No CrossRef data available.
Article contents
The role of dorsal/ventral processing dissociation in the economy of the primate brain
Published online by Cambridge University Press: 19 May 2011
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1990
References
Abrams, R. A., & Landgraf, J. Z. (in press) Differential use of distance and location information for spatial localization. Perception & Psychophysics. {RAA}Google Scholar
Abrams, R. A., Meyer, D. E. & Kornblum, S. (1989) Speed and accuracy of saccadic eye movements: Characteristics of impulse variability in the oculomotor system. Journal of Experimental Psychology: Human Perception and Performance 15:529–43. {RAA}Google ScholarPubMed
(in press) Eye-hand coordination: Oculomotor control in rapid aimed limb movements. Journal of Experimental Psychology: Human Perception and Performance. {RAA}Google Scholar
Adler-Grinberg, D. & Stark, L. (1978) Eye movements, scanpaths, and dyslexia. American Journal of Optometry and Physiological Optics 55:557–70. {aFHP}CrossRefGoogle ScholarPubMed
Aiple, F. & Kruger, J. (1989) The brain is an input driven neural network: Connectivity analysis of monkey visual cortex by cross correlating spike trains. In: Neural networks from models to applications, ed. Personnaz, L. & Dreyfus, G.. IDSET. {GWS}Google Scholar
Albert, M. L., Soffer, D., Silverberg, R. & Reches, A. (1979) The anatomic basis of visual agnosia. Neurology 29:876–79. {aFHP}CrossRefGoogle ScholarPubMed
Albright, T. D. & Desimone, R. (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 65:582–92. {RMS}CrossRefGoogle ScholarPubMed
Allman, J. (1977) Evolution of the visual system in the early primates. Progress in Psychobiology and Physiological Psychology 7:1–53. {aFHP, RMS}Google Scholar
(1988) Variations in visual cortex organization in primates. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. {aFHP}Google Scholar
Allman, J., Miezin, F. & McGuinness, E. (1985) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14:105–26. {aFHP}CrossRefGoogle ScholarPubMed
Andersen, R. A. (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Handbook of physiology, vol. 5, part 2, ed. Mountcastle, V. B., Plum, F. & Geiger, S. R.. American Physiological Society. {aFHP}Google Scholar
(1988) Visual and visual-motor functions of the posterior parietal cortex. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. {aFHP}Google Scholar
Andersen, R. A., Bracewell, R. M., Barash, S., Fogassi, L. & Ginadt, J. W. (in press) Eye position effects on visual, memory and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience. {RMB}Google Scholar
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456—58. {arFHP, RMB, CJM, RMS}CrossRefGoogle ScholarPubMed
Anderson, S. J., Mullen, K. T. & Hess, R. F. (1989) Asymmetry in the retina for motion and colour detection. Investigative Ophthalmology & Visual Science 30:53 (Supplement). {aFHP}Google Scholar
Anstis, S. M. (1978) Apparent movement. In: Handbook of sensory physiology, vol. 8, ed. Held, R.Leibowitz, H. W. & Teuber, H. L.. Springer-Verlag. {aFHP}Google Scholar
Badcock, D. & Lovegrove, W. (1981) The effects of contrast, stimulus duration, and spatial frequency on visible persistence in normal and specifically disabled readers. Journal of Experimental Psychology: Human Perception and Performance 7:495–505. {aFHP}Google Scholar
Bahill, A. T., Adler, D. & Stark, L. (1975) Most naturally occurring human saccades have magnitudes of 15 degrees or less. Investigative Ophthalmology 14:468–69. {aFHP}Google ScholarPubMed
Barbeito, R., Bedell, H. E., Flom, M. C. & Simpson, T. L. (1987) Effects of luminance on the visual acuity of strabismic and anisometropic amblyopes and optically blurred normals. Vision Research 27:1543–49. {aFHP}CrossRefGoogle ScholarPubMed
Barbour, C. G., & Coss, R. G. (1988) Differential color brightness as a body orientation cue. Human Factors 30:713–17. {aFHP}CrossRefGoogle ScholarPubMed
Barlow, H. B. (1986) Why have multiple cortical areas? Vision Research 26:81–90. {RMB}CrossRefGoogle ScholarPubMed
Barlow, H. B., & Levick, W. R. (1965) The neural mechanism of directionally selective units in the rabbit’s retina. Journal of Physiology (London) 178:477–508. {RMB}CrossRefGoogle Scholar
Barlow, J. S. (1970) Vestibular and non-dominant parietal lobe disorders in man. (Two aspects of spatial disorientation in man.) Diseases of the Nervous System 31:667–73. {aFHP}Google ScholarPubMed
Bender, M. B. (1980) Brain control of conjugate horizontal and vertical eye movements: A survey of the structural and functional correlates. Brain 103:23–69. {aFHP}CrossRefGoogle ScholarPubMed
Bender, M. B., & Feldman, M. (1972) The so-called “visual agnosias.” Brain 95:173–86. {aFHP}CrossRefGoogle ScholarPubMed
Bender, M. B., Feldman, M. & Sobin, A. J. (1968) Palinopsia. Brain 91:321–38. {aFHP}CrossRefGoogle ScholarPubMed
Bender, M. B., & Furlowe, L. T. (1945) Phenomenon of visual extinction in homonymous fields and psychologic principles involved. Archives of Neurology and Psychiatry 53:29–33. {aFHP}CrossRefGoogle Scholar
Benton, A. L., Levin, H. S. & Van Allen, M. W. (1974) Geographic orientation in patients with unilateral cerebral disease. Neuropsychologia 12:183–91. {aFHP}CrossRefGoogle ScholarPubMed
Berkley, W. L., & Bussey, F. R. (1950) Altitudinal hemianopia: Report of two cases. American Journal of Opthalmology 22:593–600. {aFHP}CrossRefGoogle Scholar
Bishop, A. (1962) Control of the hand in lower primates. Annals of the New York Academy of Sciences 102:316–37. {aFHP}CrossRefGoogle ScholarPubMed
Bisiach, E. & Luzzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. {RMB}CrossRefGoogle ScholarPubMed
Bisiach, E., Luzzatti, C. & Perani, D. (1979) Unilateral neglect, representational schema and consciousness. Brain 102:609–18. {RMB, rFHP}CrossRefGoogle ScholarPubMed
Blakemore, C. & Vital-Durand, F. (1986) Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology 380:453–91. {aFHP}CrossRefGoogle ScholarPubMed
Blasdel, G. G., & Fitzpatrick, D. (1984) Physiological organization of layer 4 in macaque striate cortex. Journal of Neuroscience 4:880–95. {aFHP}CrossRefGoogle ScholarPubMed
Blasdel, G. G., & Lund, J. S. (1983) Termination of afferent axons in macaque striate cortex. Journal of Neuroscience 3:1389–1413. {aFHP}CrossRefGoogle ScholarPubMed
Bogacz, J., Mendilaharsu, C. & De Mendilaharsu, S. A. (1974) Electro-oculographic abnormalities during pursuit movements in developmental dyslexia. Electroencephalography and Clinical Neurophysiology 36:651–56. {aFHP}CrossRefGoogle ScholarPubMed
Bonnet, C. (1987) Les temps de traitement dans la perception visuelle des formes. In: Psychologie cognitive: Modeles et methodes, ed. Caverni, J. P., Bastien, C., Mendelsohn, P. & Tiberghien, G.. Presses Universitaires de Grenoble. {arFHP }Google Scholar
Bracewell, R. M., Barash, S., Fogassi, L., Gnadt, J. W. & Andersen, R. A. (1989) Saccade-related activity in the lateral intraparietal cortex of rhesus monkeys. Perception 18:514. {RMB}Google Scholar
Bradshaw, J. L., & Nettleton, N. C. (1983) Human cerebral asymmetry. Prentice-Hall. {AWY}Google Scholar
Bradshaw, J. L., Nettleton, N. C., Pierson, J. M., Wilson, L. E. & Nathan, G. (1987) Coordinates of extracorporeal space. In: Neurophysical and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Bradshaw, J. L., Nettleton, N. C. & Taylor, M. J. (1981) Right hemisphere language and cognitive deficit in sinistrals? Neuropsychologia 19:113–32. {AWY}CrossRefGoogle ScholarPubMed
Bradshaw, J. L., & Sherlock, D. (1982) Bugs and faces in the two visual fields: The analytic/holistic processing dichotomy and task sequencing. Cortex 18:211–26. {MPB}CrossRefGoogle ScholarPubMed
Bradshaw, M. F., Frisby, J. P. & Mayhew, J. E. W. (1987) The recovery of structure from motion: No evidence for a special link with the convergent disparity mechanism. Perception 16:351–57. {aFHP}CrossRefGoogle ScholarPubMed
Brain, W. R. (1941) Visual disorientation with special reference to lesions of the right cerebral hemisphere. Brain 64:244–72. {KMH, rFHP}CrossRefGoogle Scholar
Braitman, D. J. (1984) Activity of neurons in monkey posterior temporal cortex during multidimensional visual discrimination tasks. Brain Research 307:17–28. {aFHP}CrossRefGoogle ScholarPubMed
Brandt, T., Wist, E. R. & Dichgans, J. (1975) Foreground and background in dynamic spatial orientation. Perception ir Psychophysics 17:497–503. {arFHP}CrossRefGoogle Scholar
Brannan, J. R., & Camp, C. J. (1987) Visual processing correlates of adult cognitive development. Paper presented at the Third Beyond Formal Operations Symposium at Harvard: Positive Development During Adolescence and Adulthood, June Cambridge, MA. {JRB}Google Scholar
Brannan, J. R., & Williams, M. C. (1987) Allocation of visual attention in good and poor readers. Perception and Psychophysics 41:23–28. {JRB}CrossRefGoogle ScholarPubMed
Bravo, M., Blake, R. & Morrison, S. (1988) Cats see subjective contours. Vision Research 28:861–65. {aFHP}CrossRefGoogle ScholarPubMed
Breitmeyer, B. G. (1980) Unmasking visual masking: A look at the “why” behind the veil of the “how”. Psychological Review 87:52–69. {aFHP}CrossRefGoogle Scholar
Breitmeyer, B., Battaglia, F. & Bridge, J. (1977) Existence and implications of a tilted binocular disparity space. Perception 6:161–64. {aFHP, BGB}CrossRefGoogle ScholarPubMed
Breitmeyer, B., Julesz, B. & Kropfl, W. (1975) Dynamic random-dot stereograms reveal up-down anisotropy and left-right isotropy between cortical hemifields. Science 187:269–70. {aFHP}CrossRefGoogle ScholarPubMed
Bridgeman, B. (1989) The psychophysics of the pursuit oculomotor system. Perception 6- Psychophysics 46:220–26. {aFHP}CrossRefGoogle ScholarPubMed
Bridgeman, B., Lewis, S., Heit, G. & Nagle, M. (1979) Relation between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance 5:692–700. {RAA}Google ScholarPubMed
Brown, B., Haegerstrom-Portnoy, G., Yingling, C. D., Herron, J., Galin, D. & Marcus, M. (1983) Tracking eye movements are normal in dyslexic children. American Journal of Optometry and Physiological Optics 60:376–83. {aFHP}CrossRefGoogle ScholarPubMed
Bruce, C. J. (1988) Single neuron activity in the monkey’s prefrontal cortex. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. {arFHP}Google Scholar
Bruce, C. J., Desimone, R. & Gross, C. G. (1986) Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. Journal of Neurophysiology 55:1057–75. {CJB}CrossRefGoogle ScholarPubMed
Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology 54:714–34. {arFHP, CJB}CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D. J., Newsome, W. T. & Van Essen, D. C. (1986) Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26:63–80. {aFHP}CrossRefGoogle ScholarPubMed
Burkhalter, A. & Van Essen, D. C. (1986) Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. Journal of Neuroscience 6:2327–51. {aFHP}CrossRefGoogle ScholarPubMed
