Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T14:33:36.105Z Has data issue: false hasContentIssue false

Neuroethology of releasing mechanisms: Prey-catching in toads

Published online by Cambridge University Press:  04 February 2010

Jörg-Peter Ewert
Affiliation:
Neuroethology Department, University of Kassel, D-3500 Kassel, Federal Republic of Germany

Abstract

“Sign stimuli” elicit specific patterns of behavior when an organism's motivation is appropriate. In the toad, visually released prey-catching involves orienting toward the prey, approaching, fixating, and snapping. For these action patterns to be selected and released, the prey must be recognized and localized in space. Toads discriminate prey from nonprey by certain spatiotemporal stimulus features. The stimulus-response relations are mediated by innate releasing mechanisms (RMs) with recognition properties partly modifiable by experience. Striato-pretecto-tectal connectivity determines the RM's recognition and localization properties, whereas medialpallio-thalamo-tectal circuitry makes the system sensitive to changes in internal state and to prior history of exposure to stimuli. RMs encode the diverse stimulus conditions referring to the same prey object through different combinations of “specialized” tectal neurons, involving cells selectively tuned to prey features. The prey-selective neurons express the outcome of information processing in functional units consisting of interconnected cells. Excitatory and inhibitory interactions among feature-sensitive tectal and pretectal neurons specify the perceptual operations involved in distinguishing the prey from its background, selecting its features, and discriminating it from predators. Other connections indicate stimulus location. The results of these analyses are transmitted by specialized neurons projecting from the tectum to bulbar/spinal motor systems, providing a sensorimotor interface. Specific combinations of such projective neurons – mediating feature- and space-related messages – form “command releasing systems” that activate corresponding motor pattern generators for appropriate prey-catching action patterns.

Type
Target article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akert, K. (1949) Der visuelle Greifreflex. Helvetica Physiologica Pharmacologica Acta 7:112–34. [aJ-PE]Google Scholar
Akins, K. (1986) On piranhas, narcissim, and mental representation. CCM-86–2, Center for Cognitive Studies, Tufts University. [DD]Google Scholar
Allman, J, Miezin, F. & McGuinnes, E. (1985) Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8:407–30. [DI]CrossRefGoogle ScholarPubMed
an der Heiden, U. & Roth, G. (1983) Cooperative neural processes in amphibian visual prey recognition. In: Synergetics of the brain, ed. Basar, E., Flohr, H.Haken, H. & Mandell, A. J.. Springer. [GR]Google Scholar
Antal, M., Matsumoto, N. & Székely, G. (1986) Tectal neurons of the frog: Intracellular recording and labeling with cobalt electrodes. Journal of Comparative Neurology 246:238–53. [aJ-PE]CrossRefGoogle ScholarPubMed
Arbib, M. A. (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Competition and cooperation in neural nets, ed. Amari, S. & Arbib, M. A..Springer-verlag. [aJ-PE]Google Scholar
Atkins, G., Ligman, S., Burghardt, F. & Stout, J. (1984) Changes in phonotaxis by the female cricket Acheta domesticus L. after killing identified acoustic interneurons. Journal of Comparative Physiology 154:795804. [JMC]CrossRefGoogle Scholar
Autrum, H. (1959) Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Die Naturwissenschaften 46:436. [aJ-PE]CrossRefGoogle Scholar
Baerends, G. P. (1976) The functional organization of behaviour. Animal Behaviour 24:726–38. [aJ-PE]CrossRefGoogle Scholar
Baerends, G. P. (1985) Do the dummy experiments with sticklebacks support the IRMconcept? Behaviour 93:258–77. [GPB]CrossRefGoogle Scholar
Baerends, G. P. & Drent, R. H., eds. (1982) The herring gull and its egg. Part 2: The responsiveness to egg-features. Behaviour 82: 1416. [GPB]CrossRefGoogle Scholar
Barlow, G. W. (1977) Modal action patterns. In: How animals communicate, ed. Sebeok, T. A.. University of Indiana Press. [rJ-PE]Google Scholar
Barlow, H. B. (1953) Summation and inhibition in the frog's retina. Journal of Physiology (London) 119:6988. [aJ-PE]CrossRefGoogle ScholarPubMed
Barlow, H. B. (1985a) The twelfth Bartlett Memorial Lecture: The role of single neurons in the psychology of perception. Quarterly Journal of Experimental Biology 37(A): 121–45. [aJ-PE]Google ScholarPubMed
Barlow, H. B. (1985b) The role of nature, nurture, and intelligence in pattern recognition. Pontificiae Academiae Scientiarum Scripta Varia 54. Ex Aedibus Academicis in Civitate Vaticana Roma 1985. [aJ-PE]CrossRefGoogle Scholar
Bechterev, W. (1884) Über die Funktion der Vierhügel. Pflügers Archiv der gesamten Physiologie des Menschen und der Tiere 73:501/34. [aJ-PE]Google Scholar
Beck, A. & Ewert, J.-P. (1979) Prey selection by toads (Bufo bufo L.) in response to configurational stimuli moved in the visual field z, y-coordinates. Journal of Comparative Physiology 129:207–9. [aJ-PE]CrossRefGoogle Scholar
Berkinblit, M. B., Feldman, A. G. & Fukson, O. I. (1986) Adaptability of innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences 9:585–38. [JCF]CrossRefGoogle Scholar
Berridge, K. C. & Fentress, J. C. (1986) Contextual control of trigeminal sensorimotor function. Journal of Neuroscience 6:325–30. [JCF]CrossRefGoogle ScholarPubMed
Bieger, D. & Neuman, R. S. (1984) Selective accumulation of hydroxytryptamines by frogs tectal neurons. Neuroscience 12:1167–77. [aJ-PE]CrossRefGoogle Scholar
Birukow, G. & Meng, M. (1955) Eine neue Methode zur Prufung des Gesichtssinnes bei Amphibien. Naturwissenschaften 42:652–53. [aJ-PE]CrossRefGoogle Scholar
Bohm, D. (1969) Some remarks on the notion of order. Further remarks on order. In: Towards a theoretical biology, vol. 2, ed. Waddington, C. H.. Aldine. [JCF]Google Scholar
Borchers, H.-W. (1982) Correlation between behavior patterns and single unit responses from the optic tectum in the freely moving toad (Bufo bufo). In: Progress in biocybernetics and systems research, vol. 9, ed. Trappl, R., Ricciardi, L. & Pask, G.. McGraw-Hill. [aJ-PE]Google Scholar
Borchers, H.-W., Burghagen, H. & Ewert, J.-P. (1978) Key stimuli of prey for toads (Bufo bufo L.): Configuration and movement patterns. Journal of Comparative Physiology 128:189–92. [aJ-PE]CrossRefGoogle Scholar
Borchers, H.-W. & Ewert, J.-P. (1979) Correlation between behavioral and neuronal activities of toads Bufo bufo (L.) in response to moving configurational prey stimuli. Behavioural Processes 4:99106. [aJ-PE]CrossRefGoogle ScholarPubMed
Borchers, H.-W. & Pinkwart, C. (1983) A telemetry system for single unit recording in the freely moving toad (Bufo bufo L). In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [aJ-PE]Google Scholar
Borchers, H.-W., Schürg-Pfeiffer, E., Megela, A. L. & Ewert, J.-P. (1983) Single neuron activity in the optic tectum of intact and thalamic-pretectal (TP)-lesioned behaving toads. Neuroscience Letters Supplement 14:36. [aJ-PE]Google Scholar
Brändle, K. & Székely, G. (1973) The control of alternating coordination of limb pairs in the newt (Triturus vulgaris). Brain, Behavior and Evolution 8:366–85. [CS]CrossRefGoogle ScholarPubMed
Brodfueher, P. D. & Friesen, W. O. (1986) From stimulation to undulation: A neuronal pathway for the control of swimming in the leech. Science 234: 1002–4. [JMC]CrossRefGoogle Scholar
Broom, D. M. (1981) Biology of behaviour; Mechanisms, functions and applications. Cambridge University Press. [rJ-PE, DMB]Google Scholar
Brower, L. P., Brower, J. V. Z. & Westcott, P. W. (1960) Experimental studies of mimicry. 5: The reaction of toads (Bufo terrestris) to bumblebees (Bombus americanorum) and their robberfly mimics (Mallophora bomboides), with a discussion of aggressive mimicry. American Naturalist 94:343–56. [aJ-PE]CrossRefGoogle Scholar
