Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-25T17:31:05.972Z Has data issue: false hasContentIssue false

Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy

Published online by Cambridge University Press:  23 September 2024

Kevin B. Clark*
Affiliation:
Cures Within Reach, Chicago, IL, USA [email protected] www.linkedin.com/pub/kevin-clark/58/67/19a https://access-ci.org/ Felidae Conservation Fund, Mill Valley, CA, USA Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS) Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, USA Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA, USA Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA, USA Frontier Development Lab, NASA Ames Research Center, Mountain View, CA, USA SETI Institute, Mountain View, CA, USA Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA, USA Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, Berlin, Germany Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY, USA
*
*Corresponding author.

Abstract

Quantum active Bayesian inference and quantum Markov blankets enable robust modeling and simulation of difficult-to-render natural agent-based classical inferential paradoxes interfaced with task-specific environments. Within a non-realist cognitive completeness regime, quantum Markov blankets ensure meta-learned irrational decision making is fitted to explainable manifolds at optimal free energy, where acceptable incompatible observations or temporal Bell-inequality violations represent important verifiable real-world outcomes.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aerts, D., & Aerts, S. (1995). Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 1, 8597.CrossRefGoogle Scholar
Aerts, D., Broakaert, J., Gabara, L., & Sozzo, S. (Eds.) (2016). Quantum structures in cognitive and social sciences. Frontiers Research Topics Ebook. Frontiers Media SA. ISBN 978-2-88919-876-4.CrossRefGoogle Scholar
Ashtiani, M., & Azgomi, M. A. (2015). A survey of quantum-like approaches to decision making and cognition. Mathematical Social Sciences, 75, 4980.CrossRefGoogle Scholar
Atmanspacher, H., & Römer, H. (2012). Order effects in sequential measurements of noncommuting psychological observables. Journal of Mathematical Psychology, 56, 274280.CrossRefGoogle Scholar
Bianconi, G. (2002a). Growing Cayley trees described by a Fermi distribution. Physical Review E: Statistical, Nonlinear, Soft Matter Physics, 66, 036116.CrossRefGoogle ScholarPubMed
Bianconi, G. (2002b). Quantum statistics in complex networks. Physical Review E: Statistical, Nonlinear, Soft Matter Physics, 66, 056123.CrossRefGoogle ScholarPubMed
Bianconi, G. (2003). Size of quantum networks. Physics Review E, 67(5, Pt 2), 056119.CrossRefGoogle ScholarPubMed
Bianconi, G., & Barabási, A.-L. (2001). Bose-Einstein condensation in complex networks. Physics Review Letters, 86, 56325635.CrossRefGoogle ScholarPubMed
Blume-Kohout, R., & Zurek, W. H. (2006). Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information. Physical Review A, 73(6), 062310.CrossRefGoogle Scholar
Brandao, F. G. S. L., Piani, M., & Horodecki, P. (2015). Generic emergence of classical features in quantum Darwinism. Nature Communications, 6, 7908.CrossRefGoogle ScholarPubMed
Bruineberg, J., Dolega, K., Dewhurst, J., & Baltieri, M. (2021). The emperor's new Markov blankets. Behavior and Brain Sciences, 45, e183.CrossRefGoogle ScholarPubMed
Busemeyer, J. R., & Bruza, P. (2011). Quantum models of cognition and decision making. Cambridge University Press. ISBN 13 978-1107419889.Google Scholar
Busemeyer, J. R., Pothos, E., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment “errors”. Psychological Reviews, 118, 193218.CrossRefGoogle ScholarPubMed
Busemeyer, J. R., Wang, Z., & Lambert-Mogiliansky, A. (2009). Empirical comparison of Markov and quantum models of decision making. Journal of Mathematical Psychology, 53, 423433.CrossRefGoogle Scholar
Clark, K. B. (2011). Live soft-matter quantum computing. In Salander, E. C. (Ed.), Computer search algorithms (pp. 124). Nova Science Publishers, Inc. ISBN 978-1-61122-527-3.Google Scholar
Clark, K. B. (2012). A statistical mechanics definition of insight. In Floares, A. G. (Ed.), Computational intelligence (pp. 139162). Nova Science Publishers, Inc. ISBN 978-1-62081-901-2.Google Scholar
Clark, K. B. (2014a). Basis for a neuronal version of Grover's quantum algorithm. Frontiers in Molecular Neuroscience, 7, 29.CrossRefGoogle ScholarPubMed
Clark, K. B. (2014b). Evolution of affective and linguistic disambiguation under social eavesdropping pressures. Behavioral and Brain Sciences, 37(6), 551552.CrossRefGoogle ScholarPubMed