Bushnell, M. C, Goldberg, M. E. & Robinson, D. L. (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posteriorparietal cortex related to selective visual attention. Journal of Neurophysiology 46:755—72. {aFHP}CrossRefGoogle Scholar
Butter, C. M. (1969) Impairments in selective attention to visual stimuli in monkeys with inferotemporal and lateral striate lesions. Brain Research 12:374–83. {aFHP}CrossRefGoogle ScholarPubMed
Butter, C. M., Evans, J., Kirsch, N. & Kewman, D. (1989) Altitudinal neglect following traumatic brain injury: A case report. Cortex 25:135–46. {aFHP, CMB}CrossRefGoogle ScholarPubMed
Campbell, A.. Jr (1978) Deficits in visual learning produced by posterior temporal lesions in cats. Journal of Comparative and Physiological Psychology 92:45–57. {aFHP}CrossRefGoogle ScholarPubMed
Cappa, S., Sterzi, R., Vallar, G. & Bisiach, E. (1987) Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25:775–82. {aFHP}CrossRefGoogle ScholarPubMed
Carlow, T. J., Flynn, J. T. & Shipley, T. (1976) Color perimetry. Archives of Ophthalmology 94:1492–96. {aFHP}CrossRefGoogle ScholarPubMed
Carmon, A., Nachshon, I. & Starinsky, R. (1976) Developmental aspects of visual hemifield differences in perception of verbal material. Brain and Language 3:463–69. {AWY}CrossRefGoogle Scholar
Cavanagh, P., Boeglin, J. & Eizner-Favreau, O. (1985) Perception of motion in equiluminous kinematograms. Perception 14:151—62. {aFHP}CrossRefGoogle ScholarPubMed
Chaikin, J. D., Corbin, H. H. & Volkmann, J. (1962) Mapping a field of short-time visual search. Science 138:1327–28. {aFHP}CrossRefGoogle ScholarPubMed
Chang, J. J., & Julesz, B. (1984) Cooperative phenomena in apparent movement perception of random-dot cinematograms. Vision Research 24:1781–88. {JRB, rFHP}CrossRefGoogle ScholarPubMed
Chedru, F., Leblanc, M. & Lhermitte, F. (1973) Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention). Cortex 9:94–111. {arFHP}CrossRefGoogle Scholar
Clarke, P. G. H., & Whitteridge, D. (1976) The projection of the retina, including the “red area” onto the optic tectum of the pigeon. Quarterly Journal of Experimental Physiology 61:351–58. {MAG}CrossRefGoogle Scholar
Cocito, L., Favale, E. & Tartaglione, A. (1977) Asimmetrie funzionali tra emicampo visivo superiore ed inferiore nel soggetto normale. Bollettino Delia Societa Italiana di Biologia Sperimentale 53:629–33. {aFHP}Google Scholar
Cogan, A. I. (1979) The relationship between the apparent vertical and the vertical horopter. Vision Research 19:655–65. {aFHP}CrossRefGoogle ScholarPubMed
Coltheart, M. (1983) Ecological necessity of iconic memory. Behavioral and Brain Sciences 6:17–18. {aFHP}CrossRefGoogle Scholar
Connolly, M. & Van Essen, D. C. (1984) The representation of the visual field in parvicellular and magnocellular layers of the lateralgeniculate nucleus in the macaque monkey. Journal of Comparative Neurology 226:544–64. {aFHP}CrossRefGoogle ScholarPubMed
Cowey, A. (1981) Why are there so many visual areas? In: organization of the cerebral cortex, ed. Schmitt, F. O.. MIT Press. {RMB}Google Scholar
Crowne, D. P., Dawson, K. A. & Richardson, C. M. (1989) Unilateral periarcuate and posterior parietal lesions impair conditional position discrimination learning in the monkey. Neuropsychologia 27:1119–27. {rFHP}CrossRefGoogle ScholarPubMed
Cummings, J. L., Landis, T. & Benson, D. F. (1983) Environmental disorientation: Clinical and radiological findings. Neurology 33:103–4.{aFHP}Google Scholar
Cyander, M. & Regan, D. (1982) Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity. Vision Research 22:967–82. {aFHP}CrossRefGoogle Scholar
Damasio, A. R., & Benton, A. L. (1979) Impairment of hand movements under visual guidance. Neurology 29:170–78. {aFHP}CrossRefGoogle ScholarPubMed
Damasio, A. R., & Damasio, H. (1983) The anatomic basis of pure alexia. Neurology 33:1573–83. {aFHP}CrossRefGoogle ScholarPubMed
Damasio, A. R., Damasio, H. & van Hoesen, G. W. (1982) Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology 32:331–41. {aFHP}CrossRefGoogle ScholarPubMed
De Hamsher, K. S. (1978) Stereopsis and unilateral brain disease. Investigative Opthalomology 6-Visual Science 17:336–43. {aFHP}Google Scholar
Delis, D. C, Robertson, L. C. & Efron, R. (1986) Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24:205–14. {aFHP}CrossRefGoogle ScholarPubMed
Deregowski, J. B. (1989) Real space and represented space: Cross-cultural perspectives. Behavioral and Brain Sciences 12:51–119. {aFHP}CrossRefGoogle Scholar
Derrington, A. M., Krauskopf, j. & Lennie, P. (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357:241–65. {aFHP}CrossRefGoogle ScholarPubMed
Derrington, A. M., & Lennie, P. (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology 357:219–40. {aFHP}CrossRefGoogle ScholarPubMed
Desimone, R. & Gross, C. G. (1979) Visual areas in the temporal cortex of the macaque. Brain Research 178:363–80. {CJB, MK}CrossRefGoogle ScholarPubMed
Desimone, R. & Schein, S. J. (1987) Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology 57:835–68. {aFHP, MK}CrossRefGoogle ScholarPubMed
Desimone, R., Schein, S. J., Moran, J. & Ungerleider, L. G. (1985) Contour, color and shape analysis beyond the striate cortex. Vision Research 25:441–52. {arFHP}CrossRefGoogle ScholarPubMed
DeYoe, E. A., & Van Essen, D. C. (1988) Concurrent processing streams in monkey visual cortex. Trends in Neurosciences 11:219–26. {aFHP}CrossRefGoogle ScholarPubMed
Diamond, I. T., & Hall, W. C. (1969) Evolution of neocortex. Science 164:251–62. {aFHP, RWW}CrossRefGoogle ScholarPubMed
Dichgans, J. & Brandt, T. (1978) Visual-vestibular interaction: Effects on self-motion perception and postural control. In: Handbook of Sensory Physiology VIII, Perception, ed. Held, R., Leibowitz, H. & Teuber, H.-L.. Springer-Verlag. {BGB, rFHP}Google Scholar
DiZio, P. & Lackner, J. R. (1989) Perceived self-motion elicited by postrotary head tilts in a varying gravitoinertial force background. Perception & Psychophysics 46:114–18. {aFHP}CrossRefGoogle Scholar
Dolezal, H. (1982) Living in a world transformed: Perceptual and performatory adaptation to visual distortion. Academic Press. {NO, rFHP}Google Scholar
Donovan, W. J. (1978) Structure and function of the pigeon visual system. Physiological Psychology 6:403–37. {MAG}CrossRefGoogle Scholar
Drager, U. C., & Hubel, D. H. (1976) Topography of visual and somatosensory projections to mouse superior colliculus. Journal of Neurophysiology 39:91–101. {aFHP }CrossRefGoogle ScholarPubMed
Dreher, B., Fukada, Y. & Rodieck, R. W. (1976) Identification, classification and anatomical segregation of cells with X-Iike and Y-like properties in the lateral geniculate nucleus of old-world primates. Journal of Physiology 258:433–52. {aFHP}CrossRefGoogle ScholarPubMed
Dubner, R. & Zeki, S. M. (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research 35:528–32. {MK}CrossRefGoogle Scholar
Duffy, C. J. (1984) The legacy of association cortex. Neurology 34:192–97. {MK}CrossRefGoogle ScholarPubMed
Duffy, C. J., & Wurtz, R. H. (1989) Radial and axial directionality in cortical visual area MST. Society for Neuroscience Abstracts 15:119. {MK, RMS}Google Scholar
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M.Kruse, W., Munk, M. & Reitboeck, H. J. (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex. Biological Cybernetics 60:121–30. {GWS}CrossRefGoogle ScholarPubMed
Eichenbaum, H., Wiener, S. I., Shapiro, M. L. & Cohen, N. J. (1989) The organization of spatial coding in the hippocampus: A study of neural ensemble activity. Journal of Neuroscience 9:2764–75. {GWS}CrossRefGoogle ScholarPubMed
Emmerton, J. (1983a) Functional morphology of the visual system. In: Physiology and behavior of the pigeon, ed. Abs, M.. Academic Press. {MAG}Google Scholar
(1983b) Vision. In: Physiology and behavior of the pigeon, ed. Abs, M.. Academic Press. {MAG}Google Scholar
Engel, F. L. (1971) Visual conspicuity, directed attention and retinal locus. Vision Research 11:563–76. {aFHP}CrossRefGoogle ScholarPubMed
Enright, J. T. (1989) Convergence during human vertical saccades: Probable causes and perceptual consequences. Journal of Physiology 410:45–65. {rFHP}CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187:517–52. {aFHP, RMB}CrossRefGoogle ScholarPubMed
Erichsen, J. T., Hodos, W. R., Evinger, C, Bessette, B. B. & Phillips, S. J. (1989) Head orientation in pigeons: Postural locomotor, and visual determinants. Brain, Behavior and Evolution 33:268–78. {MAG}CrossRefGoogle ScholarPubMed
Eviatar, L., Miranda, S., Eviatar, A., Freeman, K. & Borkowski, M. (1979) Development of nystagmus in response to vestibular stimulation in infants. Annals of Neurology 5:508–14. {aFHP}CrossRefGoogle ScholarPubMed
Feinberg, T. E., Pasik, T. & Pasik, P. (1978) Extrageniculostriate vision in the monkey VI. Visually guided accurate reaching behavior. Brain Research 152:422–28. {CJB}CrossRefGoogle ScholarPubMed
Felleman, D. J., & Van Essen, D. C. (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology 57:8889–920. {arFHP}CrossRefGoogle ScholarPubMed
Fenelon, B., Neill, R. A. & White, C. T. (1986) Evoked potentials to dynamic random dot stereograms in upper, center and lower fields. Documenta Ophthalomologica 63:151–56. {aFHP}CrossRefGoogle ScholarPubMed
Findlay, J. M. (1980) The visual stimulus for saccadic eye movements in human observers. Perception 9:7–21. {JMF, rFHP}CrossRefGoogle ScholarPubMed
(1982) Global processing for saccadic eye movements. Vision Research 22:1033–45. {JMF}CrossRefGoogle Scholar
(1985) Eye movements and visual cognition. L’Annee Psychologique 85:101–36. {JMF}CrossRefGoogle Scholar
Findlay, J. M., & Harris, L. R. (1984) Small saccades to double-stepped targets moving in two dimensions. In: Theoretical and applied aspects of eye movement research, ed. Gale, A. G. & Johnson, F.. North-Holland. {MPB, rFHP}Google Scholar
Finke, R. A., & Kosslyn, S. M. (1980) Mental imagery acuity in the peripheral visual field. Journal of Experimental Psychology: Human Perception and Performance 6:126–39. {aFHP}Google ScholarPubMed
Fischer, B. & Boch, R. (1981) Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Experimental Brain Research 44:129–37. {aFHP}CrossRefGoogle ScholarPubMed
Fischer, B. & Boch, R. (1985) Peripheral attention versus central fixation: Modulation of the visualactivity of prelunate cortical cells of the rhesus monkey. Brain Research 345:111–23. {aFHP}CrossRefGoogle ScholarPubMed
Fischer, B. & Breitmeyer, B. (1987) Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia 25:73–83. {rFHP}CrossRefGoogle ScholarPubMed
Flom, M. C., & Bedell, H. E. (1985) Identifying amblyopia using associated conditions, acuity, and nonacuity features. American Journal of Optometry and Physiological Optics 62:153–60. {aFHP}CrossRefGoogle ScholarPubMed