Brown, W. T. & Ingle, D. (1973) Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Research 59:405–9. [aJ-PE]CrossRefGoogle ScholarPubMed
Brzoska, J. & Schneider, H. (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b. bufo L., Anura, Amphibia): Changes in response to visual objects and effects of auditory stimuli. Behavioural Processes 3:125–36. [aJ-PE]CrossRefGoogle ScholarPubMed
Bullock, T. H. (1961) The problem of recognition in an analyzer made of neurons. In: Sensory communication, ed. Rosenblith, W. A.. MIT Press. [aJ-PE]Google Scholar
Bullock, T. H. (1977) Introduction to nervous systems. Freeman, W. H.. [rJ-PE]Google Scholar
Bullock, T. H. (1983) Implications for neuroethology from comparative neurophysiology. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum [aJ-PE]Google Scholar
Bullock, T. H. & Perkel, D. H. (1968) Neural coding. Neuroscience Research Program Bulletin (vol. 6/3). MIT Press. [rJ-PE]Google Scholar
Burghagen, H. (1979) Der Einfluss von figuralen, visuellen Mustern auf das Beutefangverhalten cerschiedener Anuren. Ph.D. Dissertation, University of Kassel. [arJPE, DMB]Google Scholar
Burghagen, H. & Ewert, J.-P. (1982) Question of “head preference” in response to worm-like dummies during prey-capture of toads Bufo bufo. Behavioral Processes 7:295306. [rJ-PE, DI]CrossRefGoogle ScholarPubMed
Burghagen, H. & Ewert, J.-P. (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L.). Journal of Comparative Physiology 152:241–49. [arJ-PE]CrossRefGoogle Scholar
Caine, H. S. & Gruberg, E. R. (1985) Ablation of nucleus isthmi leads to loss of specific visually elicited behaviors ir the frog Rana pipiens. Neuroscience Letters 54:307–12. [rJ-PE, EG]CrossRefGoogle Scholar
Camhi, J. M. (1984) Neuroethology: Nerve cells and the natural behavior of animals. Sinauer. [JMC]Google Scholar
Capranica, R. R. (1983) Sensory processing of key stimuli. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [aJ-PE]Google Scholar
Capranica, R. R. & Moffat, A. J. M. (1983) Neurobiological correlates of sound communication in anurans. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [aJ-PE]Google Scholar
Carew, T. J., Walters, E. T. & Kandel, E. R. (1981) Associative learning in Aplysia: Cellular correlates supporting a conditioned fear hypothesis. Science 211:501–4. [RD]CrossRefGoogle ScholarPubMed
Changeux, J.-P. & Konishi, M., eds. (1986) Neural and molecular mechanisms of learning. Springer-Verlag. [rJ-PE]Google Scholar
Chevalier, G., Vacher, S. & Deniau, J. M. (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Experimental Brain Research 53:320–26. [aJ-PE]CrossRefGoogle ScholarPubMed
Chung, S.-H., Raymond, S. A. & Lettvin, J. Y. (1970) Multiple meaning in single visual units. Brain, Behavior and Evolution 3:72101. [rJ-PE, EC]CrossRefGoogle ScholarPubMed
Clairambault, P. (1976) Development of the prosencephalon. In: Frog neurobiology, ed. Llinás, R. & Precht, W.. Springer-Verlag. [aJ-PE]Google Scholar
Creutzfeldt, O. (1983) Cortex cerebri. Springer-Verlag. [rJ-PE]CrossRefGoogle Scholar
Collett, T. S. (1977) Stereopsis in toads. Nature 267:349–51. [arJ-PE, GR]CrossRefGoogle ScholarPubMed
Collett, T. S. (1983) Picking a route: Do toads follow rules or make plans? In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [aJ-PE, MAA]Google Scholar
Collett, T. S. & Udin, S. B. (1983) The role of the toad's nucleus isthmi in prey-catching behavior. In: Proceedings of the 2nd workshop on visuomotor coordination in frog and toad: Models and experiments, ed. Lara, R. & Arbib, M. A.. COINS-Technical Report 83–19, University of Massachusetts. [aJ-PE]Google Scholar
Comer, C. & Grobstein, P. (1981) Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. Journal of Comparative Physiology 142:151–60. [PG]CrossRefGoogle Scholar
Comer, C., Schotland, J. & Grobstein, P. (1985) Short and longterm effects of unilateral vestibular lesions on posture and orienting movements in the frog. Society for Neuroscience Abstracts 11:289. [aJ-PE]Google Scholar
Cott, H. B. (1936) The effectiveness of protective adaptations in the hive-bee, illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo bufo). Proceedings of the Zoological Society (London) 1:113–33. [aJ-PE]Google Scholar
Czihak, G., Langer, H. & Ziegler, H. (1981) Biologie. Springer-Verlag. [aJ-PE]CrossRefGoogle Scholar
Davis, W. J. & Gillette, R. (1978) Neural correlate of behavioral plasticity in command neurons of Pleurobranchaea. Science 199:801–3. [aJ-PE]CrossRefGoogle ScholarPubMed
Davis, W. J. & Kovac, M. P. (1981) The command neuron and the organization of movement. Trends in Neurosciences 4:7376. [aJ-PE]CrossRefGoogle Scholar
Dennett, D. (1978) Current issues in the philosophy of mind. American Philosophical Quarterly 15: 249–61. [DD]Google Scholar
Dennett, D. (1987) The intentional stance. MIT Press/Bradford Books. [DD]Google Scholar
Desan, P. H., Grewell, K. M. & Gruberg, E. R. (1986) Distribution of cholinergic and catecholaminergic neurons in turtle and frog brainstem. Society for Neuroscience Abstracts 12:109. [rJ-PE]Google Scholar
DiDomenico, R. & Eaton, R. C. (in press) Seven principles for command and the neural causation of behavior. Brain, Behavior and Evolution. [rJ-PE, RD]Google Scholar
Diebschlag, E. (1935) Zur Kenntnis der GroBhirnfunktionen einiger Urodelen und Anuren. Zeitschrift für vergleichende Physiologie 21:343–94. [aJ-PE]CrossRefGoogle Scholar
Dierickx, K. (1969) Hypothalamo-hypophysial regulation of food intake in Rana temporaria. General Comparative Endocrinology 13:361–66. [arJ-PE]CrossRefGoogle ScholarPubMed
Dieringer, N. (1986) Image fading – a problem for frogs? Naturwissenschaften 73:330. [aJ-PE]CrossRefGoogle ScholarPubMed
Dieringer, N. & Precht, W. (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Experimental Brain Research 47:394406. [AR]CrossRefGoogle ScholarPubMed
Dieringer, N., Precht, W. & Blight, A. R. (1982) Resetting fast phases of head and eye and their linkage in the frog. Experimental Brain Research 47: 407–16. [AR]CrossRefGoogle ScholarPubMed
Disterhoft, J. F. & Stuart, D. K. (1977) Differentiated short latency response increases after conditioning in inferior colliculus neurons of alert rat. Brain Research 130:315–33. [GE]CrossRefGoogle ScholarPubMed
Doty, R. W. (1976) The concept of neural centers. In: Simpler networks and behavior, ed. Fentress, J. C.. Sinauer. [aJ-PE, RWD]Google Scholar
Dretske, F. (1981) Knowledge and the flow of information. MIT Press/Bradford Books. [DD]Google Scholar
Eaton, R. C. (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [arJ-PE, CMC]Google Scholar
Eaton, R. C. & DiDomenico, R. (1985) Command and the neural causation of behavior: A theoretical analysis of the necessity and sufficiency paradigm. Brain, Behavior and Evolution 27:132–64. [rJ-PE, RD]CrossRefGoogle ScholarPubMed
Eaton, R. C. & Hacket, J. T. (1984) The role of the Mauthner cell in fast starts involving escape in teleost fish. In: Neural mechanisms of startle behavior, ed. Eaton, R. C.. Plenum. [JMC]CrossRefGoogle Scholar
Eaton, R. C., Nissanov, J. & Wieland, C. M. (1984) Differential activation of Mauthner and non-Mauthner startle circuits in the zebrafish: Implications for functional substitution. Journal of Comparative Physiology A 155:813–20. [RD]CrossRefGoogle Scholar
Eaton, R. C., Wieland, C. M. or DiDomenico, R. (1986) Is the Mauthner cell a Kupfermann & Weiss command neuron? Behavioral and Brain Sciences 9:725–27. [RD]CrossRefGoogle Scholar
Ebbesson, S. O. E. (1970) Selective silver impregnation of degenerating axoplasm in poikilothermic vertebrates. In: Contemporary research methods in neuroanatomy, ed. Nauta, J. H. W. & Ebbesson, S. O. E.. Springer-Verlag. [SOEE]Google Scholar
Ebbesson, S. O. E. (1976) Morphology of the spinal cord. In: Frog neurobiology, ed. Llinas, R. & Precht, W.. Springer-Verlag. [aJ-PE]Google Scholar