Clark, K. B. (2015). Insight and analysis problem solving in microbes to machines. Progress in Biophysics and Molecular Biology, 119, 183193.CrossRefGoogle ScholarPubMed
Clark, K. B. (2017). Cognitive completeness of quantum teleportation and superdense coding in neuronal response regulation and plasticity. Proceedings of the Royal Society B: Biological Sciences. eLetter. https://royalsocietypublishing.org/doi/suppl/10.1098/rspb.2013.3056Google Scholar
Clark, K. B. (2019). Unpredictable homeodynamic and ambient constraints on irrational decision making of aneural and neural foragers. Behavioral and Brain Sciences, 42, e40.CrossRefGoogle ScholarPubMed
Clark, K. B. (2020). Digital life, a theory of minds, and mapping human and machine cultural universals. Behavioral and Brain Sciences, 43, e98.CrossRefGoogle ScholarPubMed
Clark, K. B. (2021a). Quantum decision corrections for the neuroeconomics of irrational movement control and goal attainment. Behavioral and Brain Sciences, 44, e127.CrossRefGoogle ScholarPubMed
Clark, K. B. (2021b). Classical and quantum information processing in aneural to neural cellular decision making on Earth and perhaps beyond. Bulletin of the American Astronomical Society, 53(4), 33.Google Scholar
Clark, K. B. (2023). Neural field continuum limits and the partitioning of cognitive-emotional brain networks. Biology, 12(3), 352.CrossRefGoogle ScholarPubMed
Favre, M., Wittwer, A., Heinimann, H. R., Yukalov, V. I., & Sornette, D. (2016). Quantum decision theory in simple risky choices. PLoS ONE, 11(12), e0168045.CrossRefGoogle ScholarPubMed
Friston, K. J., Parr, T., Hipolito, I., Magrou, L., & Razi, A. (2021). Parcels and particles: Markov blankets in the brain. Network Neuroscience, 5(1), 211251.CrossRefGoogle ScholarPubMed
Hipolito, I., Ramstead, M. J. D., Convertino, L., Bhat, A., Friston, K., & Parr, T. (2021). Markov blankets in the brain. Neuroscience and Biobehavioral Reviews, 125, 8897.CrossRefGoogle ScholarPubMed
Li, Q., Iqbal, A., Perc, M., Chen, M., & Abbott, D. (2013). Coevolution of quantum and classical strategies on evolving random networks. PLoS ONE, 8(7), e68423.CrossRefGoogle ScholarPubMed
Moreira, C., & Wichert, A. (2016a). Quantum-like Bayesian networks for modeling decision making. Frontiers in Psychology, 7, 11.CrossRefGoogle ScholarPubMed
Moreira, C., & Wichert, A. (2016b). Quantum probabilistic models revisited: The case of disjunction effects in cognition. Frontiers in Psychology, 4, 26.Google Scholar
Moreira, C., & Wichert, A. (2018a). Are quantum-like Bayesian networks more powerful than classical Bayesian networks? Journal of Mathematical Psychology, 28, 7383.CrossRefGoogle Scholar
Moreira, C., & Wichert, A. (2018b). Introducing quantum-like influence diagrams for violations of the Sure Thing Principle. International symposium on quantum interactions Q1 2018: 91–108.CrossRefGoogle Scholar
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers Inc. ISBN 1558604790.Google Scholar
Pinto Moreira, C., Fell, L., Dehdashti, S., Bruza, P., & Wichert, A. (2020). Towards a quantum-like cognitive architecture for decision-making. Behavioral and Brain Sciences, 43, e171e178.Google Scholar
Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability explanation for violations of “rational” decision theory. Proceedings of Biological Sciences, 276, 21712178.Google ScholarPubMed
Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36, 255327.CrossRefGoogle ScholarPubMed
Qi, X.-L., & Ranard, D. (2021). Emergent classicality in general multipartite states and channels. Quantum. https://arxiv.org/abs/2001.01507CrossRefGoogle Scholar
Ramstead, M. J. D., Badcock, P. B., & Friston, K. J. (2018). Answering Schrödinger's question: A free-energy formulation. Physics of Life Reviews, 24, 116.CrossRefGoogle ScholarPubMed
Sutter, D. (2018). Approximate quantum Markov chains. Springer. ISBN 978-3-319-78732-9.Google Scholar
Tressoldi, P. E., Maier, M. A., Buechner, V. L., & Khrennikov, A. (2015). A macroscopic violation of no-signaling in time inequalities? How to test temporal entanglement with behavioral observables. Frontiers in Psychology, 6, 1061.CrossRefGoogle ScholarPubMed
Wang, Z., & Busemeyer, J. (2015). Reintroducing the concept of complementarity to psychology. Frontiers in Psychology, 6, 1822.CrossRefGoogle ScholarPubMed
Wichert, A., Pinto Moreira, C., & Bruza, P. (2020). Balanced quantum-like Bayesian networks. Entropy, 22(2), 17011726.CrossRefGoogle ScholarPubMed
Yearsley, J. M., & Pothos, E. M. (2014). Challenging the classical notion of time in cognition: A quantum perspective. Proceedings of the Royal Society London B: Biological Sciences, 281, 20133056.Google ScholarPubMed