Fox, R. (1982) The effect of depth position on stimulus interaction. In: Three-dimensional displays: Perceptual research and applications to military systems, ed. Getty, D. J.. National Academy of Sciences. {aFHP}Google Scholar
Fox, R. & Patterson, R. (1981) Depth separation and lateral interference. Perception <& Psychophysics 30:513–20. {aFHP}CrossRefGoogle ScholarPubMed
Friberg, L., Olsen, T. S., Roland, P. E., Paulson, O. B. & Lassen, N. A. (1985) Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation. Brain 108:609–23. {aFHP}CrossRefGoogle ScholarPubMed
Friedlander, M. J., Stanford, L. R. & Sherman, S. M. (1982) Effects of monocular deprivation on the structure-function relationship of individual neurons in the cat’s lateral geniculate nucleus. Journal of Neuroscience 2:321–30. {aFHP]CrossRefGoogle ScholarPubMed
Fukuda, T. (1959) Vertical writing with eyes covered: A new test of vestibulo-spinal reaction. Ada Oto-larnygologica 50:26–36. {aFHP}CrossRefGoogle ScholarPubMed
Fuster, J. M., & Jervey, J. P. (1982) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. Journal of Neuroscienee 2:361–75. {aFHP}CrossRefGoogle Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F. & Geschwind, N. (1985) Developmental dyslexia: Four consecutive cases with cortical anomalies. Annals of Neurology 18:222–33. {aFHP}CrossRefGoogle Scholar
Galifret, Y. (1968) Les diverse aires fonctionelles de la retine du pigeon. Zeitschrift fur zellforschung 86:535–45. {MAG}CrossRefGoogle Scholar
Garraghty, P. E. (1985) Mixed cells in the cat lateral geniculate nucleus: Functional convergence or error in development? Brain, Behavior and Evolution 26:58–64. {aFHP }CrossRefGoogle ScholarPubMed
Gattass, R. & Gross, C. G. (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46:621–38. {aFHP}CrossRefGoogle ScholarPubMed
Gawryszewski, L. G., Riggio, L., Rizzolatti, G. & Umilta, C. (1987) Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia 25:19–29 {aFHP}CrossRefGoogle Scholar
Gazzaniga, M. S., & Ladavas, E. (1987) Disturbances in spatial attention following lesion or disconnection of the right parietal lobe. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Ghim, H.-R., & Eimas, P. H. (1988) Global and local processing by 3- and 4-month-old infants. Perception & Psychophysics 43:165–71. {aFHP}CrossRefGoogle ScholarPubMed
Gibson, J. J. (1958) Visually controlled locomotion and visual orientation in animals. British Journal of Psychology 49:182–94. {BGB}CrossRefGoogle ScholarPubMed
(1979) The ecological approach to visual perception. Lawrence Erlbaum Associates. {MK}Google Scholar
Ginsburg, A. P. (1986) Spatial filtering and visual form perception. In: Handbook of perception and performance, vol. 2, ed. Boff, K. R.Kaufman, L. & Thomas, J. P.. Wiley & Sons. {aFHP}Google Scholar
Girotti, F., Milanese, C., Casazza, M., Allegranza, A., Corridori, F. & Avanzini, G. (1982) Oculomotor disturbances in Balint’s syndrome: Anatomoclinical findings and electrooculographic analysis in a case. Cortex 18:603–14. {aFHP}CrossRefGoogle ScholarPubMed
Gloning, K. & Quatember, R. (1966) Methodischer beitrag zur untersuchung der prosopagnosie. Neuropsychologia 4:133–141. {aFHP }CrossRefGoogle Scholar
Gnadt, J. W., & Andersen, R. A. (1988) Memory related planning activity in the posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. {RMB}CrossRefGoogle ScholarPubMed
Gnadt, J. W., & Mays, L. E. (1989) Posterior parietal cortex: The oculomotor near response and spatial coding in 3-D space. Society for Neuroscienee Abstracts 15:786. {RMS}Google Scholar
Godoy, J., Luders, H., Dinner, D. S., Morris, H. H. & Wyllie, E. (1990) Versive eye movement elicited by cortical stimulation of the human brain. Neurology 40:296–99. {rFHP}CrossRefGoogle ScholarPubMed
Goldberg, M. E., & Robinson, D. L. (1978) Visual system: Superior colliculus. In: Handbook of behavioral neurobiology, vol. 1, ed. Masterton, R. B.. Plenum. {aFHP}Google Scholar
Goldenberg, G., Podreka, I., Steiner, M., Willmes, K., Suess, E. & Deecke, L. (1989) Regional cerebral blood flow patterns in visual imagery. Neuropsychologia 27:641–664. {arFHP}CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology, vol. 5, ed. Mountcastle, V., Plum, F. & Geiger, S. R.. American Physiological Society. {aFHP}Google Scholar
(1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscienee 11:137–56. {GWS}CrossRefGoogle Scholar
Goldstein, L. H., Canavan, A. G. M. & Polkey, C. E. (1989) Cognitive mapping after unilateral temporal lobectomy. Neuropsychologia 27:167—77. {aFHP}CrossRefGoogle ScholarPubMed
Goodale, M. A. (1983a) Visuomotor organization of pecking in the pigeon. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P.Capranica, R. R. & Ingle, D. J.. Plenum. {MAG}Google Scholar
(1983b) Visually guided pecking in the pigeon (Columba livia). Brain, Behavior, and Evolution 22:22–41. {MAG}CrossRefGoogle Scholar
(1983c) Vision as a sensorimotor function. In: Behavioral approaches to brain research, ed. Robinson, T. E.. Oxford University Press. {MAG}Google Scholar
(1988) Modularity in visuomotor control: From input to output. In: Computational processes in human vision: An interdisciplinary perspective, ed. Pylyshyn, Z.. Ablex. {MAG}Google Scholar
Goodale, M. A., & Graves, J. A. (1982) Interocular transfer in the pigeon: Retinal locus as a factor. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. {MAG}Google Scholar
Gottlieb, J. P., MacAvoy, M. G. & Bruce, C. J. (1989) Unit activity related to smooth pursuit eye movements in the rhesus monkey frontal eye fields. Society for Neuroscienee Abstracts 15:1203. {CJB}Google Scholar
Grabowska, A. (1983) Lateral differences in the detection of stereoscopic depth. Neuropsychologia 21:249–57. {aFHP}CrossRefGoogle ScholarPubMed
Graves, J. A., & Goodale, M. A. (1979) Do training conditions affect interocular transfer in the pigeon? In: Structure and function of the cerebral commissures, ed. Steele Russell, I., van Hof, M. & Berluccchi, G.. Macmillan. {MAG}Google Scholar
Gray, C. M., Koening, P., Engel, A. K. & Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–37. {GWS}CrossRefGoogle ScholarPubMed
Gray, C. M., & Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, USA 86:1698–1702. {GWS}CrossRefGoogle ScholarPubMed
Gregory, R. L. (1977) Vision with isoluminant colour contrast: I. A projection technique and observations. Perception <&• Psychophysics 6:113–19. {aFHP}Google Scholar
Gross, C. G., Bender, D. B. & Gerstein, G. L. (1979) Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia 17:215–29. {aFHP}CrossRefGoogle ScholarPubMed
Gross, C. G., Bender, D. B. & Rocha-Miranda, C. E. (1974) Inferotemporal cortex: A single-unit analysis. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press. {aFHP}Google Scholar
Gross, C. G., Cowey, A. & Manning, F. J. (1971) Further analysis of visual discrimination deficits following foveal prestriate and inferotemporal lesions in rhesus monkeys. Journal of Comparative and Physiological Psychology 76:1–7. {aFHP}CrossRefGoogle ScholarPubMed
Gross, C. G., Desimone, R., Albright, T. D. & Schwartz, E. L. (1985) Inferior temporal cortex and pattern recognition. In: Pattern recognition mechanisms, ed. Chagas, C., Gattass, R. & Gross, C.. Springer-Verlag. {aFHP}Google Scholar
Gross, C. G., & Mishkin, M. (1977) The neural basis of stimulus equivalence across retinal translation. In: Lateralization in the nervous system, ed. Harnad, S., Doty, R., Jaynes, J., Goldstein, L. & Krauthamer, G.. Academic Press. {CJM}Google Scholar
Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35:96–111. {CJM, rFHP}CrossRefGoogle ScholarPubMed
Grusser, O.-J. (1983) Multimodal structure of the extrapersonal space. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. {rFHP}Google Scholar
Guillery, R. W. (1979) A speculative essay on geniculate lamination and its development. In: Progress in brain research: Development and chemical specificity of neurons, vol. 51, ed. Cuenod, M., Kreutzberg, G. W. & Bloom, F. E.. Elsevier/North-Holland Biomedical Press. {aFHP}Google Scholar
Guitton, D., Douglas, R. M. & Voile, M. (1984) Eye-head coordination in cats. Journal of Neurophysiology 52:1030–50. {aFHP}CrossRefGoogle ScholarPubMed
Haaxma, R. & Kuypers, H. G. J. M. (1975) Intrahemispheric cortical connexions and visual guidance of hand and finger movements in the rhesus monkey. Brain 98:239–60. {aFHP}CrossRefGoogle Scholar
Haber, R. N., & Hershenson, M. (1973) The psychology of visual perception. Holt, Rinehart and Winston. {aFHP}Google Scholar
Hackman, R. B. (1940) An experimental study of variability in ocular latency. Journal of Experimental Psychology 27: 546–48.CrossRefGoogle Scholar
Haenny, P. E., & Schiller, P. H. (1988) State dependent activity in monkey visual cortex I. Single cell activity in VI and V4 on visual tasks. Experimental Brain Research 69:225–44. {aFHP}CrossRefGoogle Scholar
Hall, L. C. (1985) Searching high and low: The development of efficient visual search in hearing, deaf and learning disabled children. In: Eye movements and human information processing, ed. Groner, R., McConkie, G. W. & Menz, C.. North-Holland. {MPB, rFHP }Google Scholar
Halligan, P. W., & Marshall, J. C. (1989) Is neglect (only) lateral? A quadrant analysis of line cancellation. Journal of Clinical and Experimental Neuropsychology 11:793–98. {rFHP}CrossRefGoogle ScholarPubMed
Hamasaki, D. I., & Flynn, J. T. (1981) Amblyopic eyes have longer reaction times. Investigative Ophthalomology 6-Visual Science 21:846—53. {aFHP}Google ScholarPubMed
Hansen, R. M., & Skavenski, A. A. (1977) Accuracy of eye position information for motor control. Vision Research 17:919—26. {RAA}CrossRefGoogle ScholarPubMed
Harris, C. S. (1965) Perceptual adaptation to inverted, reversed, and displaced vision. Psychological Review 72:419–44. {RWW}CrossRefGoogle ScholarPubMed
Harter, M. R., & Aine, C. J. (1984) Brain mechanisms of visual selective attention. In: Varieties of attention, ed. Parasuraman, R. & Davies, D. R.. Academic Press. {rFHP}Google Scholar
Harwerth, R. S., & Boltz, R. L. (1979) Stereopsis in monkeys using random-dot stereograms: The effect of viewing duration. Vision Research 19:985–91. {aFHP}CrossRefGoogle ScholarPubMed
Hassler, R. (1966) Comparative anatomy of the central visual system of day-and night-active primates. In: Evolution of the forebrain, ed. Hassler, R. & Stephan, H.. Thieme. {RWW}CrossRefGoogle Scholar
Heilrnan, K. M. & Aalenstein, E. (1979) Mechanisms underlying hemispatial neglect. Annals of Neurology 5:166–70. {KMH}Google Scholar
Heilman, K. M. & van Den Abell, T. (1980) Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30:327–30. {aFHP}CrossRefGoogle ScholarPubMed
Heilman, K. M., Watson, R. T. & Valenstein, E. (1985) Neglect and related disorders. In: Clinical neuropsychology, 2d ed., ed. Heilman, K. M. & Valenstein, E.. Oxford University Press. {KMH}Google Scholar