Ebbesson, S. O. E. (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213:179212. [SOEE]CrossRefGoogle ScholarPubMed
Ebbesson, S. O. E. (1981) Interspecific variability in brain organization and its possible relation to evolutionary mechanisms. In: Brain mechanisms of behavior in lower vertebrates, ed. Laming, P.. Cambridge University Press. [SOEE]Google Scholar
Ebbesson, S. O. E. (1984) Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences 7:321–66. [rJ-PE, SOEE]CrossRefGoogle Scholar
Ebbesson, S. O. E. (in press) The parcellation theory and alterations in brain circuitry after injury. In: Theoretical and controversial issues in recovery after brain damage, ed. Finger, S., Levere, T., Almli, C. R. & Stein, D. G.. Plenum. [SOEE]Google Scholar
Eibl-Eibesfeldt, I. (1951) Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L). Behaviour 4:135. [aJ-PE]CrossRefGoogle Scholar
Eibl-Eibesfeldt, I. (1979) Ethology, the biology of behavior. Holt, Rinehart and Winston [aJ-PE]Google Scholar
Eikmanns, K.-H. (1955) Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L.). Zeitschrift für Tierpsychologie 12:229–53. [aJ-PE]CrossRefGoogle Scholar
Emerson, S. E. (1985) Skull shape in frogs – correlations with diet. Herpetologica 41:177–88. [GR]Google Scholar
Ewert, J.-P. (1967a) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 57:263–98. [arJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. (1967b) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Zeitschrift für vergleichende Physiologie 54:455–81. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. (1967c) Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Archiv 295:9098. [aJ-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P. (1968) Der Einflufβ von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkrote (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 61:4170. [arJ-PE, DI]CrossRefGoogle Scholar
Ewert, J.-P. (1969a) Quantitative Analyse von Reiz-Reaktions-Beziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Archiv 308:225–43. [arJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. (1969b) Das Beutefangverhalten zwischenhirndefekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Archiv 306:210–18. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Zeitschrift für vergleichende Physiologie 74:81102. [aJ-PE, DI]CrossRefGoogle Scholar
Ewert, J.-P. (1974) The neural basis of visually guided behavior. Scientific American 230:3442. [arJ-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P. (1980) Neuroethology. An introduction to the neurophysiological fundamentals of behavior. Springer-Verlag. [arJ-PE, DMB]Google Scholar
Ewert, J.-P. (1981) Neural coding of “worms” and “antiworms” in the brain of toads: The question of hardwired and softwired systems. In: Brain mechanisms of behaviour in lower vertebrates, ed. Laming, P. R.. Cambridge University Press. [aJ-PE]Google Scholar
Ewert, J.-P. (1984a) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum. [arJ-PE, AR]Google Scholar
Ewert, J.-P. (1984b) Behavioral selectivity based on thalamotectal interactions: Ontogenetic and phylogenetic aspects in amphibians. Behavioral and Brain Sciences 7:337–38. [aJ-PE, SOEE]CrossRefGoogle Scholar
Ewert, J.-P. (1985) The Niko Tinbergen Lecture 1983: Concepts in vertebrate neuroethology. Animal Behaviour 33:129. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. (1987) Neuroethology: Toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Cognitive processes and spatial orientation in animal and man. Part 1, ed. Ellen, P. & Thinus-Blanc, C.. Martinus Nijhoff. [arJ-PE]Google Scholar
Ewert, J.-P., Arend, B., Becker, V. & Borchers, H.-W. (1979) Invariants in configurational prey selection by Bufo bufo (L.). Brain, Behavior and Evolution 16:3851. [aJ-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P. & Borchers, H.-W. (1971) Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Zeitschrift für vergleichende Physiologie 71:165–89. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P., Borchers, H.-W. & von Wietersheim, A. (1978) Question of prey feature detectors in the toad's Bufo bufo (L.) visual system; A correlation analysis. Journal of Comparative Physiology 126:4347. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P., Borchers, H.-W. & von Wietersheim, A. (1979) Directional sensitivity, invariance, and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L.). Journal of Comparative Physiology 132:191201. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Burghagen, H. (1979a) Ontogenetic aspects on visual “sizeconstancy” phenomena in the midwife toad Alytes obstetricans (Laur.). Brain, Behavior and Evolution 16:99112. [aJ-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P. & Burghagen, H. (1979b) Configurational prey selection by Bufo, Alytes, Bombina, and Hyla. Brain, Behavior and Evolution 16:157–75. [aJ-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P., Burghagen, H., Albrecht, L. & Kepper, J. (1982) Effects of background structure on the discrimination of configurational moving prey dummies by toads Bufo bufo (L.). Journal of Comparative Physiology 147:179–87. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P., Burghagen, H. & Schürg-Pfeiffer, E. (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [arJ-PE]CrossRefGoogle Scholar
Ewert, J.-P., Buxbaum-Conradi, H.Framing, E. M., Schürg-Pfeiffer, E. & Weerasuriya, A. (submitted) Single neuron activity in the toad's medulla oblongata in response to visual and tactile stimuli. [arJ-PE]Google Scholar
Ewert, J.-P., Capranica, R. R. & Ingle, D. J. eds. (1983) Advances in vertebrate neuroethology. Plenum. [SOEE]CrossRefGoogle Scholar
Ewert, J.-P. & Finkenstädt, T. (1987) Modulation of tectal functions by prosencephalic loops in amphibians. Behavioral and Brain Sciences 10:122–23. [arJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Gebauer, L. (1973) Gröβenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). Journal of Comparative Physiology 85:303–15. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Härter, H.-A. (1968) Inhibitionsphänomene im visuellen System der Erdkröte. Naturwissenschaften 55:237. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Härter, H.-A. (1969) Der hemmende Einfluβ gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte. Zeitschrift für vergleichende Physiologie 64:135–53. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Hock, F. J. (1972) Movement sensitive neurones in the toad's retina. Experimental Brain Research 16:4159. [aJ-PE]CrossRefGoogle ScholarPubMed
Ewert, J.-P., Hock, F. J. & von Wietersheim, A. (1974) Thalamus/Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:343–56. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Inst. Wiss. Film (1982) Gestalt perception in the common toad, I: Innate prey recognition. Film No. C 1430, Institut für den Wissenschaftlichen Film, Göttingen. [rJ-PE]Google Scholar
Ewert, J.-P. & Kehl, W. (1978) Configurational prey-selection by individual experience in the toad Bufo bufo. Journal of Comparative Physiology 126:105–14. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P., Matsumoto, N. & Schwippert, W. W. (1985) Morphological identification of prey-selective neurons in the grass frog's optic tectum. Naturwissenschaften 72:661–62. [aJ-PE, MAA, SOEE]CrossRefGoogle ScholarPubMed
Ewert, J.-P. & Rehn, B. (1969) Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur.). Behaviour 35:212–34. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P., Schürg-Pfeiffer, E. & Weerasuriya, A. (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71:590–91. [aJ-PE, CMC]CrossRefGoogle ScholarPubMed
