Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T11:46:08.658Z Has data issue: false hasContentIssue false

Prediction and postdiction: Two frameworks with the goal of delay compensation

Published online by Cambridge University Press:  14 May 2008

David M. Eagleman
Affiliation:
Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030. [email protected]://neuro.bcm.edu/eagleman

Abstract

Although prediction is one of the key tasks of intelligent brains, it often proves impossible in an unpredictably changing world. Hence, brains often decide what happened retrospectively. This framework of postdiction, the opposite of prediction, stands as an alternative or complimentary framework to prediction. I further show how motor-sensory recalibration demonstrates delay compensation at the perceptual level.

Type
Open Peer Commentary
Copyright
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cunningham, D. W., Billock, V. A. & Tsou, B. H. (2001a) Sensorimotor adaptation to violations of temporal contiguity. Psychological Science 12:532–35.CrossRefGoogle ScholarPubMed
Eagleman, D. M. (2001) Visual illusions and neurobiology. Nature Reviews Neuroscience 2(12):920–26.Google Scholar
Eagleman, D. M. & Sejnowski, T. J. (2000) Motion integration and postdiction in visual awareness. Science 287(5460):2036–38.CrossRefGoogle ScholarPubMed
Eagleman, D. M. & Sejnowski, T. J. (2007) Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. Journal of Vision 7(4):3, 112.CrossRefGoogle ScholarPubMed
Gawne, T. J., Kjaer, T. W. & Richmond, B. J. (1996) Latency: Another potential code for feature binding in striate cortex. Journal of Neurophysiology 76(2):1356–60.CrossRefGoogle ScholarPubMed
Hawkins, J. & Blakeslee, S. (2004) On intelligence. Owl Press.Google Scholar
Khurana, B. & Nijhawan, R. (1995) Extrapolation or attention shift? Reply to Baldo and Klein. Nature 378:565–66.CrossRefGoogle Scholar
Lee, J., Williford, T. & Maunsell, J. H. (2007) Spatial attention and the latency of neuronal responses in macaque area V4. Journal of Neuroscience 27(36):9632–37.CrossRefGoogle ScholarPubMed
Maunsell, J. H., Ghose, G. M., Assad, J. A., McAdams, C. J., Boudreau, C. E. & Noerager, B. D. (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16(1):114.Google Scholar
Nijhawan, R. (1992) Misalignment of contours through the interaction of the apparent and real motion systems. Investigative Ophthalmology and Visual Science 33(Suppl. 4):1415.Google Scholar
Nijhawan, R. (1994) Motion extrapolation in catching. Nature 370(6487):256–57.CrossRefGoogle ScholarPubMed
Stetson, C., Cui, X., Montague, P. R. & Eagleman, D. M. (2006) Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron 51:651–59.CrossRefGoogle Scholar
Suddendorf, T. & Corballis, M. C. (2007) Mental time travel across the disciplines: The future looks bright. Behavioral and Brain Sciences 30(3):335–45.Google Scholar
Whitney, D. (2002) The influence of visual motion on perceived position. Trends in Cognitive Sciences 6(5):211–16.CrossRefGoogle ScholarPubMed
Whitney, D. & Murakami, I. (1998) Latency difference, not spatial extrapolation. Nature Neuroscience 1(8):656–57.CrossRefGoogle Scholar