Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T15:07:04.988Z Has data issue: false hasContentIssue false

Problems with the imprinting hypothesis of schizophrenia and autism

Published online by Cambridge University Press:  26 June 2008

Matthew C. Keller
Affiliation:
Department of Psychology and Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80309. [email protected]

Abstract

Crespi & Badcock (C&B) convincingly argue that autism and schizophrenia are diametric malfunctions of the social brain, but their core imprinting hypothesis is less persuasive. Much of the evidence they cite is unrelated to their hypothesis, is selective, or is overstated; their hypothesis lacks a clearly explained mechanism; and it is unclear how their explanation fits in with known aspects of the disorders.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, M., Thaker, G. & Adami, H. (2001) Genetic epidemiology and schizophrenia: A study of reproductive fitness. Schizophrenia Research 47:233–41.Google Scholar
Badner, J. A. & Gershon, E. S. (2002) Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Molecular Psychiatry 7(1):5666.Google Scholar
Bassett, A. S., Bury, A., Hodgkinson, K. A. & Honer, W. G. (1996) Reproductive fitness in familial schizophrenia. Schizophrenia Research 21:151–60.Google Scholar
Cheng, M. C. & Chen, C. H. (2007) Identification of rare mutations of synaptogyrin 1 gene in patients with schizophrenia. Journal of Psychiatric Research 41(12):1027–31.Google Scholar
Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsater, H., Sponheim, E., Goubran-Botros, H., Delorme, R., Chabane, N., Mouren-Simeoni, M. C., de Mas, P., Bieth, E., Roge, B., Heron, D., Burglen, L., Gillberg, C., Leboyer, M. & Bourgeron, T. (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics 39(1):2527.CrossRefGoogle ScholarPubMed
Fañanás, L. & Bertranpetit, J. (1995) Reproductive rates in families of schizophrenic patients in a case-control study. Acta Psychiatrica Scandinavica 91:202204.CrossRefGoogle ScholarPubMed
Haukka, J., Suvisaari, J. & Lönnqvist, J. (2003) Fertility of patients with schizophrenia, their siblings, and the general population: A cohort study from 1950 to 1959 in Finland. American Journal of Psychiatry 160:460–63.Google Scholar
Jablensky, A., Sartorius, N., Ernberg, G., Anker, M., Korten, A., Cooper, J. E., Day, R. & Bertelsen, A. (1992) Schizophrenia: Manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychological Medicine Monographs 20:197.Google Scholar
Juul, A., Dalgaard, P., Blum, W. F., Bang, P., Hall, K., Michaelsen, K. F., Muller, J. & Skakkebaek, N. E. (1995) Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: The relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. Journal of Clinical Endocrinology and Metabolism 80:2534–42.Google Scholar
Keller, M. C. & Miller, G. (2006) Resolving the paradox of common, harmful, heritable mental disorders: Which evolutionary genetic models work best? Behavioral and Brain Sciences 29(4):385452.Google Scholar
Lencz, T., Lambert, C., DeRosse, P., Burdick, K. E., Morgan, T. V., Kane, J. M., Kucherlapati, R. & Malhotra, A. K. (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proceedings of the National Academy of Sciences USA 104:19942–47.Google Scholar
Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, I., Williams, N. M., Schwab, S. G., Pulver, A. E., Faraone, S. V., Brzustowicz, L. M., Kaufmann, C. A., Garver, D. L., Gurling, H. M. D., Lindholm, E., Coon, H., Moises, H. W., Byerley, W., Shaw, S. H., Mesen, A., Sherrington, R., O'Neill, F. A., Walsh, D., Kendler, K. S., Ekelund, J., Paunio, T., Lönnqvist, J., Peltonen, L., O'Donovan, M. C., Owen, M. J., Wildenauer, D. B., Maier, W., Nestadt, G., Blouin, J., Antonarakis, S. E., Mowry, B. J., Silverman, J. M., Crowe, R. R., Cloninger, C. R., Tsuang, M. T., Malaspina, D., Harkavy-Friedman, J. M., Svrakic, D. M., Bassett, A. S., Holcomb, J., Kalsi, G., McQuillin, A., Brynjolfson, J., Sigmundsson, T., Petursson, H., Jazin, E., Zoëga, T. & Helgason, T. (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: Schizophrenia. American Journal of Human Genetics 73:3448.Google Scholar
McClellan, J. M., Susser, E. & King, M. C. (2007) Schizophrenia: A common disease caused by multiple rare alleles. British Journal of Psychiatry 190:194–99.Google Scholar
McGlashan, T. H., Pedersen, C. B., Hoffman, R. E. & Mortensen, P. B. (2006) Fertility of schizophrenia and bipolar probands and their first-degree relatives. Schizophrenia Research 81(Suppl.):S17S18.Google Scholar
McGrath, J. J., Hearle, J., Jenner, L., Plant, K., Drummond, A. & Barkla, J. M. (1999) The fertility and fecundity of patients with psychoses. Acta Psychiatrica Scandinavica 99:441–46.CrossRefGoogle ScholarPubMed
Rimmer, J. & Jacobsen, B. (1976) Differential fertility of adopted schizophrenics and their half-siblings. Acta Psychiatrica Scandinavica 54:161–66.CrossRefGoogle ScholarPubMed
Rutter, M. (2005) Incidence of autism spectrum disorders: Changes over time and their meaning. Acta Paediatrica 94:215.Google Scholar
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., Yamrom, B., Yoon, S., Krasnitz, A., Kendall, J., Leotta, A., Pai, D., Zhang, R., Lee, Y. H., Hicks, J., Spence, S. J., Lee, A. T., Puura, K., Lehtimäki, T., Ledbetter, D., Gregersen, P. K., Bregman, J., Sutcliffe, J. S., Jobanputra, V., Chung, W., Warburton, D., King, M. C., Skuse, D., Geschwind, D. H., Gilliam, T. C., Ye, K. & Wigler, M. (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–49.Google Scholar
Srinivasan, T. N. & Padmavati, R. (1997) Fertility and schizophrenia: Evidence for increased fertility in the relatives of schizophrenic patients. Acta Psychiatrica Scandinavica 96:260–64.Google Scholar
Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., McCauley, J. L., Han, Q., Jiang, L., Li, C., Folstein, S. E. & Blakely, R. D. (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. American Journal of Human Genetics 77:265–79.Google Scholar
Svensson, A. C., Lichtenstein, P., Sandin, S. & Hultman, C. M. (2007) Fertility of first-degree relatives of patients with schizophrenia: A three generation perspective. Schizophrenia Research 91:238–45.Google Scholar
Waddington, J. L. & Youssef, H. A. (1996) Familial-genetic and reproductive epidemiology of schizophrenia in rural Ireland: Age at onset, familial morbid risk and parental fertility. Acta Psychiatrica Scandinavica 93:6268.Google Scholar