Ewert, J.-P., Speckhardt, I. & Amelang, W. (1970) Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte (Bufo bufo L.). Zeitschrift für vergleichende Physiologie 68:84110. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & Traud, R. (1979) Releasing stimuli for antipredator behaviour in the common toad Bufo bufo (L.). Behaviour 68:170–80. [aJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & von Seelen, W. (1974) Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14:167–83. [arJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & von Wietersheim, A. (1974a) Musterauswertung durch tectale und thalamus/praetectal Nervennetze im visuellen System der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:131–48. [arJ-PE]CrossRefGoogle Scholar
Ewert, J.-P. & von Wietersheim, A. (1974b) Der Einfluβ von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L.). Journal of Comparative Physiology 92:149–60. [aJ-PE, DI]CrossRefGoogle Scholar
Feigenbaum, J., Cahusac, P., Rolls, E. T., Miyashita, Y. & Niki, H. (1986) Neuronal activity in the parahippocampal gyrus of the behaving primate. International Congress of Neuroethology Abstracts 1:83. [rJ-PE]Google Scholar
Fentress, J. C. (1983) The analysis of behavioral networks. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R., & Ingle, D. J.. Plenum. [rJ-PE]Google Scholar
Fentress, J. C. (1986) Development of coordinated movement: Dynamic, relational and multileveled perspectives. In: Motor development in children: Aspects of coordination and control, ed. Whiting, H. T. A. & Wade, M. C.. Martinus Nijhoff. [rJ-PE, JCF]Google Scholar
Fentress, J. C. (in press) Expressive contexts, fine structure, and central mediation of rodent grooming. Annals of the New York Academy of Sciences. [JCF]Google Scholar
Fentress, J. C. & McLeod, P. (1986) Motor patterns in development. In: Handbook of neurvbiology: Developmental processes in psychobiology and neurobiology, ed. Blass, E. M.. Plenum. [JCF]Google Scholar
Finkenstädt, T. (1981) Der Einfluβ des Tectum opticum und Vorderhirns auf die Steuerung des Beutefang- und Fluchtverhaltens beim Salamander Salamandra salamandra (L): Eine quantitative Untersuchung mit Hilfe von Ableitungs-, Läsions- und Hirnreizungstechniken. Ph.D. Dissertation, University of Kassel. [aJ-PE]Google Scholar
Finkenstädt, T. (1987) Verschaltung, Interaktion und Funktion visuell beeinfluβbarer Hirngebiete bei Amphihien. Habitation Thesis, University of Kassel. [rJ-PE]Google Scholar
Finkenstädt, T., Adler, N. T., Allen, T. O., Ebbesson, S. O. E. & Ewert, J.-P. (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: A computer assisted analysis of 14C-2DC autoradiographs. Journal of Comparative Physiology 156:433–45. [aJ-PE]CrossRefGoogle Scholar
Finkenstädt, T., Adler, N. T., Allen, T. O. & Ewert, J.-P. (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: A 14C-2DC study. Journal of Comparative Physiology 158:457–67. [aJ-PE]CrossRefGoogle Scholar
Finkenstädt, T. & Ewert, J.-P. (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. Journal of Comparative Physiology 153:8598. [aJ-PE, SOEE]CrossRefGoogle Scholar
Finkenstädt, T. & Ewert, J.-P. (1983b) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. Journal of Comparative Physiology 153:99110. [aJ-PE]CrossRefGoogle Scholar
Finkenstädt, T. & Ewert, J.-P. (1985) Glucose utilization in the toad's brain during anesthesia and stimulation of the ascending reticular arousal system: A 14C-2-deoxyglueose study. Naturwissenschaften 72:161–62. [arJ-PE]CrossRefGoogle Scholar
Finkenstädt, T. & Ewert, J.-P. (submitted) Cerebral metabolic effects related to stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: A 14C-2DG study [arJ-PE]Google Scholar
Finkenstädt, T. & Ewert, J.-P. (1987) Visual associative conditioning in the toad: A 2-deoxyglucose study. In: New frontiers in brain research, ed. Eisner, N. & Creutzfeldt, O.. Thieme, G.. [rJ-PE]Google Scholar
Fite, K. V., Hayden, D., Montgomery, N. & Bengston, L. (1983) Visual orienting responses following selective reduction of optic input to AOS and/or optic tectum in frog. Society for Neuroscience Abstracts 9:818. [aJ-PE]Google Scholar
Fite, K. V. & Scalia, F. (1976) Central visual pathways in the frog. In: The amphibian visual system: A multidisciplinary approach, ed. Fite, K. V.. Academic Press. [aJ-PE]Google Scholar
Fodor, J. (1975) The language of thought. Crowell. [DD]Google Scholar
Fodor, J. (1980) Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences 3:63109. [DD]CrossRefGoogle Scholar
Foreman, N. & Stevens, R. (1987) Relationships between the superior colliculus and hippocampus: Neural and behavioral considerations. Behavioral and Brain Sciences 10:101–51. [aJ-PE]CrossRefGoogle Scholar
Freeman, J. A. & Norden, J. J. (1984) Neurotransmitters in the optic tectum of non mammalians. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum. [aJ-PE]Google Scholar
Freisling, J. (1948) Studien zur Biologie und Psychologie der Wechselkröte (Bufo viridis (Laur.). Osterreichische Zoologische Zeitschrift (Wien) 1:383440. [aJ-PE]Google Scholar
Frost, B. J. (1982) Mechanisms for discriminating object motion from selfinduced motion in the pigeon. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. [aJ-PE]Google Scholar
Fuchs, A. F., Kaneko, C. R. S. & Scudder, C. A. (1985) Brainstem control of saccadic eye movements. Annual Review of Neuroscience 8:307–37. [RWD]CrossRefGoogle ScholarPubMed
Fukushima, K. (1986) A neural network model for selective attention in visual pattern recognition. Biological Cybernetics 55:515. [GE]CrossRefGoogle ScholarPubMed
Gaillard, F. & Galand, G. (1979) Diencephalic binocular wide field neurons in the frog. Experimental Brain Research 34:511–20. [aJ-PE]CrossRefGoogle ScholarPubMed
gallistel, C. R. (1980) The organization of action: A new synthesis. Erlbaum. [GE]Google Scholar
Gans, C. (1961) A bullfrog and its prey. Natural History 70:2637. [aJ-PE]Google Scholar
Garner, W. R. (1966) To perceive is to know. American Psychologist 21:1119. [aJ-PE]CrossRefGoogle Scholar
Gaze, R. M. (1958) The representation of the retina on the optic lobe of the frog. Quarterly Journal of Experimental Physiology 43:209–14. [aJ-PE]CrossRefGoogle ScholarPubMed
Gerhardt, H. C. (1981) Mating call recognition in the green tree frog (Hyla cinerea): Importance of two frequency bands as a function of sound pressure level. Journal of Comparative Physiology 144:916. [aJ-PE]CrossRefGoogle Scholar
Getting, P. A. & Dekin, M. S. (1985) Tritonia swimming: A model system for integration within rhythmic motor systems. In: Model neural networks and behavior, ed. Selverston, A. I.. Plenum. [JMC]Google Scholar
Gibson, J. J. (1950) The perception of the visual world. Houghton. [aJ-PE]Google Scholar
Gibson, J. J. (1951) What is form? Psychological Review 58:403–12. [aJ-PE]CrossRefGoogle ScholarPubMed
Gillette, R., Kovac, M. P. & Davis, W. J. (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199:798801. [aJ-PE]CrossRefGoogle ScholarPubMed
Gilson, E., ed. (1962) René Descartes discours de la méthode: Texte et commentaire. Vrin. [RWD]Google Scholar
Gnyubkin, V. F. & Kondrashev, S. L. (1978) Breeding pair formation in the common toad Bufo bufo L. In: Mechanisms of vision of animals, ed. Orlov, O. Yu.. Moscow: Nauka. [SLK]Google Scholar
Gnyubkin, V. F., Kondrashev, S. L. & Orlov, O. Yu. (1975) On constant color perception of common toad. Biofizika 20:725–30. [SLK]Google Scholar
Golani, I. & Fentress, J. C. (1985) Early ontogeny of face grooming in mice. Developmental Psychobiology 18:529–44. [JCF]CrossRefGoogle ScholarPubMed
Gonzalez-Lima, F. & Scheich, H. (1984) Functional activation in the auditory system of the rat produced by arousing reticular stimulation: A 2-Deoxyglucose study. Brain Research 299:201–14. [rJ-PE, GE]CrossRefGoogle ScholarPubMed
Goodale, M. A. (1983a) Vision as a sensorimotor system. In: Behavioral approaches to brain research, ed. Robinson, T. E.. Oxford University Press. [rJ-PE, MAG]Google Scholar
Goodale, M. A. (1983b) Neural mechanisms of visual orientation in rodents: Targets versus places. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [MAG]Google Scholar
Goodale, M. A. & Milner, A. D. (1982) Fractionating orientation behavior in rodents. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. [MAG]Google Scholar