Hendrickson, A. E. (1985) Dots, stripes and columns in monkey visual cortex. Trends in Neurosciences 8:406–10. {aFHP}CrossRefGoogle Scholar
Hess, R. F. & Bradley, A. (1980) Contrast perception above threshold is only minimally impaired in human amblyopia. Nature 287:463–64. {aFHP}CrossRefGoogle ScholarPubMed
Heuer, H., Dunkel-Abels, G., Bruwer, M., Kroger, H., Romer, T. & Wischmeier, E. (1988) The effects of sustained vertical gaze deviation on the resting state of the vergence system. Vision Research 28:1337–44. {arFHP}CrossRefGoogle ScholarPubMed
Heuer, H. & Owens, D. A. (1989) Vertical gaze direction and the resting posture of the eyes. Perception 18:363–77. {rFHP}CrossRefGoogle ScholarPubMed
Heywood, S. & Churcher, J. (1980) Structure of the visual array and saccadic latency: Implications for oculomotor control. Quarterly Journal of Experimental Psychology 32:335–41. {arFHP, MPB, JMF}CrossRefGoogle ScholarPubMed
Hickey, T. L. (1977) Postnatal development of the human lateral geniculate nucleus: Relationship to a critical period for the visual system. Science 198:836–38. {aFHP}CrossRefGoogle ScholarPubMed
Hilz, R., Rentschler, I. & Brettel, H. (1977) Myopic and strabismic amblyopia: Substantial differences in human visual development. Experimental Brain Research 30:445–46. {aFHP}Google ScholarPubMed
Hine, T. & Thorn, F. (1987) Compensatory eye movements during active head rotation for near targets: Effects of imagination, rapid head oscillation and vergence. Vision Research 27:1639–57. {aFHP}CrossRefGoogle ScholarPubMed
Hines, D., Jordan-Brown, L. & Juzwin, K. R. (1987) Hemispheric visual processing in face recognition. Brain and Cognition 6:91–100. {aFHP}CrossRefGoogle ScholarPubMed
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986) Distributed representations. In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. Rumelhart, D. E. & McClelland, J. L.. MIT Press. {RMB}Google Scholar
Hodos, W. R. (1976) Vision and the visual system: A bird’s-eye view. In: Progress in psychobiology and physiological psychology, ed. Sprague, J. & Epstein, A. N.. Academic Press. {MAG}Google Scholar
Holmes, G. (1938) The cerebral integration of the ocular movements. British Medical Journal 2:107–12. {aFHP}CrossRefGoogle ScholarPubMed
Honda, H. (1985) Spatial localization in saccade and pursuit-eye-movement conditions: A comparison of perceptual and motor measures. Perception and Psychophysics 38:41–46. {JMF}CrossRefGoogle ScholarPubMed
Hong, X. & Regan, D. (1989) Visual field defects for unidirectional and oscillatory motion in depth. Vision Research 29:809—16. {aFHP}CrossRefGoogle ScholarPubMed
Horak, F. B., Shumway-Cook, A., Crowe, T. K. & Black, F. O. (1988) Vestibular function and motor proficiency of children with impaired hearing, or with learning disability and motor impairments. Developmental Medicine and Child Neurology 30:64–79. {aFHP}CrossRefGoogle ScholarPubMed
Horel, J. A. (1978) The neuroanatomy of amnesia: A critique of the hippocampal memory hypothesis. Brain 101:403–45. {aFHP}CrossRefGoogle ScholarPubMed
Hoyt, C. S. (1982) Abnormalities of the vestibulo-ocular response in congenital esotropia. American Journal of Ophthalomology 93:703–8.{aFHP}Google ScholarPubMed
Hughes, A. (1977) The topography of vision in mammals of contrasting lifestyles: Comparative optics and retinal organisation. In: Handbook of sensory physiology, vol. VII/5, ed. Crescitelli, F.. Springer-Verlag. {RWW}Google Scholar
Hughes, H. C. & Zimba, L. D. (1987) Natural boundaries for the spatial spread of directed visual attention. Neuropsychologia 25:5–18. {arFHP}CrossRefGoogle ScholarPubMed
Hylkema, B. S. (1942) Examination of the visual field by determining the fusion frequency. Ada Ophthalmologica 20:181–93. {aFHP}CrossRefGoogle Scholar
Hyvarinen, J. (1982) The parietal cortex of monkey and man. Springer-Verlag. {arFHP}CrossRefGoogle Scholar
Ikeda, M. & Takeuchi, T. (1975) Influence of foveal load on the functional visual field. Perception ir Psychophysics 18:255–60. {aFHP}CrossRefGoogle Scholar
Jampel, R. S. (1959) Representation of the near-response on the cerebral cortex of the macaque. American Journal of Ophthalmology 48:573–82. {aFHP}CrossRefGoogle Scholar
Jeannerod, M., ed. (1987) Neurophysiological and neuropsychological aspects of spatial neglect. Elsevier. {RMB}Google Scholar
Jeannerod, M. & Biguer, B. (1987) The directional coding of reaching movements: A visuomotor conception of spatial neglect. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Jeannerod, M., Gerin, P. & Pernier, J. (1968) Deplacements et fixations du regard dans l’exploration libre d’une scene visuelle. Vision Research 8:81–97. {aFHP}CrossRefGoogle Scholar
Jeeves, M. A., Milner, A. D., Perrett, D. I. & Smith, P. A. J. (1983) Visual cells responsive to direction of movement and stimulus form in the anterior superior temporal sulcus of the macaque monkey. Journal of Physiology 341:80P. {aFHP}Google Scholar
Jensen, I. & Seedorff, H. H. (1976) Temporal lobe epilepsy and neuro -ophthalmology: Ophthalmological findings in 74 temporal lobe resected patients. Ada Ophthalmologica 54:827–41. {aFHP}CrossRefGoogle ScholarPubMed
Jones, R. & Kerr, K. E. (1972) Vergence eye movements to pairs of disparity stimuli with shape selection cues. Vision Research 12:1425–30. {aFHP}CrossRefGoogle ScholarPubMed
Jones-Gotman, M. (1986) Memory for designs: The hippocampal contribution. Neuropsychologia 24:193–203. {aFHP}CrossRefGoogle ScholarPubMed
Julesz, B. (1978) Global stereopsis: Cooperative phenomena in stereoscopic depth perception. In: Handbook of sensory physiology, vol. 8, ed. Held, R., Leibowitz, H. W. & Teuber, H.-L.. Springer-Verlag. {aFHP}Google Scholar
Julesz, B., Breitmeyer, B. & Kropfl, W. (1976) Binocular-disparity-dependent upper-lower hemifield anisotropy and left-right hemifield isotropy as revealed by dynamic random-dot stereograms. Perception 5:129–41. {aFHP}CrossRefGoogle ScholarPubMed
Kaas, J. H. (1989) Changing concepts of visual cortex organization in primates. In: Neuropsychology of visual perception, ed. Brown, J. W.. Lawrence Erlbaum Associates. {MK}Google Scholar
Kaplan, E. & Shapley, R. M. (1982) X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology 330:125–43. {aFHP}CrossRefGoogle ScholarPubMed
Karpov, B. A., Luria, A. R. & Yarbuss, A. L. (1968) Disturbances of the structure of active perception in lesions of the posterior and anterior regions of the brain. Neuropsychologia 6:157–66. {arFHP}CrossRefGoogle Scholar
Kaufman, L. & Richards, W. (1969) Spontaneous fixation tendencies for visual forms. Perception it Psychophysics 5:85–88. {aFHP}CrossRefGoogle Scholar
Keating, E. G., Gooley, S. G. & Kenny, D. V. (1985) Impaired tracking and loss of predictive eye movements after removal of the frontal eye fields. Society for Neuroscience Abstracts 11:472. {CJB}Google Scholar
Kelly, D. H. (1977) Visual contrast sensitivity. Optica Ada 24:107–29. {arFHP}CrossRefGoogle Scholar
Kendrick, K. M. & Baldwin, B. A. (1987) Cells in the temporal cortex of conscious sheep respond preferentially to the sight of faces. Science 236:448–50. {RMB}CrossRefGoogle Scholar
Kesner, R. P., Farnsworth, G. & DiMattia, B. V. (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience 103:956–61. {GWS}CrossRefGoogle ScholarPubMed
King-Smith, P. E. & Garden, D. (1976) Luminance and opponeet-colo* contributions to visual detection and adaptation and to temporal and spatial integration. Journal of the Optical Society of America 66:709–17. {aFHP}CrossRefGoogle ScholarPubMed
Kinsbourne, M. (1972) Eye and head turning indicates cerebral lateralization. Science 176:539–41. {aFHP}CrossRefGoogle ScholarPubMed
Kinsboume, M. & Hicks, R. E. (1978) Functional cerebral space: A model for overflow, transfer and interference effects in human performance. In: Attention and performance VII, ed. Requin, J.. Lawrence Erlbaum Associates. {MK}Google Scholar
Kinsbourne, M. & Warrington, E. K. (1962) A disorder of simultaneous form perception. Brain 85:461–86. {aFHP}CrossRefGoogle ScholarPubMed
Komatsu, H. & Wurtz, R. H. (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology 60:580–603. {MK, rFHP}CrossRefGoogle ScholarPubMed
Komatsu, H., Roy, J. P. & Wurtz, R. H. (1988) Binocular disparity sensitivity of cells in area MST of the monkey. Society for Neuroscience Abstracts 14:202. {aFHP, MK}Google Scholar
Kooistra, C. A. & Heilman, K. M. (1989) Hemispatial visual inattention masquerading as hemianopia. Neurology 39:1125–27. {arFHP, CMB}CrossRefGoogle ScholarPubMed
Kriss, A. & Halliday, A. M. (1980) A comparison of occipital potentials evoked by pattern onset, offset and reversal by movement. In: Evoked potentials, ed. Barber, C.. MTP Press. {aFHP}Google ScholarPubMed
Krose, B. J. A. & Julesz, B. (1988) Evidence against rapid voluntary shifts of attention to non-cued target locations in a visual search task. Investigative Ophthalmology and Visual Science 29:400. {JRB}Google Scholar
(1989) The control and speed of shifts of attention. Vision Research 29:1607–19. {JRB, rFHP}CrossRefGoogle Scholar
Lanman, J., Bizzi, E. & Allum, J. (1978) The coordination of eye and head movement during smooth pursuit. Brain Research 153:39–53. {aFHP}CrossRefGoogle ScholarPubMed
Larrabee, G. J., Levin, H. S., Huff, F. J., Kay, M. C. & Guinto, F. C. Jr. (1985) Visual agnosia contrasted with visual-verbal disconnection. Neuropsychologia 23:1–12. {aFHP}CrossRefGoogle ScholarPubMed
Lasley, D. J., Kivlin, J., Rich, L. & Flynn, J. T. (1984) Stereo-discrimination between diplopic images in clinically normal observers. Investigative Ophthalmology & Visual Science 25:1316–20. {aFHP}Google ScholarPubMed
Latto, R. & Cowey, A. (1971) Fixation changes after frontal eye-field lesions in monkeys. Brain Research 30:25–36. {aFHP}CrossRefGoogle Scholar
Legge, G. E., Pelli, D. G., Rubin, G. S. & Schleske, M. M. (1985) Psychophysics of reading I. Normal vision. Vision Research 25:239–52. {JRB}CrossRefGoogle Scholar
Legge, G. E., Rubin, G. S. & Luebker, A. (1978) Psychophysics of reading V. The role of contrast in normal vision. Vision Research 27:1165–77. {JRB}CrossRefGoogle Scholar
Leinonen, L., Hyvarinen, J., Nyman, G. & Linnankoski, I. (1979) Functional properties of neurons in lateral part of association area 7 in awake monkeys, Part 1. Experimental Brain Research 34:299–320. {KMH}Google ScholarPubMed
Leinonen, L. & Nyman, G. (1979) Functional properties of cells in anterolateral part of are a 7 associative face area of awake monkeys, Part 2. Experimental Brain Research 34:321–33. {KMH}Google Scholar
Levine, D. N., Warach, J. & Farah, M. (1985) Two visual systems in mental imagery: Dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35:1010–18. {aFHP}CrossRefGoogle Scholar
Levinson, H. (1988) The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: Hypothesis and study. Perceptual and Motor Skills 67:983–1006. {aFHP}CrossRefGoogle ScholarPubMed
