. [DAO]Google Scholar
Watanabe, T. & Cavanagh, P. (1991) Texture and motion spreading, the aperture problem, and transparency. Perception & Psychophysics 50:459–64. [aBB]CrossRefGoogle ScholarPubMed
Weiskrantz, L. (1989) Blindsight. In: Handbook of neuropsychology, vol. 2., ed. Boiler, F. & Grafman, J.. Elsevier. [JP]Google Scholar
Weyand, T. & Malpeli, J. (1993) Responses of neurons in primary visual cortex are modulated by eye position. Journal of Neurophysiology 69(6):2258–60. [AP]CrossRefGoogle ScholarPubMed
Wilson, F. A. W., Scalaidhe, S. P. O. & Goldman-Rakic, P. S. (1993) Dissociation of object and spatial processing in primate prefrontal cortex. Science 260:1955–58. [rBB]Google Scholar
Wilson, H. R., Levi, D., Maffei, L., Rovamo, J. & DeValois, R. (1990) The perception of form: Retina to striate cortex. In: Visual perception: The neurophysiological foundations, ed. Spillmann, L. & Werner, J. B.. Academic Press. [MJ]Google Scholar
Windhorst, U. (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer. [PVD]Google Scholar
Wolf, W., Hauske, G. & Lupp, U. (1980) Interaction of pre- and postsaccadic patterns having the same coordinates in space. Vision Research 20:117–25. [CP]CrossRefGoogle ScholarPubMed
Wong, S. C. P. & Frost, B. J. (1978) Subjective motion and acceleration induced by the movement of the observer's entire field. Perception & Psychophysics 24:115–20. [LRH]CrossRefGoogle Scholar
Würmle, O. (1983) Visuelle Richtungskonstanz und Umstimmung retinaler Raumwerte bei sakkadischen Augenbewegungen. Juris. [aBB]Google Scholar
Wurtz, R. H. (1969) Response of striate cortex neurons to stimuli during rapid eye movements in the monkey. Journal of Neurophysiology 32:975–86. [aBB]CrossRefGoogle ScholarPubMed
Zeki, S. (1990) Parallelism and functional specialization in human visual cortex. Cold Spring Harbor Symposium on Quantitative Biology, vol. 55. Cold Spring Harbor Laboratory Press. [ENS]Google Scholar
Zincenko, V. P. & Vergiles, N. Y. (1972) Formation of visual image: Studies of stabilized retinal images. Consultants Bureau. [rBB]Google Scholar
Zipser, J. & Andersen, R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 33:679–84. [aBB, HM, AP]CrossRefGoogle Scholar