Gordon, J. & Hood, D. C. (1976) Anatomy and physiology of the frog retina. In: The amphibian visual system: A multidisciplinary approach, ed. Fite, K. V.. Plenum. [aJ-PE]Google Scholar
Gould, J. L. & Marler, P. (1987) Learning by instinct. Scientific American 256(1):6273. [JMC]CrossRefGoogle Scholar
Graybiel, A. M. (1978) Satellite system of the superior colliculus: The parabigeminal nucleus and its projections to the superficial collicular layers. Brain Research 145:365–75. [rJ-PE]CrossRefGoogle Scholar
Grobstein, P. (1983) Review of Analysis of visual behavior. Animal Behaviour 31:621–22. [PG]CrossRefGoogle Scholar
Grobstein, P. (1986) Review of The brain machine. Journal of the American Medical Association 255:2677–78. [PG]CrossRefGoogle Scholar
Grobstein, P. (in press a) On beyond neuronal specificity: Progress and prospects in understanding the genesis of specific response relations in the nervous system and behavior. In: Advances in neural and behavioral development, vol. 3, ed. Shinkman, P. & Aslin, R. N.. Ablex Press. [PG]Google Scholar
Grobstein, P. (in press b) Between the retinotectal projection and directed movement: Topography of a sensorimotor interface. Brain, Behavior and Evolution. [rJ-PE, PG]Google Scholar
Grobstein, P. & Comer, C. (1983) The nucleus isthmi as an intertectal relay for the ipsilateral oculotectal projection in the frog, Rana pipiens. Journal of Comparative Neurology 217:5474. [rJ-PE]CrossRefGoogle ScholarPubMed
Grobstein, P., Comer, C. & Kostyk, S. K. (1983) Frog prey capture behavior: Between sensory maps and directed motor output. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [arJ-PE, CMC, PG]Google Scholar
Grobstein, P. & Masino, T. (1986) Sensorimotor circuitry underlying directed movement in the frog: Evidence for an intermediate representation of space in the tectofugal pathways. Society for Neuroscience Abstracts 12:684. [rJ-PE, PG]Google Scholar
Gruberg, E. R. & Lettvin, J. Y. (1980) Anatomy and physiology of a binocular system in the frog Rana pipiens. Brain Research 192:313–25. [aJ-PE, EG]CrossRefGoogle ScholarPubMed
Gruberg, E. R. & Udin, S. B. (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipens. Journal of Comparative Neurology 179:487500. [aJ-PE]CrossRefGoogle Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Zeitschrift für vergleichende Physiologie 59:124. [aJ-PE]CrossRefGoogle Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1970) Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verhandlungen der Deutschen Zoologischen Gesellschaft in Köln 64:201–18. [aJ-PE]Google Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1976) Neurophysiology of the anuran visual system. In: Frog neurobiology, ed. Llinás, R. & Precht, W.. Springer-Verlag. [aJ-PE, GS]Google Scholar
Grüsser-Cornehls, U. (1984) The neurophysiology of the amphibian optic tectum. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum. [aJ-PE]Google Scholar
Guha, K., Jørgensen, C. B. & Larsen, L. O. (1980) Relationship between nutritional state and testes function, together with observations on patterns of feeding in the toad, Bufo bufo bufo. Journal of Zoology (London) 192:147–55. [aJ-PE]CrossRefGoogle Scholar
Guitton, D., Crommelinck, M. & Roucoux, A. (1980) Stimulation of the superior colliculus in the alert cat. 1. Eye movements and neck EMG activity evoked when the head is restrained. Experimental Brain Research 39:6373. [AR]Google ScholarPubMed
Hackett, J. T. & Greenfield, J. L. (1986) The behavioral role of the Mauthner neuron impulse. Behavioral and Brain Sciences 9:729–30. [RD]CrossRefGoogle Scholar
Haldane, E. S. & Ross, G. R. T. (1967) The philosophical works of Descartes, vol. 2. Cambridge University Press. [RWD]Google Scholar
Hanke, W. (1976) Neuroendocrinology. In: Frog neurobiology, ed. Llinás, R. & Precht, W.. Springer-Verlag. [aJ-PE]Google Scholar
Harnad, S. (1987a) Psychophysical and cognitive aspects of categorical perception: A critical overview. In: Categorical perception: The groundwork of cognition, ed. Harnad, S.. Cambridge University Press. [aJ-PE, JCF]Google Scholar
Harnad, S. (1987b) Category induction and representation. In: Categorical perception: The groundwork of cognition, ed. Harnad, S.. Cambridge University Press. [aJ-PE]Google Scholar
Hartline, H. K. (1940) The receptive fields of optic nerve fibers. American Journal of Physiology 130:690–99. [aJ-PE]CrossRefGoogle Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. [aJ-PE]Google Scholar
Hebb, D. O. (1959) A neuropsychological theory. In: Psychology: A study of a science, vol. 1, ed. Koch, S.. McGraw-Hill. [aJ-PE]Google Scholar
Heiligenberg, W. (1983) The jamming avoidance response in an electric fish: Algorithms in sensory information processing and their neuronal realization. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [aJ-PE]Google Scholar
Herrick, C. J. (1933) The amphibian forebrain. 8: Cerebral hemispheres and pallial primordia. Journal of Comparative Neurology 58:737–59. [arJ-PE]CrossRefGoogle Scholar
Heusser, H. (1959) Die Lebensweise der Erdkröte, Bufo bufo (L.): Nahrungsaufnahme und Pigmentierung der Daumenschwielen im Jahresverlauf. Biologisches Zentralblatt 88:457–67. [aJ-PE]Google Scholar
Himstedt, W. (1982) Prey selection in salamanders. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. [aJ-PE]Google Scholar
Himstedt, W., Freidank, U. & Singer, E. (1976) Die Veränderung eines Auslösemechanismus im Beutefangverhalten während der Entwicklung von Salamandra salamandra (L.). Zeitschrift für Tierpsychologie 41:235–43. [aJ-PE]CrossRefGoogle ScholarPubMed
Hinde, R. A. (1954) Changes in responsiveness to a constant stimulus. Behaviour 2:4154. [aJ-PE]Google Scholar
Hinsche, G. (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zoologischer Anzeiger 111:113–22. [aJ-PE]Google Scholar
Hood, D. C. & Gordon, J. (1981) The frog ganglion cell: Not a feature detector and not a monkey cortical cell. Perception 10:421–22. [aJ-PE]CrossRefGoogle Scholar
Horn, G. (1985) Memory, imprinting and the brain: An inquiry into mechanisms. Clarendon Press. [JCF]CrossRefGoogle Scholar
Horridge, G. A. (1968) Interneurons. Freeman. [GAH]Google Scholar
Horridge, G. A. (1983) Neuron function and behaviour: Which explains which? Fortschritte der Zoologie 28:369–83. [rJ-PE, GAH]Google Scholar
House, D. (1984) Neural models of depth perception in frog and toad. Ph. D. Dissertation, University of Massachusetts, Amherst. [aJ-PE]Google Scholar
Hoyle, G. (1964) Exploration of neuronal mechanisms underlying behavior in insects. In: Neural theory and modeling, ed. Reiss, R. F.. Stanford University Press. [JCF]Google Scholar
Hoyle, G., ed. (1977) Identified neurons and behavior of arthropods. Plenum. [aJ-PE]CrossRefGoogle Scholar
Hoyle, G., ed. (1984) The scope of neuroethology. Behavioral and Brain Sciences 7:367412. [arJ-PE, JCF]CrossRefGoogle Scholar
Hubel, D. H. & Wiesel, T. N. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160:106–54. [aJ-PE, KAS]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1965) Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28:229–89. [aJ-PE]CrossRefGoogle Scholar
Huber, F. (1983) Implications of insect neuroethology for studies on vertebrates. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [arJ-PE]Google Scholar
Huber, F. & Thorson, J. (1985) Cricket auditory communication. Scientific American 253(6):4654. [JMC]CrossRefGoogle Scholar
Ingle, D. (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain, Behavior and Evolution 1:500518. [aJ-PE, DI]CrossRefGoogle Scholar
Ingle, D. (1971) Prey-catching behavior of anurans toward moving and stationary objects. Vision Research Supplement 3:447–56. [aJ-PE]CrossRefGoogle Scholar
Ingle, D. (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180:422–24. [aJ-PE, DI]CrossRefGoogle ScholarPubMed