Levy-Schoen, A. (1969) Determination et latence de la response oculomtrice a deux stimulus. L’Annee Psychologique 69:373–92. {JMF, rFHP}Google Scholar
Liederman, J. & Meehan, P. (1986) When is between-hemisphere division of labor advantageous? Neuropsychologia 24:863–74. {MPB}CrossRefGoogle ScholarPubMed
Liederman, J., Merola, J. M. & Martinez, S. (1985) Interhemispheric collaboration in response to bilateral input. Neuropsychologia 23:673–83. {MPB}CrossRefGoogle ScholarPubMed
Lisberger, S. G., & Pavelko, T. A. (1989) Topographic and directional organization of visual motion inputs for the initiation of horizontal and vertical smooth-pursuit eye movements in monkeys. Journal of Neurophysiology 61:173–85. {CJB, rFHP}CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988a) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240:740–49. {aFHP, LMC}CrossRefGoogle ScholarPubMed
Livingstone, M. S., & Hubel, D. H. (1988b) Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? Journal of Neuroscience 8:4334–39. {aFHP}CrossRefGoogle ScholarPubMed
Logothetis, N. K., & Schall, J. D. (1989) Neuronal correlates of subjective visual perception. Science 245:761–63. {aFHP}CrossRefGoogle ScholarPubMed
Longuet-Higgins, H. C., & Prazdny, K. (1980) The interpretation of a moving retinal image. Proceedings of the Royal Society of London, series B 208:385–97. {RMS}Google ScholarPubMed
Low, F. N. (1943) The peripheral visual acuity of 100 subjects. American Journal of Physiology 140:83–88. {aFHP}CrossRefGoogle Scholar
Lu, C. & Fender, D. H. (1972) The interaction of color and luminance in stereoscopic vision. Investigative Ophthalmology 11:482–90. {aFHP}Google ScholarPubMed
Lundh, B. L., Lennerstrand, G. & Derefeldt, G. (1983) Central and peripheral normal contrast sensitivity for static and dynamic sinusoidal gratings. Ada Ophthalmologica 61:171–82. {aFHP}CrossRefGoogle ScholarPubMed
Lupp, U., Hauske, G. & Wolf, W. (1976) Perceptual latencies to sinusoidal gratings. Vision Research 16:969–72. {aFHP}CrossRefGoogle ScholarPubMed
Luria, A. R., Pravdina-Vinarskaya, E. N. & Yarbuss, A. L. (1963) Disorders of ocular movement in a case of simultagnosia. Brain 86:219–28. {aFHP}CrossRefGoogle Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3(4):485–534. {arFHP}CrossRefGoogle Scholar
(1987) Frontal eye field lesions in monkeys disrupt visual pursuit. Experimental Brain Research 68:437–41. {CJB, rFHP}Google Scholar
Lynch, J. C, Mountcastle, V. B., Talbot, W. H. & Yin, T. C. T. (1977) Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology 40:369–89. {aFHP}CrossRefGoogle ScholarPubMed
MacAvoy, M. G., & Bruce, C. J. (1989) Oculomotor deficits associated with lesions of the frontal eye field area of in macaque monkeys. Society for Neuroscience Abstracts 15:1203. {CJB}Google Scholar
MacAvoy, M. G., Bruce, C. J. & Gottlieb, J. (1988) Smooth eye movements elicited by microstimulation in the frontal eye fields region of alert macaque monkeys. Society Neuroscience Abstracts 14:956. {CJB}Google Scholar
Mack, A. (1978) Three modes of visual perception. In: Modes of Perceiving and Processing Information, ed. Pick, H. L. Jr. & Saltzman, E.. Wiley & Sons. {GWS}Google Scholar
Magnusson, M., Pyykko, I. & Norrving, B. (1986) The relationship of optokinetic nystagmus to pursuit eye movements, vestibular nystagmus and to saccades in humans: A clinical study. Ada Otolaryngologica 101:361–70. {aFHP}CrossRefGoogle ScholarPubMed
Malpeli, J. P., & Baker, F. H. (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. Journal of Comparative Neurology 161:569–94. {aFHP}CrossRefGoogle ScholarPubMed
Manning, F. J. (1971) The selective attention “deficit” of monkeys with ablations of foveal prestriate cortex. Psychonomic Science 25:291—92. {aFHP}CrossRefGoogle Scholar
Manning, M. L., Finlay, D. C, Neill, R. A. & Frost, B. G. (1987) Detection threshold differences to crossed and uncrossed disparities. Vision Research 27:1683–86. {aFHP, MPB}CrossRefGoogle ScholarPubMed
Marrocco, R. T., McClurkin, J. W. & Young, R. A. (1982) Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. Journal of Neuroscience 2:1275–91. {aFHP}CrossRefGoogle ScholarPubMed
Martens, W., Blake, R., Sloane, M. & Cormack, R. H. (1981) What masks utrocular discrimination. Perception 6-Psychophysics 30:521–32. {aFHP}CrossRefGoogle ScholarPubMed
Martin, F. & Lovegrove, W. (1984) The effects of field size and luminance on contrast sensitivity differences between specifically reading disabled and normal children. Neuropsychological 22:73–77. {aFHP}CrossRefGoogle ScholarPubMed
Martin, K. A. C. (1988) From enzymes to visual perception: A bridge too far? Trends in Neurosciences 11:380–87. {aFHP}CrossRefGoogle ScholarPubMed
Martin, M. (1979) Hemispheric specialization for local and global processing. Quarterly Journal of Experimental Psychology 17:33–40. {MPB}Google ScholarPubMed
Martinoya, C, Rey, J. & Bloch, S. (1981) Limits of the pigeon’s binocular field and direction for best binocular viewing. Vision Research 21:1197–200. {MAG}CrossRefGoogle ScholarPubMed
Matelli, M., Olivieri, M. F., Saccani, A. & Rizzolatti, G. (1983) Upper visual space neglect and motor deficits after section of the midbrain commissures in the cat. Behavioral Brain Research 10:263–85. {aFHP}CrossRefGoogle ScholarPubMed
Matin, L., Matin, E. & Pearce, D. G. (1969) Visual perception of direction when voluntary saccades occur I. Relation of visual direction of a fixed target extinguished before a saccade to a flash presented during a saccade. Perception and Psychophysics 5:65–80. {RAA}CrossRefGoogle Scholar
Maunsell, J. H. R. (1987) Physiological evidence for two visual subsystems. In: Matters of intelligence: Conceptual structures in cognitive neuroscience, ed. Vaina, L. M.. Reidel Publishing. {aFHP}Google Scholar
Maunsell, J. H. R., & Newsome, W. T. (1987) Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10:363–401. {arFHP}CrossRefGoogle ScholarPubMed
Maunsell, J. H. R., & Van Essen, D. C. (1983a) Functional properties of neurons in middle temporal visual area of the macaque monkey I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49:1127–47. {aFHP, MK, RMS}CrossRefGoogle ScholarPubMed
(1983b) Functional properties of neurons in middle temporal visual area of the macaque monkey II. Binocular interactions and the sensitivity to binocular disparity. Journal of Neurophysiology 49:1148–67. {aFHP, MK, RMS}CrossRefGoogle Scholar
(1983c) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3:2563–86. {RMS}CrossRefGoogle Scholar
(1987) The topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266:535–55. {arFHP}CrossRefGoogle Scholar
Mays, L. E., & Sparks, D. L. (1980) Saccades are spatially, not retinotopically coded. Science 208:1163–64. {RAA}CrossRefGoogle ScholarPubMed
McColgin, F. H. (1960) Movement thresholds in peripheral vision. Journal of the Optical Society of America 50:774–79. {aFHP}CrossRefGoogle Scholar
McDonnell, P. M. (1975) The development of visually guided reaching. Perception & Psychophysics 18:181–85. {aFHP}CrossRefGoogle Scholar
McFie, J. & Zangwill, O. L. (1960) Visual-constructive disabilities associated with lesions of the left cerebral hemisphere. Brain 83:243–60. {aFHP}CrossRefGoogle Scholar
Meadows, J. C. (1974a) Disturbed perception of colours associated with localised cerebral lesions. Brain 97:615–32. {aFHP}CrossRefGoogle Scholar
(1974b) The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery, and Psychiatry 37:489–501. {aFHP }CrossRefGoogle Scholar
Menzel, E. W. (1973) Chimpanzee spatial memory organization. Science 182:943–45. {aFHP}CrossRefGoogle ScholarPubMed
Merigan, W. H. (1989) Chromatic and achromatic vision of macaques: Role of the P pathway. Journal of Neuroscience 9:776–83. {aFHP}CrossRefGoogle ScholarPubMed
Merigan, W. H. &: Eskin, T. A. (1986) Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells. Vision Research 26:1751–61. {aFHP}CrossRefGoogle Scholar
Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. & Smith, J. E. K. (1988) Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review 95:340–70. {RAA}CrossRefGoogle ScholarPubMed
Meyer, D. E., Smith, J. E. K. & Wright, C. E. (1982) Models for the speed and accuracy of aimed movements. Psychological Review 89:449–82. [RAA]CrossRefGoogle ScholarPubMed
Michael, W. F., & Halliday, A. M. (1971) Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Research 32:311–24. [aFHP]CrossRefGoogle ScholarPubMed
Miles, F. A., & Kawano, K. (1987) Visual stabilization of the eyes. Trends in Neurosciences 10:153–58. [aFHP]Google Scholar
Miles, P. W. (1954) An analysis of depth factors in anisopia and anisodominance. American Journal of Ophthalmology 37:98–106. [aFHP]CrossRefGoogle ScholarPubMed
Miles, W. R. (1936) The reaction time of the eye. Psychological Monographs 47:268–93. [rFHP]CrossRefGoogle Scholar
Miller, J. M., Ono, H. & Steinbach, M. J. (1980) Additivity of fusional vergence and pursuit eye movements. Vision Research 20:43–47. [aFHP]CrossRefGoogle ScholarPubMed
Miller, L. K. (1969) Eye-movement latency as a function of age, stimulus uncertainty, and position in the visual field. Perceptual & Motor Skills 28:631–36. [JMF, rFHP]CrossRefGoogle ScholarPubMed
Millodot, M. & Lamont, A. (1974) Peripheral visual acuity in the vertical plane. Vision Research 14:1497–98. [aFHP]CrossRefGoogle Scholar
Mishkin, M. (1972) Cortical visual areas and their interactions. In: The brain and human behavior, ed. Karczmar, A. & Eccles, J. C.. Springer-Verlag. [aFHP]Google Scholar
Mishkin, M. & Forgays, D. G. (1952) Word recognition as function of retinal locus. Journal of Experimental Psychology 43:43–48. [MPB, rFHP]CrossRefGoogle ScholarPubMed
Mitchell, D. E., & Blakemore, C. (1970) Binocular depth perception and the corpus callosum. Vision Research 10:49–54. [aFHP]CrossRefGoogle ScholarPubMed
Miyashita, Y. (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:817–20. [aFHP]CrossRefGoogle ScholarPubMed
Mohler, C. W., & Wurtz, R. H. (1977) Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. Journal of Neurophysiology 40:74–94. [CJB]CrossRefGoogle ScholarPubMed
Moran, J. & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84. [aFHP]CrossRefGoogle ScholarPubMed
Morris, R., Mickel, S., Brooks, M., Swavely, S. & Heilman, K. (1986) Recovery from neglect. Journal of Clinical and Experimental Neuropsychology 7:609. [aFHP]Google Scholar
Motter, B. C., & Mountcastle, V. B. (1981) The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience 1:3–26. [MK, CJM]CrossRefGoogle ScholarPubMed
Motter, B. C, Steinmetz, M. A., Duffy, C. J. & Mountcastle, V. B. (1987) Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis. Journal of Neuroscience 7:154–76. [aFHP, MK, CJM]CrossRefGoogle ScholarPubMed
