Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T15:18:46.808Z Has data issue: false hasContentIssue false

Subjective effort derives from a neurological monitor of performance costs and physiological resources

Published online by Cambridge University Press:  04 December 2013

Mattie Tops
Affiliation:
Department of Clinical Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands. [email protected]://community.frontiersin.org/people/MattieTops/[email protected]://www.psy.vu.nl/nl/over-de-faculteit/medewerkers-alfabetisch/medewerkers-i-l/s-koole/index.asp
Maarten A. S. Boksem
Affiliation:
Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, The Netherlands. Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, 6500 HB Nijmegen, The Netherlands. [email protected]
Sander L. Koole
Affiliation:
Department of Clinical Psychology, VU University Amsterdam, 1081 BT Amsterdam, The Netherlands. [email protected]://community.frontiersin.org/people/MattieTops/[email protected]://www.psy.vu.nl/nl/over-de-faculteit/medewerkers-alfabetisch/medewerkers-i-l/s-koole/index.asp

Abstract

Kurzban et al.'s expectancy-value mechanism of effort allocation seems relevant in situations when familiar tasks are initiated. However, we think additional mechanisms are important when people continue with a task for a prolonged time. These mechanisms, which are particularly relevant for performance of novel or urgent tasks, involve neural systems that track performance costs and resources.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, P. L. (1987) Individual differences in skill learning: An integration of psychometric and information processing perspectives. Psychological Bulletin 102:327.Google Scholar
Allport, L. E., Butcher, K. S., Baird, T. A., MacGregor, I., Desmond, P. M., Tress, B. M., Colman, P. & Davis, S. M. (2004) Insular cortical ischemia is independently associated with acute stress hyperglycemia. Stroke 33:1886–91.CrossRefGoogle Scholar
Bell-McGinty, S., Habeck, C., Hilton, H. J., Rakitin, B., Scarmeas, N., Zarahn, E., Flynn, J., DeLaPaz, R., Basner, R. & Stern, Y. (2004) Identification and differential vulnerability of a neural network in sleep deprivation. Cerebral Cortex 14:496502.CrossRefGoogle ScholarPubMed
Boksem, M. A. S. & Tops, M. (2008) Mental fatigue: Costs and benefits. Brain Research Reviews 59(1):125–39. doi:10.1016/j.brainresrev.2008.07.001.Google Scholar
Carmichael, S. T. & Price, J. L. (1995) Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology 363:642–64.CrossRefGoogle ScholarPubMed
Chuah, Y. M. L., Venkatraman, V., Dinges, D. F. & Chee, M. W. L. (2006) The neural basis of interindividual variability in inhibitory efficiency after sleep deprivation. Journal of Neuroscience 26(27):7156–62.CrossRefGoogle ScholarPubMed
Coull, J. T., Frackowiak, R. S. & Frith, C. D. (1998) Monitoring for target objects: Activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36(12):1325–34.Google Scholar
Craig, A. D. (2003) Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology 13:500505.Google Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A. & Dolan, R. J. (2004) Neural systems supporting interoceptive awareness. Nature Neuroscience 7:189–95.CrossRefGoogle ScholarPubMed
de Graaf, J. B., Gallea, C., Pailhous, J., Anton, J. L., Roth, M. & Bonnard, M. (2004) Awareness of muscular force during movement production: An fMRI study. NeuroImage 21:1357–67.Google Scholar
Fisk, A. D. & Schneider, W. (1983) Category and word search: Generalizing search principles to complex processing. Journal of Experimental Psychology: Learning, Memory, and Cognition 9:177–95.Google Scholar
Hasher, L. & Zacks, R. T. (1979) Automatic and effortful processes in memory. Journal of Experimental Psychology: General 108:356–88.Google Scholar
Koole, S. L., Tops, M., Strübin, S., Bouw, J., Schneider, I. K. & Jostmann, N. B. (in press) The ego fixation hypothesis: Involuntary persistence of self-control. In: The control within: Motivation and its regulation, ed. Forgas, J. P. & Harmon-Jones, E.. Psychology Press.Google Scholar
Landys, M. M., Ramenofsky, M. & Wingfield, J. C. (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. General and Comparative Endocrinology 148:132–49.Google Scholar
Luu, P., Jiang, Z., Poulsen, C., Mattson, C., Smith, A. & Tucker, D. M. (2011) Learning and the development of contexts for action. Frontiers in Human Neuroscience 5:159.CrossRefGoogle ScholarPubMed
Moore-Ede, M. C. (1986) Physiology of the circadian timing system: Predictive versus reactive homeostasis. American Journal of Physiology 250(5, Pt 2):R737–52.Google Scholar
Paulus, M. P. & Stein, M. B. (2006) An insular view of anxiety. Biological Psychiatry 60:382–87.Google Scholar
Paus, T., Zatorre, R. J., Hofle, N., Caramanos, Z., Gotman, J., Petrides, M. & Evans, A. C. (1997) Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. Journal of Cognitive Neuroscience 9(3):392408.CrossRefGoogle ScholarPubMed
Prévost, C., Pessiglione, M., Metereau, E., Clery-Melin, M. L. & Dreher, J. C. (2010) Separate valuation subsystems for delay and effort decision costs. Journal of Neuroscience 30(42):14080–90.Google Scholar
Romero, L. M., Dickens, M. J. & Cyr, N. E. (2009) The Reactive Scope Model–A new model integrating homeostasis, allostasis, and stress. Hormones and Behavior 55(3):375–89.Google Scholar
Sapolsky, R. M. (2005) The influence of social hierarchy on primate health. Science 308(5722):648–52.Google Scholar
Shiffrin, R. M. & Schneider, W. (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review 84:127–90.Google Scholar
Tops, M. & Boksem, M. A. S. (2011) A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms and event-related potentials. Frontiers in Psychology 2(330):114.CrossRefGoogle ScholarPubMed
Tops, M. & Boksem, M. A. S. (2012) “What's that?” “What went wrong?” Positive and negative surprise and the rostral-ventral to caudal-dorsal functional gradient in the brain. Frontiers in Psychology 3(21):15.Google Scholar
Tops, M. & de Jong, R. (2006) Posing for success: Clenching a fist facilitates approach. Psychonomic Bulletin and Review 13(2):229–34.Google Scholar
Walker, M. P., Stickgold, R., Alsop, D., Gaab, N. & Schlaug, G. (2005) Sleep-dependent motor memory plasticity in the human brain. Neuroscience 133(4):911–17.Google Scholar
Weissman, D. H., Robets, K. C., Visscher, K. M. & Woldorff, M. G. (2006) The neural bases of momentary lapses in attention. Nature Neuroscience 9(7):971–78.Google Scholar
Williamson, J. W., McColl, R. & Mathews, D. (2003) Evidence for central command activation of the human insular cortex during exercise. Journal of Applied Physiology 94:1726–34.CrossRefGoogle ScholarPubMed
Williamson, J. W., McColl, R., Mathews, D., Ginsburg, M. & Mitchell, J. H. (1999) Activation of the insular cortex is affected by the intensity of exercise. Journal of Applied Physiology 87:1213–19.Google Scholar