Ingle, D. (1973a) Size preference for prey catching in frogs: Relationship to motivational state. Behavioral Biology 9:485–91. [DI]CrossRefGoogle ScholarPubMed
Ingle, D. (1973b) Two visual systems in the frog. Science 181:1053–55. [JMC]CrossRefGoogle ScholarPubMed
Ingle, D. (1975) Selective visual attention in frogs. Science 188:1033–35. [aJ-PE]CrossRefGoogle Scholar
Ingle, D. (1976) Spatial vision in anurans. In: The amphibian visual system: A multidisciplinary approach, ed. Fite, K. V.. Academic Press. [aJ-PE, DI]Google Scholar
Ingle, D. (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. Journal of Comparative Physiology and Psychology 91:1359–64. [aJ-PE, DI]CrossRefGoogle ScholarPubMed
Ingle, D. (1980) Some effects of pretectum lesions on the frog's detection of stationary objects. Behavioral Brain Research 1:139–63. [aJ-PE, DI]CrossRefGoogle ScholarPubMed
Ingle, D. (1983a) Brain mechanisms of visual localization by frogs and toads. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [arJ-PE, DI]Google Scholar
Ingle, D. (1983b) Prey selection in frogs and toads: A neuroethological model. In: Handbook of behavioral neurobiology, vol. 6: Motivation, ed. Satinoff, E. & Teitelbaum, P.. Plenum. [DI]Google Scholar
Ingle, D. & Arango, V. (1986) Morphology of tectal efferent neurons: A frog vs. toad comparison. Paper presented to the J. B. Johnstone Club, Society for Neuroscience Annual Meetings, Washington, D.C. [DI]Google Scholar
Ingle, D. & McKinley, D. (1977) Some effects of stimulus configuration on prey-catching behavior by the toad, Bufo marinus. Animal Behaviour 26:885–91. [DI]CrossRefGoogle Scholar
Ingle, D. J. & Quinn, S. (1982) Retrograde labelling of neurons of known behavioral function in frog tectum. Society for Neuroscience Abstracts 8:406. [rJ-PE]Google Scholar
Ito, H., Butler, A. B. & Ebbesson, S. O. E. (1980) An ultrastructural study of the normal synaptic organization of the optic tectum and the contralateral tectum in a teleost, Holocentrus rufus. Journal of Comparative Neurology 191:639–60. [SOEE]CrossRefGoogle Scholar
Jeannerod, M. (1985) The brain machine. Harvard University Press. [PG]CrossRefGoogle Scholar
John, E. R. & Schwartz, E. L. (1978) The neurophysiology of information processing and cognition. Annual Review of Psychology 29:129. [aJ-PE]CrossRefGoogle ScholarPubMed
Jung, R. (1953) Allgemeine Neurophysiologie. Die Tätigkeit des Nervensystems. In: Handbuch der inneren Medizin, Vol VII Neurologie I, ed. Bergmann, G. von, Frey, W., Schwiegk, H.. Springer-Verlag. [rJ-PE]Google Scholar
Kandel, E. (1979) Small systems of neurons. In: The brain, ed. Scientific American. Freeman, W. H.. [JMC]CrossRefGoogle Scholar
Kandel, E. R., Krasne, F. B., Strumwasser, F. & Truman, J. W., eds. (1979) Neurosciences research program bulletin 17: Cellular mechanisms in the selection and modulation of behavior. MIT Press. [aJ-PE]Google ScholarPubMed
Karten, H. J., Reiner, A. & Brecha, N. (1982) Laminar organization and origins of neuropeptides in the avian retina and optic tectum. In: Cytological methods in neuroanatomy. A. R. Liss. [rJ-PE]Google Scholar
Katte, O. & Hoffmann, K.-P. (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). Journal of Comparative Physiology 140:5357. [aJ-PE]CrossRefGoogle Scholar
Kicliter, E. & Ebbesson, S. O. E. (1976) Organization of the “non olfactory” telencephalon. In: Frog neurobiology, ed. Llinas, R. & Precht, W.. Springer-Verlag. [aJ-PE]Google Scholar
Kirschfeldt, K. (1973) Das neuronale Superpositionsauge. Fortschritte der Zoologie 21:229–57. [rJ-PE]Google Scholar
Kondrashev, S. L. (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akademija Nank, Zoologisheskij Zhurnal 55:1576–79. [aJ-PE]Google Scholar
Kondrashev, S. L. (1985) Retinal photoreceptors and color discrimination in the toad Bufo bufo L. In: Problems of herpetology. Proceedings of the 6th All-Union Herpetological Conference, ed. Darevskii, I. S.. Leningrad: Nauka. [SLK]Google Scholar
Kondrashev, S. L. & Dimentman, A. M. (1978) Role of dorsal thalamus in the organization of visually-mediated behavior in amphibians. In: Mechanisms of vision of animals, ed. Orlov, O. Yu.. Moscow: Nauka. [SLK]Google Scholar
Kondrashev, S. L., Gnyubkin, V. F., Dimentman, A. M. & Orlov, O. Yu. (1976) Role of visual stimuli in the breeding behavior of Rana temporaria, Bufo bufo and Bufo viridis. Zoologicheskij Zhurnal 55:1027–37. [SLK]Google Scholar
Konishi, M. (1985) Birdsong: From behavior to neuron. Annual Review of Neuroscience 8:125–70. [aJ-PE]CrossRefGoogle ScholarPubMed
Konorski, J. (1967) Integrative activity of the brain. University of Chicago Press. [aJ-PE]Google Scholar
Kostyk, S. K. & Grobstein, P. (1982) Visual orienting deficits in frogs with various unilateral lesions. Behavioral Brain Research 6:379–88. [aJ-PE]CrossRefGoogle ScholarPubMed
Kostyk, S. K. & Grobstein, P. (in press a) Neuronal organization underlying visually elicited prey orienting in the frog. 1. Effects of various unilateral lesions. Neuroscience. [rJ-PE, PG]Google Scholar
Kostyk, S. K. and Grobstein, P. (in press b) Neuronal organization underlying visually elicited prey orienting in the frog. 2. Anatomical studies on the laterality of central projections. Neuroscience. [rJ-PE, PG]Google Scholar
Kostyk, S. K. & Grobstein, P. (in press c) Neuronal organization underlying visually elicited prey orienting in the frog. 3. Evidence for the existence of an uncrossed descending tectofugal projection. Neuroscience. [rJ-PE, PG]Google Scholar
Kuljis, R. O. & Karten, H. J. (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. Journal of Comparative Neurology 212: 188201. [ar-JPE]CrossRefGoogle ScholarPubMed
Kupfermann, I., Castellucci, V., Pinsker, H. & Kandel, E. R. (1970) Neuronal correlates of habituation and dishabituation of the gill withdrawal reflex in Aplysia. Science 167:1743–45. [RD]CrossRefGoogle Scholar
Kupfermann, I. & Weiss, K. R. (1978) The command neuron concept. Behavioral and Brain Sciences 1:339. [aJ-PE, CMC, RD]CrossRefGoogle Scholar
Laming, P. R. & Ewert, J.-P. (1983) The effects of pretectal lesions on neuronal, sustained potential shift and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comparative Biochemistry and Physiology 76:247–52. [aJ-PE]CrossRefGoogle Scholar
Lara, R. & Arbib, M. A. (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biological Cybernetics 51:223–37. [aJ-PE]CrossRefGoogle Scholar
Lara, R., Cervantes, F. & Arbib, M. A. (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Competition and cooperation in neural nets, ed. Amari, S. & Arbib, M. A.. Springer-Verlag. [aJ-PE]Google Scholar
Lashley, K. S. (1951) The problem of serial order in behavior. In: Cerebral mechanisms in behavior, ed. Jeffries, L. A.. Wiley. [PG]Google Scholar
Lázár, G. (1969) Efferent pathways of the optic tectum in the frog. Acta Biologica Academiae Scientiarum Hungaricae 20:171–83. [aJ-PE]Google ScholarPubMed
Lázár, G. (1971) The projection of the retinal quadrants on the optic centers in the frog: A terminal degeneration study. Acta Morphologica Academiae Scientiarum Hungaricae 19:325–34. [aJ-PE]Google ScholarPubMed
Lázár, G. (1973) Role of accessory optic system in the optokinetic nystagmus of the frog. Brain, Behavior and Evolution 5:443–60. [aJ-PE]CrossRefGoogle Scholar
Lázár, G. (1979) Organization of the frog visual system. In: Recent development of biology in Hungary, vol. 8, ed. Lissak, R.. Budapest: Akademiai Kiado. [aJ-PE]Google Scholar
Lázár, G. (1984) Structure and connections of the frog optic tectum. In: Comparative neurology of the optic tectum, ed. Vanegas, H.. Plenum. [aJ-PE, SOEE]Google Scholar
Lázár, G., Tóth, P., Csank, G. & Kicliter, E. (1983) Morphology and location of tectal projection neurons in frogs. A study with HRP and cobalt-filling. Journal of Comparative Neurology 215:108–20. [aJ-PE, DI]CrossRefGoogle ScholarPubMed
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. (1959) What the frog's eye tells the frog's brain. Proceedings of the Institute of Radio Engineers 47:1940–51. [aJ-PE, SOEE]Google Scholar