Mountcastle, V. B. (1976) The world around us: Neural command functions for selective attention. Neurosciences Research Program Bulletin 14:1–47. [aFHP]Google ScholarPubMed
(1979) An organizing principle for cerebral function: The unit module and the distributed system. In: The neurosciences fourth study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press. [GWS]Google Scholar
Mountcastle, V. B., Motter, B. C, Steinmetz, M. A. & Duffy, C. J. (1984) Looking and seeing: The visual functions of the parietal lobe. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley & Sons. [CJB, rFHP]Google Scholar
Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. (1985) The analysis of moving visual patterns. In: Pattern recognition mechanisms, ed. Chagas, C., Gattass, R. & Gross, C.. Springer-Verlag. [aFHP]Google Scholar
Mullen, K. T. (1985) The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology 359:381–400. [aFHP]CrossRefGoogle ScholarPubMed
Murasugi, C. M., & Howard, I. P. (1989) Human horizontal optokinetic nystagmus elicited by the upper versus the lower visual fields. Visual Neuroscience 2:73–79. [aFHP, LMC]CrossRefGoogle ScholarPubMed
Murray, I., MacCana, F. & Kulikowski, J. J. (1983) Contribution of two movement detecting mechanisms to central and peripheral vision. Vision Research 23:151–59. [aFHP]CrossRefGoogle ScholarPubMed
Mustillo, P. (1985) Binocular mechanisms mediating crossed and uncrossed stereopsis. Psychological Bulletin 97:187–201. [aFHP]CrossRefGoogle ScholarPubMed
Nakayama, K. (1983) Motion parallax sensitivity and space perception. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [aFHP]Google Scholar
Nakayama, K. & Silverman, G. H. (1986) Serial and parallel processing of visual feature conjunctions. Nature 320:264–65. [aFHP]CrossRefGoogle ScholarPubMed
Nathan, P. W. (1946) On simultaneous bilateral stimulation of the body in a lesion of the parietal lobe. Brain 69:325–34. [aFHP]CrossRefGoogle Scholar
Navon, D. (1977) Forest before trees: The precedence of global features in visual perception. Cognitive Psychology 9:353–83. [arFHP, JRB]CrossRefGoogle Scholar
Newman, R. P., Kinkel, W. R. & Jacobs, L. (1984) Altitudinal hemianopia caused by occipital infarctions: Clinical and computerized tomographic correlations. Archives of Neurology 41:413–18. [aFHP]CrossRefGoogle ScholarPubMed
Newsome, W. T., & Wurtz, R. H. (1988) Probing visual cortical function with discrete chemical lesions. Trends in Neurosciences 11:394–400. [arFHP]CrossRefGoogle ScholarPubMed
Niederlandova, Z. & Litvinenkova, V. (1973) Stabilographic findings in strabismus. Aggressologie 14D:33–36. [aFHP]Google Scholar
Norton, T. T., & Casagrande, V. A. (1982) Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). Journal of Neurophysiology 47:715–41. [aFHP]CrossRefGoogle ScholarPubMed
Nye, P. W. (1973) On the functional differences between frontal and lateral visual fields of the pigeon. Vision Research 13:559–74. [MAG]CrossRefGoogle ScholarPubMed
O’Reilly, R. C, Kosslyn, S. M., Marsolek, C. J. & Chabris, C. F. (in press) Receptive field characteristics that allow parietal lobe neurons to encode spatial properties of visual input: A computational analysis. Journal of Cognitive Neuroscience. [CJM]Google Scholar
Ornitz, E. M. (1970) Vestibular dysfunction in schizophrenia and childhood autism. Comprehensive Psychiatry 11:159–73. [aFHP]CrossRefGoogle ScholarPubMed
Osaka, N. (1976) Reaction time as a function of peripheral retinal locus around fovea: Effect of stimulus size. Perceptual and Motor Skills 43:603-6.[NO]CrossRefGoogle Scholar
(1978) Naso-temporal differences in human reaction time in the peripheral visual field. Neuropsychologia 16:229–303. [NO]Google Scholar
Osterberg, G. (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica 6:1–102. (Supplement) [arFHP]Google Scholar
Ottes, F. P., van Gisbergen, J. A. M. & Eggermont, J. J. (1985) Latency dependence of colour-based target vs. nontarget information by the saccadic system. Vision Research 25:849–62. [JMF]CrossRefGoogle Scholar
Paillard, J. (1982) The contribution of peripheral and central vision to visually guided reaching. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. [aFHP, RMB ]Google Scholar
Pandya, D. N., & Seltzer, B. (1980) Cortical connections and the functional organization of posterior parietal cortex. Behavioral and Brain Sciences 3(4):511–13. [aFHP]CrossRefGoogle Scholar
Parker, D. M., & Salzen, E. A. (1977) Latency changes in the human visual evoked response to sinusoidal gratings. Vision Research 17:1201— 4.[aFHP]CrossRefGoogle ScholarPubMed
Pasik, P., Pasik, T. & Bender, M. B. (1969) The pretectal syndrome in monkeys I. Disturbances of gaze and body posture. Brain 92:521–34. [aFHP]CrossRefGoogle ScholarPubMed
Pavlidis, G. T. (1981) Do eye movements hold the key to dyslexia? Neuropsychologia 19:57–64. [aFHP]CrossRefGoogle ScholarPubMed
Payne, W. H. (1967) Visual reaction times on a circle about the fovea. Science 155:481–82. [aFHP]CrossRefGoogle ScholarPubMed
Penfield, W. (1957) Vestibular sensations and the cerebral cortex. Annals of Otology, Rhinology and Laryngology 66:691–98. [aFHP]CrossRefGoogle ScholarPubMed
Penfield, W. & Rasmussen, T. (1950) The cerebral cortex of man. MacMillan. [aFHP]Google ScholarPubMed
Pennal, B. E. (1977) Human cerebral asymmetry in color discrimination. Neuropsychologia 15:563–68. [aFHP]CrossRefGoogle ScholarPubMed
Perenin, M. T., & Vighetto, A. (1983) Optic ataxia: A specific disorder in visuomotor coordination. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [aFHP]Google Scholar
Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D. & Jeeves, M. A. (1984) Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology 3:197–208. [arFHP]Google ScholarPubMed
(1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London B223:293–317. [RMB, MK]Google Scholar
Perry, V. H., Oehler, R. & Cowey, A. (1984) Retinal cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–23. [arFHP]CrossRefGoogle Scholar
Peterhans, E. & von Der Heydt, R. (1989a) Elements of form perception in monkey V2: A correlation with the cytochrome oxidase pattern. Society for Neuroscience Abstracts 15:161. [aFHP]Google Scholar
(1989b) Mechanisms of contour perception in monkey visual cortex II.Google Scholar
Pettigrew, J. D., & Dreher, B. (1987) Parallel processing of binocular disparity in the cat’s retinogeniculocortical pathways. Proceedings of the Royal Society, series B 232:297–321. [rFHP]Google ScholarPubMed
Phillips, G. (1933) Perception of flicker in lesions of the visual pathways. Brain 56:464–78. [aFHP]CrossRefGoogle Scholar
Pierrot-Deseilligny, C, Gray, F. & Brunet, P. (1986) Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain 109:81–97. {aFHP}CrossRefGoogle ScholarPubMed
Plant, G. T., Zimmem, R. L. & Durden, K. (1983) Transient visually evoked potentials to the pattern reversal and onset of sinusoidal gratings. Electroencephalography and Clinical Neurophysiology 56:147–58. {aFHP}CrossRefGoogle Scholar
Poggio, G. R., & Poggio, T. (1984) The analysis of stereopsis. Annual Review of Neuroscience 7:379–412. {aFHP}CrossRefGoogle ScholarPubMed
Polit, A. & Bizzi, E. (1979) Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiology 42:183–94. {RAA}CrossRefGoogle ScholarPubMed
Polyak, S. (1957) The vertebrate visual system. University of Chicago Press. {aFHP, RWW}Google Scholar
Post, R. B., & Leibowitz, H. W. (1986) Two modes of processing visual information: Implications for assessing visual impairment. American Journal of Optometry and Physiological Optics 63:94–96. {rFHP}CrossRefGoogle ScholarPubMed
Previc, F. H. (1988) The neurophysiological significance of the Nl and PI components of the visual evoked potential. Clinical Vision Sciences 3:195–202. {aFHP}Google Scholar
(in preparation) A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychological Review. {arFHP}Google Scholar
Previc, F. H., & Harter, M. R. (1982) Electrophysiological and behavioral indicants of selective attention to multifeature gratings. Perception 6-Psychophysics 32:465–72. {aFHP}CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Cavanagh, P. (1987) Motion capture anisotrophy. Vision Research 27:97–106. {aFHP}CrossRefGoogle Scholar
Rapcsak, S. Z., Cimino, C. R. & Heilman, K. M. (1988) Altitudinal neglect. Neurology 38:277–81. {aFHP, CMB, KMH}CrossRefGoogle ScholarPubMed
Rauschecker, J. P., von Gnmau, M. W. & Poulin, C. (1987) Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation tor flow field processing. Journal of Neuroscience 7:943–58. {BGB}CrossRefGoogle Scholar
Rayner, K. & McConkie, G. W. (1976) What guides a reader’s eye movements? Vision Research 16:829–37. {JRB}CrossRefGoogle ScholarPubMed
Rayner, K. & Pollatsek, A. (1981) Eye movement control during reading: Evidence for direct control. Quarterly Journal of Experimental Psychology 33A:351–73. {JRB}CrossRefGoogle Scholar
Regan, D. & Beverley, K. I. (1979) Visually guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns. Science 205:311–13. {BGB}CrossRefGoogle ScholarPubMed
(1983) Visual fields for frontal plane motion and for changing size. Vision Research 23:673–76. {aFHP}CrossRefGoogle Scholar
Regan, D., Erkelens, C. J. & Collewijn, H. (1986) Visual field defects for vergence eye movements and for stereomotion perception. Investigative Ophthalmology it Visual Science 27:806–19. {aFHP }Google ScholarPubMed
Richards, W. (1972) Disparity masking. Vision Research 12:1113–24. {aFHP}CrossRefGoogle ScholarPubMed
Richards, W. & Lieberman, H. R. (1985) Correlation between stereo ability and the recovery of structure-from-motion. American Journal of Optometry and Physiological Optics 62:111–18. {aFHP}CrossRefGoogle ScholarPubMed
Richards, W. & Regan, D. (1973) A stereo field map with implications for disparity processing. Investigative Ophthalmology 12:904–9. {aFHP}Google ScholarPubMed
Richmond, B. J., Wurtz, R. H. & Sato, T. (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. Journal of Neurophysiology 50:1415–32. {MK}CrossRefGoogle ScholarPubMed
Rickman, D. W., & Brecha, N. C. (1989) Morphologies of somatostatin-immunoreactive neurons in the rabbit retina. In: Neurobiology of the Inner Retina, ed. Weiler, R. & Osbome, N. N.. Springer-Verlag. {LMC}Google Scholar
Rijsdijk, J. P., Kroon, J. N. & van der Wildt, G. J. (1980) Contrast sensitivity as a function of position on the retina. Vision Research 20:235–41. {aFHP}CrossRefGoogle ScholarPubMed
Riopelle, A. J., & Bevan, W. Jr. (1953) The distribution of scotopic sensitivity in human vision. American Journal of Psychology 66:73–80. {aFHP}CrossRefGoogle ScholarPubMed