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. (1961) Two remarks on the visual system of the frog. In: Sensory communication, ed. Rosenblith, W. A.. MIT Press. [aJ-PE, DI]Google Scholar
Llinás, R. & Yarom, Y. (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: An in vitro study. Journal of Physiology-London 376:163–82. [JMC]CrossRefGoogle ScholarPubMed
Lorenz, K. (1935) Der Kumpan in der Umwelt des Vogels. Der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. Journal für Ornithologie 83:137213, 289–413. [aJPE]CrossRefGoogle Scholar
Lorenz, K. (1943) Die angeborenen Formen Moglicher Erfahrung. Zeitschrift für Tierpsychologie 5:235409. [arJ-PE]CrossRefGoogle Scholar
Manning, A. (1979) An introduction to animal behaviour, 3rd edition. Springer-Verlag. [aJ-PE]Google Scholar
Tung, Mao Tse (1935) Worte des Vorsitzenden. Verlag für fremdsprachige Literatur (German translation, Peking 1971). [rJ-PE]Google Scholar
Masino, T. & Grobstein, P. (1985) The organization of tectal projections to the ventral midbrain in Rana pipiens. Society for Neuroscience Abstracts 11:289. [arJ-PE]Google Scholar
Masino, T. & Grobstein, P. (1986) Sensorimotor circuitry underlying directed movement in the frog: Organization of tectofugal pathways and likely involvement of the nMLF. Society for Neuroscience Abstracts 12:684. [rJ-PE]Google Scholar
Massion, J., Paillard, J., Schultz, W. & Wiesendanger, M., eds. (1983) Neural coding of motor performance. Springer-Verlag. [aJ-PE]CrossRefGoogle Scholar
Matsumoto, N. & Antal, M. (1984) Physiological and morphological study of prey and predator detecting neurons in the frog tectum. Proceedings of the 6th Annual Meeting of the Japanese Society for General Comparative Physiology Abstract 6:169. [aJ-PE]Google Scholar
Matsumoto, N., Schwippert, W. W. & Ewert, J.-P. (1986) Intracellular activity of morphologically identified neurons of the grass frog's optic tectum in response to moving configurational visual stimuli. Journal of Comparative Physiology 159:721–39. [arJ-PE, MAA, JMC, SOEE]CrossRefGoogle Scholar
Maturana, H. R., Lettvin, J. Y., McCulloch, W. S. & Pitts, W. H. (1960) Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology 43:129–76. [aJ-PE]CrossRefGoogle Scholar
Maximov, V. V., Orlov, O. Yu. & Reuter, T. (1985) Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Research 25:1037–49. [SLK]CrossRefGoogle ScholarPubMed
McCormick, D. A. & Thompson, R. F. (1984) Cerebellum: Essential involvement in the classically conditioned eyelid reflex. Science 223:296–99. [RD]CrossRefGoogle Scholar
Mcllwain, J. T. (1975) Visual receptive fields and their images in superior colliculus of cat. Journal of Neurophysiology 38:219–30. [DI]CrossRefGoogle Scholar
Megela, A. L., Borchers, H.-W. & Ewert, J.-P. (1983) Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo. Naturwissenschaften 70:100101. [aJ-PE]CrossRefGoogle ScholarPubMed
Meredith, M. A. & Stein, B. E. (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology 56:640–62. [GE]CrossRefGoogle ScholarPubMed
Milson, J. A. & Mitchell, J. F. (1977) The action of amino acids on evoked responses in the frog optic tectum. British Journal of Pharmacology 59:484P. [aJ-PE]Google ScholarPubMed
Mountcastle, V. B. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. Journal of Neurophysiology 20:403434. [aJ-PE]Google ScholarPubMed
Mufson, E. J., Martin, T. L., Mash, D. C., Wainer, B. H. & Mesulam, M. M. (1985) Cholinergic projection from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse. Society for Neuroscience Abstracts 11:1238. [rJ-PE]Google Scholar
Murphey, R. K. (1986) The myth of the inflexible invertebrate: Competition and synaptic remodelling in the development of invertebrate nervous systems. Journal of Comparative Physiology A 158:585–91. [JCF]Google Scholar
Nagel, T. (1974) What is it like to be a bat? Philosophical Review 83:435–50. [DD]CrossRefGoogle Scholar
Neary, T. J. & Northcutt, R. G. (1983) Nuclear organization of the bullfrog diencephalon. Journal of Comparative Neurology 213:262–78. [aJ-PE]CrossRefGoogle ScholarPubMed
Nieuwenhuys, R. & Opdam, P. (1976) Structure of the brain stem. In: Frog neurobiology, ed. Llinas, R. & Precht, W.. Springer-Verlag. [aJ-PE]Google Scholar
Nissanov, J. & Eaton, R. C. (in press) Reticulospinal control of rapid escape turning in fishes. American Zoologist. [RD]Google Scholar
Nolen, T. G. & Hoy, R. R. (1984) Initiation of behavior by single neurons: The role of behavioral context. Science 226:992–94. [RD]CrossRefGoogle ScholarPubMed
Northcutt, R. G. & Kicliter, E. (1980) Organization of the amphibian telencephalon. In: Comparative neurology of the telencephalon, ed. Ebbesson, S. O. E.. Plenum. [aJ-PE]Google Scholar
Orlov, O. Yu. & Kondrashev, S. L. (1978) Color-discrimination functions of visual projections in frog. In: Mechanisms of vision of animals, ed. Orlov, O. Yu.. Moscow: Nauka. [SLK]Google Scholar
Orlov, O. Yu. & Maximov, V. V. (1982) Color vision and behavior in amphibians. In: Sensory systems, ed. Cershuni, G. V.. Leningrad: Nauka. [SLK]Google Scholar
Parent, A. (1973) Distribution of monoamine-containing neurons in the brainstem of the frog. Rana temporaria. Journal for Morphology 139:6778. [arJ-PE]CrossRefGoogle ScholarPubMed
Patton, P. & Grobstein, P. (1986) Forebrain modulation of orienting circuitry in the frog: Involvement of the striatum. Society for Neuroscience Abstracts 12:106. [rJ-PE]Google Scholar
Pearl, J. & Tarsi, M. (1986) Structuring causal trees. Journal of Complexity 2:6077. [GAH]CrossRefGoogle Scholar
Pearson, K. G. (1985) Are there central pattern generators for walking and flight in insects? In: Feedback and motor control in invertebrates and vertebrates, ed. Barnes, W. J. P. & Gladden, M.. Croom Helm. [JCF]Google Scholar
Perrett, D. I. & Rolls, E. T. (1983) Neural mechanisms underlying the visual analysis of faces. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [arJ-PE]Google Scholar
Pilleri, G. (1984) Movements related to the preservation of the species and social instincts appearing as neurological symptoms in degenerative dementias. In: Brain pathology, vol. 1, ed. Pilleri, G. & Tagliavini, F.. Brain Anatomy Institute, Switzerland. [RWD]Google Scholar
Porter, K. R. (1972) Herpetology. W. B. Saunders. [aJ-PE]Google Scholar
Ramon y Cajal, S. (1894) Die Retina der Wirbeltiere (transl. by Greef, R.). J. F. Bergmann. [aJ-PE]Google Scholar
Rehn, B. (1977) Cerebrate Repräsentation des Fluchtverhaltens der Erdkröte (Bufo bufo L.). Ph.D. Dissertation, Technical University of Darmstadt. [aJ-PE]Google Scholar
Reiner, A., Brauth, S. E. & Karten, H. J. (1984) Evolution of the amniote basal ganglia. Trends in Neurosciences 7:320–25. [arJ-PE]CrossRefGoogle Scholar
Reiner, A., Brauth, S. E., Kitt, C. A. & Karten, H. J. (1980) Basal ganglionic pathways to the tectum: Studies in reptiles. Journal of Comparative Neurology 193:565–89. [rJ-PE]CrossRefGoogle Scholar
Reiner, A., Karten, H. J. & Brecha, N. C. (1982) Enkephalin-mediated basal ganglia influences over the optic tectum: Immunohistochemistry of the tectum and the lateral spiriform nucleus in pigeon. Journal of Comparative Neurology 208:3753. [arJ-PE]CrossRefGoogle ScholarPubMed
Ritzmann, R. E. & Pollack, A. J. (1986) Identification of thoracic interneurons that mediate giant interneuron-to-motor pathways in the cockroach. Journal of Comparative Physiology 159:639–54. [JMC]CrossRefGoogle ScholarPubMed
Ritzmann, R. E., Tobias, M. L. & Fourtner, C. R. (1980) Flight activity initiated via giant intemeurons of the cockroach: Evidence for bifunctional trigger intemeurons. Science 210:443–45. [JMC]CrossRefGoogle Scholar
Roberts, A. & Roberts, B. L., eds. (1983) Neural origin of rhythmic movements. Cambridge University Press. [aJ-PE]Google Scholar
Roeder, K. D. (1959) A physiological approach to the relation between prey and predator. Smithsonian Miscellaneous Collections 137:287306. [CMC]Google Scholar