Ristanovic, D. & Hajdukovic, R. (1981) Effects of spatially structured stimulus fields on pattern reversal visual evoked potentials. Electroencephalography and Clinical Neurophysiology 51:599—610. {aFHP}CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Camarda, R. (1987) Neural circuits for spatial attention and unilateral neglect. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Rizzolatti, G., Gentilucci, M. & Matelli, M. (1985) Selective spatial attention: One center, one circuit, or many circuits? In: Attention and performance XI, ed. Posner, M. I. & Marin, O. S. M.. Lawrence Erlbaum Associates. {arFHP, KMH}Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40. {aFHP}CrossRefGoogle ScholarPubMed
Rizzolatti, G., Scandolara, C, Matelli, M. & Gentilucci, M. (1981a) Afferent properties of periarcuate neurons in macaque monkeys I. Somatosensory responses. Behavioral Brain Research 2:125–46. {KMH}CrossRefGoogle ScholarPubMed
(1981b) Afferent properties of periarcuate neurons in macaque monkeys II. Visual responses. Behavioral Brain Research 2:147–63. {KMH}CrossRefGoogle Scholar
Robertson, L. C, Lamb, M. R. & Knight, R. T. (1988) Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience 8:3757–69. {arFHP}CrossRefGoogle ScholarPubMed
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & Bach-y-Rita, P.. {RMB}Google Scholar
Robinson, D. L., Goldberg, M. E. & Stanton, G. B. (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modifications. Journal of Neurophysiology 41:910–32. {arFHP}CrossRefGoogle Scholar
Robson, J. & Graham, N. (1978) Probability summation and regional variation in sensitivity across the visual field. Investigative Ophthalmology and Visual Science 17:221. {JRB}Google Scholar
Rodman, H. R*., Gross, C. G. & Albright, T. A. (1985) Removal of striate cortex does not abolish responsiveness of neurons in visual area MT of the macaque. Society for Neuroscience Abstracts 11:1246. {CJB}Google Scholar
Rodman, H. R., Gross, C. G. & Albright, T. D. (1986) Responses of neurons in visual area MT after removal of the superior colliculus. Society for Neuroscience Abstracts 12:1369. {CJB}Google Scholar
Rogers, B. & Graham, M. (1982) Similarities between motion parallax and stereopsis in human depth perception. Vision Research 22:261–70. {aFHP}CrossRefGoogle ScholarPubMed
Rolls, E. T., & Baylis, G. C. (1986) Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Experimental Brain Research 65:38–48. {MK}CrossRefGoogle ScholarPubMed
Rolls, E. T., Baylis, G. C, Hasselmo, M. E. & Nalwa, V. (1989) The effect learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Experimental Brain Research 76:153–64. {GWS}CrossRefGoogle ScholarPubMed
Rothstein, T. B., & Sacks, J. G. (1972) Defective stereopsis in lesions of the parietal lobe. American Journal of Ophthalmology 73:281–84. {aFHP}CrossRefGoogle ScholarPubMed
Rovamo, J. & Virsu, V. (1979) An estimation and application of the cortical magnification factor. Experimental Brain Research 37:495—510. {JMF}CrossRefGoogle ScholarPubMed
Roy, J. P., & Wurtz, R. H. (1989) Effect of the peripheral visual field on disparity sensitive cells in cortical visual area MST. Society for Neuroscience Abstracts 15:119. {MK, RMS}Google Scholar
Rubens, A. B. (1985) Caloric stimulation and unilateral visual neglect. Neurology 35:1019–24. {aFHP}CrossRefGoogle ScholarPubMed
Rueckl, J. G., Cave, K. R. & Kosslyn, S. M. (1989) Why are “what” and “where” processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience 1:171—86. {CJM}CrossRefGoogle Scholar
Sagar, S. M. (1987) Somatostatin-like immunoreactive material in the rabbit retina: Immunohistochemical staining using monoclonal antibodies. Journal of Comparative Neurology 266:291–99. {LMC}CrossRefGoogle ScholarPubMed
Sagar, S. M., & Marshall, P. E. (1988) Somatostatin-like immunoreactive material in associational ganglion cells of human retina. Neuroscience 27:507–16. {LMC, RWW, rFHP}CrossRefGoogle ScholarPubMed
Sahgal, A. & Iversen, S. D. (1978) Categorization and retrieval after selective inferotemporal lesions in monkeys. Brain Research 146:341–50. {aFHP}CrossRefGoogle ScholarPubMed
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y. & Iwai, E. (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience 6:145—57. {aFHP, RMS}CrossRefGoogle ScholarPubMed
Sakata, H., Shibutani, H. & Kawano, K. (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 43:1654–72. {MK, RMS}CrossRefGoogle ScholarPubMed
Sakata, H., Shibutani, H., Kawano, K. & Harrington, T. L. (1985) Neural mechanisms of space vision in the parietal association cortex of the monkey. Vision Research 25:453–63. {aFHP}CrossRefGoogle ScholarPubMed
Salman, S. D., & von Noorden, G. K. (1970) Induced vestibular nystagmus in strabismic patients. Annals of Otology, Rhinology and Laryngology 79:352–57. {aFHP}CrossRefGoogle ScholarPubMed
Scarisbrick, D. J., Tweedy, J. R. & Kuslansky, G. (1987) Hand preference and performance effects on line bisection. Neuropsychologia 25:695–99. {aFHP}CrossRefGoogle ScholarPubMed
Schein, S. J., Marrocco, R. T. & De Monasterio, F. M. (1982) Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? Journal of Neurophysiology 47:193–213. {aFHP}CrossRefGoogle Scholar
Schiller, P. H. (1986) The central visual system. Vision Research 26:1351–86. {aFHP}CrossRefGoogle ScholarPubMed
Schiller, P. H., & Colby, C. L. (1983) The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Research 23:1631–41. {aFHP }CrossRefGoogle ScholarPubMed
Schiller, P. H., Logothetis, N. K. & Charles, E. R. (1989) The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isolumieance. Investigative Ophthalmology & Visual Science 30:323. (Supplement) {aFHP}Google Scholar
Schiller, P. H. & Malpeli, J. G. (1978) Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41:788–97. {aFHP}CrossRefGoogle ScholarPubMed
Schiller, P. H.Malpeli, J. G. & Schein, S. J. (1979) Composition of geniculostriate input to superior colliculus of the rhesus monkey. Journal of Neurophysiology 42:1124–33. {aFHP}CrossRefGoogle ScholarPubMed
Schiller, P. H.Stryker, M.Cynader, M. & Berman, N. (1974) Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. Journal of Neurophysiology 37:181–94. {aFHP}CrossRefGoogle ScholarPubMed
Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S. & Quinn, J. T., Jr.Google Scholar
(1979) Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review 86:415—51. {RAA}CrossRefGoogle Scholar
Schneider, G. E. (1969) Two visual systems. Science 163:895–902. {CJB, LMC}CrossRefGoogle ScholarPubMed
Schor, C. & Narayan, V. (1981) The influence of field size upon the spatial frequency response of optokinetic nystagmus. Vision Research 21:985—94. {aFHP}CrossRefGoogle ScholarPubMed
Schor, C. M. & Westall, C. (1984) Visual and vestibular sources of fixation instability in amblyopia. Investigative Ophthalmology <& Visual Science 25:729–38. {aFHP}Google ScholarPubMed
Schwartz, S. & Kirsner, K. (1982) Laterality effects in visual information processing: Hemispheric specialisation or the orienting of attention? Quarterly Journal of Experimental Psychology 34A:61–77. {aFHP}CrossRefGoogle Scholar
Schwartz, T. L.Dobson, V.Sandstrom, D. J. & van Hof-vanDuin, J. Duin, J. (1987) Kinetic perimetry assessment of binocular visual field shape and size in young infants. Vision Research 27:2163–75. {aFHP}CrossRefGoogle ScholarPubMed
Sedgwick, H. A. (1986) Space perception. In: Handbook of perception and performance, vol. 1, ed. Boff, K. R., Kaufman, L. & j. P. Thomas. Wiley & Sons. {aFHP}Google Scholar
Sejnowski, T. J. (1988) Neural populations revealed. Nature 332:308. {RMB}CrossRefGoogle ScholarPubMed
Semmes, J. (1968) Hemispheric specialization: A possible clue to mechanism. Neuropsychologia 6:11–26. {MPB}CrossRefGoogle Scholar
Sergent, J. (1983a) The role of the input in visual hemispheric processing. Psychological Bulletin 93:481–512. {MPB}CrossRefGoogle Scholar
(1983b) The effects of sensory limitations on hemispheric processing. Canadian Journal of Psychology 37:345–66. {MPB}CrossRefGoogle Scholar
Shapley, R. & Perry, V. H. (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neurosciences 9:229–35. {aFHP}CrossRefGoogle Scholar
Shatz, C. J. & Stretavan, D. W. (1986) Interactions between retinal ganglion cells during the development of the mammalian visual system. Annual Review of Neuroscience 9:171–207. {aFHP}CrossRefGoogle ScholarPubMed
Shelton, P. A.Bowers, D. & Heilman, K. M. (1990) Peripersonal and vertical neglect. Brain 113:191–205. {KMH}CrossRefGoogle ScholarPubMed
Shulman, G. L.Sullivan, M. A.Gish, K. & Sakoda, W. J. (1986) The role of spatial-frequency channels in the perception of local and global structure. Perception 15:259–73. {aFHP}CrossRefGoogle ScholarPubMed
Siegel, R. M. (1987) Parallel distributed processing that obtains three-dimensional structure from motion. Society for Neuroscience Abstracts 13:630. {RMS}Google Scholar
(1988) Discovery of structure from motion in monkey, man and machine. In: Neural information processing systems, ed. Anderson, D. Z.. American Institute of Physics. {RMS}Google Scholar
(1989) Motion analysis in the inferior parietal area 7a of the rhesus monkey. Society for Neuroscience Abstracts 15:162. {RMS}Google Scholar
Siegel, R. M. & Andersen, R. A. (1987) Representation of head-centered visual space in the inferior parietal lobule of macaque monkey. Neuroscience 22:1293P (Supplement). {RMS}Google Scholar
(1988) Perception of three-dimensional structure from two-dimensional motion in monkey and man. Nature 331:259–61. {RMS}CrossRefGoogle Scholar
Singer, W. (1977) Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiological Reviews 57:386–420. {aFHP}CrossRefGoogle ScholarPubMed
Singer, W. (1985) Central control of developmental plasticity in the mammalian visual cortex. Vision Research 25:389–96. {aFHP}CrossRefGoogle ScholarPubMed
(1985a) Human contrast sensitivity: Regional retinal differences. Human Neurobiology 4:97–99. {aFHP}Google Scholar
(1985b) Critical flicker fusion and double flash discrimination in different parts of the visual field. International Journal of Neuroscience 25:225–31. {aFHP}CrossRefGoogle Scholar
Skrandies, W. (1987) The upper and lower visual field of man: Electrophysiological and functional differences. In: Progress in sensory physiology (vol. 8), eds. Autrurn, H. et al. Springer-Verlag.CrossRefGoogle Scholar
Slavik, B. A. (1982) Vestibular function in children with nonparalytic strabismus. The Occupational Therapy J-ournal of Research 2:220—33. {aFHP}CrossRefGoogle Scholar
Sloan, L. L. (1947) Rate of dark adaptation and regional threshold gradient of the dark-adapted eye: Physiologic and clinical studies. American Journal of Ophthalmology 30:705–20. {aFHP}CrossRefGoogle ScholarPubMed
Smith, A. T. & Hammond, P. (1986) Hemifield differences in perceived velocity. Perception 15:111–17. {arFHP}CrossRefGoogle ScholarPubMed
Snodderly, D. M. (1979) Visual discriminations encountered in food foraging by a neotropical primate: Implications for the evolution of color vision. In: The behavioral significance of color, ed. Burtt, E.. Garland. {aFHP}Google Scholar
Soper, H. V.Diamond, I. T. & Wilson, M. (1975) Visual attention and inferotemporal cortex in rhesus monkeys. Neuropsychologia 13:409–19. {aFHP}CrossRefGoogle ScholarPubMed
Soso, M. J.Lettich, E. & Belgum, J. H. (1980) Pattern-sensitive epilepsy II: Effects of pattern orientation and hemifield stimulation. Epilepsia 21:313-23. {aFHP}CrossRefGoogle ScholarPubMed
Sprague, J. M.Berlucchi, G. & Rizzolatti, G. (1973) The role of the superior colliculus and pretectum in vision and visually guided behavior. In: Handbook of sensory physiology, vol. 7, part 3, ed. Jung, R.. Springer-Verlag. {aFHP}Google Scholar
Stein, J. F. (1989) Representation of egocentric space in the posterior parietal cortex. Quarterly Journal of Experimental Physiology 74:583–606. {rFHP}CrossRefGoogle ScholarPubMed
Steinbach, M. J. (1976) Pursuing the perceptual rather than the retinal stimulus. Vision Research 16:1371–76. {aFHP}CrossRefGoogle Scholar
Steinmetz, M. A.Motter, B. CDuffy, C. J. & Mountcastle, V. B. (1987) Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. Journal of Neuroscience 7:177–91. {arFHP, RMS}CrossRefGoogle ScholarPubMed
Strong, G. W. & Whitehead, B. A. (1989) A solution to the tag-assignment problem for neural networks. Behavioral and Brain Sciences 12:381—433. {GWS}CrossRefGoogle Scholar
Stracl, M.Prevec, T. S. & Zidar, I. (1982) Dependence of visual evoked potentials on change of stimulated retinal area associated with different pattern displacements. Electroencephalography and Clinical Neurophysiology 53:634–42. {aFHP}CrossRefGoogle Scholar
Tanaka, K.Hikosaka, K.Saito, H.Yukie, M.Fukada, Y. & Iwai, E. (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience 6:134–44. {RMS}CrossRefGoogle ScholarPubMed
Tanaka, K. & Saito, H.-A. (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology 62:626–41. {MK}CrossRefGoogle ScholarPubMed
Tootell, R. B. H.Silverman, M. S.Hamilton, S. L.De Valois, R. L. & Switkes, E. (1988) Functional anatomy of macaque striate cortex III. Color. Journal of Neuroscience 8:1569–93. {aFHP }CrossRefGoogle ScholarPubMed
Tootell, R. B. H.Switkes, E.Silverman, M. S. & Hamilton, S. L. (1988) Functional anatomy of macaque striate cortex II. Retinotopic organization. Journal of Neuroscience 8:1531—68. {aFHP}CrossRefGoogle ScholarPubMed
Treisman, A. M. & Schmidt, H. (1982) Illusory conjunctions in the perception of objects. Cognitive Psychology 14:107–41. {aFHP }CrossRefGoogle ScholarPubMed
Trevarthen, C. B. (1968) Two mechanisms of vision in primates. Psychologische Forschung 31:299–337. {CJB}CrossRefGoogle ScholarPubMed
Tusa, R. J.Demer, J. L. & Herdman, S. J. (1989) Cortical areas involved in OKN and VOR in cats: Cortical lesions. Journal of Neuroscience 9:1163–78. {aFHP}CrossRefGoogle ScholarPubMed
Tusa, R. J., & Palmer, L. A. (1980) Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193:147–64. {aFHP}CrossRefGoogle ScholarPubMed
Tychsen, L. (1989) Primary maldevelopment of visual motion pathway in humans. Investigative Ophthalmology & Visual Science 30:302 (Supplement). {aFHP}Google Scholar
Tychsen, L. & Lisberger, S. G. (1986a) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. Journal of Neurophysiology 56:953–68. {aFHP, CJB}CrossRefGoogle ScholarPubMed
(1986b) Maldevelopment of visual motion processing in humans who had strabismus with onset in infancy. Journal of Neuroscience 6:2495–2508. {aFHP}CrossRefGoogle Scholar
Tyler, C. W. (1987) Analysis of visual modulation sensitivity III. Meridional variations in peripheral flicker sensitivity. Journal of the Optical Society of America A:1612–19. {aFHP}CrossRefGoogle ScholarPubMed
Tynan, P. & Sekuler, R. (1975) Moving visual phantoms: A new contour completion effect. Science 188:951–52. {aFHP}CrossRefGoogle ScholarPubMed
Ungerleider, L. G., & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J.. MIT Press. [arFHP, MK, CJM, GWS]Google Scholar
Vaina, L. M. (1989) Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biological Cybernetics 61:347–59. [aFHP]CrossRefGoogle ScholarPubMed
Van Buren, J. M. & Baldwin, M. (1958) The architecture of the optic radiation in the temporal lobe of man. Brain 81:15–40. [aFHP]CrossRefGoogle ScholarPubMed
Van Essen, D. C. (1985) Functional organization of primate visual cortex. In: Cerebral cortex Vol. 3 Visual cortex, ed. Peters, A. & Jones, E. G.. Plenum Press. [RMB]Google Scholar
Van Essen, D. C. & Maunsell, J. H. R. (1983) Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences 6:370–75. [aFHP]CrossRefGoogle Scholar
Van Essen, D. C., Maunsell, J. H. R. & Bixby, J. L. (1981) The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199:293–326. [aFHP]CrossRefGoogle ScholarPubMed
Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. (1984) The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research 24:429–48. [aFHP]CrossRefGoogle ScholarPubMed
Vassilev, A. & Strashimirov, D. (1979) On the latency of human visually evoked response to sinusoidal gratings. Vision Research 19:843–45. [aFHP]CrossRefGoogle ScholarPubMed
Ventre, J. & Faugier-Grimaud, S. (1986) Effects of posterior parietal lesions (area 7) on VOR in monkeys. Experimental Brain Research 62:654–58. [aFHP]CrossRefGoogle ScholarPubMed
Von Der Marlsburg, C. & Singer, W. (1988) Principles of cortical network organization. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. [aFHP]Google Scholar
Von Noorden, G. K., Crawford, M. L. J. & Levacy, R. A. (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Investigative Ophthalmology & Visual Science 24:788–90. [aFHP]Google ScholarPubMed
Wagman, I. H. (1964) Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: The oculomotor system, ed. Bender, M. B.. Harper & Row. [aFHP]Google Scholar
Walls, G. I. (1942) The vertebrate eye and its adaptive radiation. Cranbrook Press. [RWW]Google Scholar
Warrington, E. K., & James, M. (1967) Disorders of visual perception in patients with localised cerebral lesions. Neuropsychologia 5:253–66. [aFHP]CrossRefGoogle Scholar
Warrington, E. K., & Taylor, A. M. (1973) The contribution of the right parietal lobe to object recognition. Cortex 9:152–64. [aFHP]CrossRefGoogle ScholarPubMed
Wasserstein, J., Zappulla, R., Rosen, J., Gerstman, L. & Rock, D. (1987) In search of closure: Subjective contour illusions, gestalt completion tests, and implications. Brain and Cognition 6:1–14. [aFHP]CrossRefGoogle ScholarPubMed
Weinstein, E. A. (1980) Clinical features of hemi-inattention. Behavioral and Brain Sciences 3:518–20. [aFHP]CrossRefGoogle Scholar
Weymouth, F. W., Hines, D. C, Acres, L. H., Raaf, J. E. & Wheeler, M. C. (1928) Visual acuity within the area centralis and its relation to eye movements and fixation. American Journal of Ophthalmology 11:947–60. [aFHP]CrossRefGoogle Scholar
White, C. A., Champa, L. M., Johnson, D. & Brecha, N. S. (in press) Somatostatin immunoreactive cells in the adult cat retina. Journal of Comparative Neurology. [LMC]Google Scholar
White, C. A., Johnson, D., Chalupa, L. M. & Brecha, N. C. (1988a) Characterization of somatostatin-like immunoreactive cells in the adult cat retina. Society of Neuroscience Abstracts 14:1121. [LMC]Google Scholar
(1988b) Somatostatin immunoreactivity (SRIF-I) in the adult cat retina. Investigative Ophthalmology and Visual Science Supplements 29:196. [LMC]Google Scholar
Whiteside, T. C. D. (1952) Accommodation of the human eye in a bright and empty visual field. Journal of Physiology 118:65P. [rFHP]Google Scholar
Wickler, K. C, Williams, R. W. & Rakic, P. (in press) The photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina. Journal of Comparative Neurology. [RWW]Google Scholar
Williams, L. G. (1966) The effect of target specification on objects fixated during visual search. Perception & Psychophysics 1:315–18. [aFHP]CrossRefGoogle Scholar
Williams, M. C., & Brannan, J. R. (1986) Global precedence in good and poor readers. Paper presented at the annual meeting of the Psychonomic Society, November, New Orleans, LA. [JRB]Google Scholar
Williams, R. W., Cavada, C. & Reinoso-Suarez, F. (1989) Evolutionary plasticity in the feline retino-geniculate system. Society for Neuroscience Abstracts 15:457. [RWW]Google Scholar
Wilson, M. E., & Toyne, M. J. (1970) Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Research 24:395–406. [aFHP]CrossRefGoogle ScholarPubMed
Wilson, H. R., & Giese, S. C. (1977) Threshold visibility of frequency gradient patterns. Vision Research 17:1177–90. [JRB]CrossRefGoogle ScholarPubMed
Wilson, M., Wilson, W. A. Jr. & Remez, R. (1977) Effects of prestriate, inferotemporal and superior temporal sulcus lesions on attention and gaze shifts in rhesus monkeys. Journal of Comparative and Physiological Psychology 91:1261–71. [aFHP ]CrossRefGoogle ScholarPubMed
Wolfe, J. M., & Franzel, S. L. (1988) Binocularity and visual search. Perception & Psychophysics 44:81–93. [aFHP]CrossRefGoogle ScholarPubMed
Yasuma, T., Miyakawa, N. & Yamazaki, J. (1986) Clinical application of time-dependent perimetry I. Results in normal subjects. Japanese Journal of Ophthalmology 30:330–37. [aFHP]Google ScholarPubMed
Yazulla, S. (1974) Intraretinal differentiation in the synaptic organization of the inner plexiform layer of the pigeon retina. Journal of Comparative Neurology 153:309–24. [MAG]CrossRefGoogle ScholarPubMed
Yin, R. K. (1969) Looking at upside-down faces. Journal of Experimental Psychology 81:141–45. [rFHP]CrossRefGoogle Scholar
Young, L. R., & Oman, C. M. (1974) Influence of head position and field on visually induced motion effects in three axes of rotation. In: Proceedings of the Tenth Annual Conference on Manual Control. Wright-Patterson Air Force Base, OH. [aFHP]Google Scholar
Yund, E. W., Efron, R. & Nichols, D. R. (1990) Detectability gradients as a function of target location. Brain and Cognition 12:1–16. [rFHP]CrossRefGoogle ScholarPubMed
Zalutsky, R. A., & Miller, R. F. (1987) The physiology of somatostatin in the rabbit retina. Society for Neuroscience Abstracts 13:380. [LMC]Google Scholar
(1988) Neuropeptide mechanisms in the rabbit retina. Investigative Ophthalmology and Visual Science Supplements 29:271. [LMC]Google Scholar
Zee, D. S., Yamazaki, A., Butler, P. H. & Gucer, G. (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primates. Journal of Neurophysiology 46:878–99. [aFHP]CrossRefGoogle Scholar
Zeki, S. (1980) The representation of colours in the cerebral cortex. Nature 284:412–18. [aFHP]CrossRefGoogle ScholarPubMed
Zeki, S. M. (1973) Colour coding in rhesus monkey prestriate cortex. Brain Research 53:422–27. [MK]CrossRefGoogle ScholarPubMed
(1977) Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proceedings of the Royal Society, series B 197:195–223. [MK]Google Scholar
Zihl, J., von Cramon, D. & Mai, N. (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–40. [aFHP]CrossRefGoogle ScholarPubMed
Zipser, D. & Andersen, R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–84. [rFHP, RMS]CrossRefGoogle ScholarPubMed