Rolls, E. T. (1987) Neuronal activity underlying perception and learning in the primate. In: New frontiers in brain research, ed. Eisner, N. & Creutzfeldt, O.. G. Thieme. [rJ-PE]Google Scholar
Rose, G. J., Keller, C. H. & Heiligenberg, W. (1986) Stemopygus offers insight into the functional role of “sign-selective” neurons in the torus semicircularis. Society for Neuroscience Abstracts 12:200. [aJ-PE]Google Scholar
Roth, G. (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). Journal of Comparative Physiology 109:4758. [rJ-PE]CrossRefGoogle Scholar
Roth, G. (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Experimental Brain Research 45:386–92. [aJ-PE, GR]CrossRefGoogle ScholarPubMed
Roth, G. (1986) Neural mechanisms of prey-recognition: Examples in amphibians. In: Predator-prey relationships, ed. Feder, M. E. & Lauder, G. V.. University of Chicago Press. [Dl]Google Scholar
Roth, G. (in press) Visual behavior in salamanders. Springer. [GR]CrossRefGoogle Scholar
Roth, G. & Jordan, M. (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L.). Experimental Brain Research 45:393–98. [aJ-PE]CrossRefGoogle ScholarPubMed
Roucoux, A., Guitton, D. & Crommelinck, M. (1980) Stimulation of the superior colliculus in the alert cat. 2. Eye and head movements evoked when the head is unrestrained. Experimental Brain Research 39:7585. [AR]CrossRefGoogle Scholar
Rubinson, E. (1968) Projections of the tectum opticum of the frog. Brain, Behavior and Evolution 1:529–61. [aJ-PE]CrossRefGoogle Scholar
Rumelhart, D. E., McClelland, J. L. & the PDP Research Group (1986) Parallel distributed processing. Explorations in the microstructures of cognition. MIT Press. [JCF]CrossRefGoogle Scholar
Russel, D. F. & Hartline, D. K. (1978) Bursting neural networks: A reexamination. Science 200:453–55. [aJ-PE]CrossRefGoogle Scholar
Satou, M. & Ewert, J.-P. (1984) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften 71:52. [CMC]CrossRefGoogle ScholarPubMed
Satou, M. & Ewert, J.-P. (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo (L. Journal of Comparative Physiology 157:739–48. [aJ-PE]CrossRefGoogle Scholar
Satou, M., Matsushima, T. & Ueda, K. (1984) Neuronal pathways from the tectal “snapping-evoking area” to the tongue muscle controlling motoneurons in the Japanese toad: Evidence of the intervention of excitatory intemeurons. Zoological Science 1:829–32. [aJ-PE]Google Scholar
Scalia, F. (1976) The optic pathway of the frog: Nuclear organization and connections. In: Frog neurobiology, ed. Llinás, R. & Precht, W.. Springer-Verlag. [aJ-PE]Google Scholar
Scheich, H. (1983) Sensorimotor interfacing. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [aJ-PE]Google Scholar
Schildberger, K. (1984) Temporal selectivity of identified auditory neurons in the cricket brain. Journal of Comparative Physiology 155:171–85. [JMC]CrossRefGoogle Scholar
Schleidt, W. M. (1961) Reaktionen von Trüthuhnem auf fliegende Raubvögel und Versuche zur Analyse ihrer AAMs. Zeitschrift für Tierpsychologie 18:534–60. [aJ-PE]CrossRefGoogle Scholar
Schleidt, W. M. (1962) Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema” und “Angeborener Auslösemechanismus” in der Ethologie. Zeitschrift für Tierpsychologie 19:697722. [aJ-PE]CrossRefGoogle Scholar
Schleidt, W. M. (1974) How “fixed” is the fixed action pattern? Zeitschrift für Tierpsychologie 36:184211. [rJ-PE]CrossRefGoogle Scholar
Schneider, D. (1954) Beitrag zu einer Analyse des Beute- und Fluchtverhaltens einheimischer Anuren. Biologisches Zentralblatt 73:225–82. [aJ-PE]Google Scholar
Schneider, G. E. (1969) Two visual systems. Science 163:895902. [aJ-PE, MAG]CrossRefGoogle ScholarPubMed
Schürg-Pfeiffer, E. (1979) Quantitative neurophysiologische Untersuchungen zur Frage nach Cestaltdctektorcn im visuellen System des Frosches Rana temporaria. Ph.D. Dissertation, University of Kassel. [aJ-PE]Google Scholar
Schürg-Pfeiffer, E. & Ewert, J.-P. (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frog fiana temporaria. Journal of Comparative Physiology 141:139–52. [arJ-PE, DI]CrossRefGoogle Scholar
Schürg-Pfeiffer, E. & Ewert, J.-P. (submitted) Correlation between responses of prey-selective T5(2) neurons and prey-catching in freely moving toads. [arJ-PE]Google Scholar
Schürg-Pfeiffer, E., Finkenstädt, T., Cromarty, A. & Ewert, J.-P. (submitted) Change of response properties of a T5(2) neuron in the course of pretectal lesions in the toad. [aJ-PE]Google Scholar
Schippert, W. W. & Ewert, J.-P. (1987) Visual neurons in the medulla oblongata of common toads: Intracellular recording and labeling. In: New frontiers in brain research, ed. Eisner, N. & Creutzfeldt, O.. G. Thieme. [rJ-PE]Google Scholar
Schwippert, W. W. & Ewert, J.-P. (submitted) Identification of neurons in the toad's medulla oblongata by intracellular recording and labeling. [arJ-PE]Google Scholar
Selverston, A. I. (1980) Are central pattern generators understandable? Behavioral and Brain Sciences 3:535–71. [aJ-PE]CrossRefGoogle Scholar
Shinn, E. A. & Dole, J. W. (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs. Rana pipiens. Herpetologia 34:167–72. [aJ-PE]Google Scholar
Sjölund, B. & Björglund, A., eds. (1982) Brain stem control of spinal mechanisms. Elsevier. [aJ-PE]Google Scholar
Sklansky, J. & Wassel, G. N. (1981) Pattern classifiers and trainable machines. Springer-Verlag. [MAA]CrossRefGoogle Scholar
Sparks, D. L. (1986) Translation of sensory signals into commands for control of saccadic eye movements: Role of primate superior colliculus. Physiological Reviews 66:118–71. [GE]CrossRefGoogle ScholarPubMed
Sprague, J. (1966) Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153:1544–47. [EG]CrossRefGoogle ScholarPubMed
Stellar, E. (1954) The physiology of motivation. Psychological Reviews 61:522. [rJ-PE]CrossRefGoogle ScholarPubMed
Suga, N. (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley. [aJ-PE]Google Scholar
Székely, G. (1963) Functional specificity of spinal cord segments in the control of limb movements. Journal of Embryology and Experimental Morphology 11:431–44. [GS]Google ScholarPubMed
Székely, G. (1973) Anatomy and synaptology of the optic tectum. In: Handbook of sensory physiology, vol. 7, ed. Jung, R.. Springer-Verlag. [aJ-PE]Google Scholar
Székely, G. & Czéh, G. (1971) Activity of spinal cord fragments and limbs deplanted in the dorsal fin of Urodele larvae. Acta Physiologica Academiae Sdentiarum Hungaricae 40:303–12. [GS]Google ScholarPubMed
Székely, G. & Czéh, G. (1976) Organization of locomotion. In: Frog neurobiology, ed. Llinas, R. & Precht, W.. Springer-Verlag. [aJ-PE, GS]Google Scholar
Székely, G. & Lázár, G. (1976) Cellular and synaptic architecture of the optictectum. In: Frog neurobiology, ed. Llinás, R. & Precht, W.. Springer-Verlag. [arJ-PE]Google Scholar
Székely, G., Lévai, G. & Matesz, K. (1983) Primary afferent terminals in the nucleus of the solitary tract of the frog: An electron microscopic study. Experimental Brain Research 53:109–17. [rJ-PE]CrossRefGoogle ScholarPubMed
Szentágothai, J. (1967) The anatomy of complex integration units in the nervous system. In: Recent developments of neurobiology in Hungary, vol. 1: Results in neuroanatomy, neurochemistry, neuropharmacology and neurophysiology, ed. Lissak, K.. Budapest: Akademiai Kiado. [aJ-PE]Google Scholar
Szentágothai, J. & Arbib, M. A. (1974) Neurosdences research program bulletin 12: Conceptual models of neural organization. MIT Press, [aJ-PE, MAA]Google Scholar
Thompson, R. F. (1980) The search for the engram, II. In: Neural mechanisms in behavior, ed. McFadden, D.. Springer. [GE]Google Scholar
Thompson, R. F., Patterson, M. M. & Berger, T. (1978) Associative learning in the mammalian nervous system. In: Brain and learning, ed. Teyler, T.. Dordrecht: Reidel. [GE]Google Scholar
Thompson, R. F. & Spencer, W. A. (1966) Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Reviews 73:1642. [RD]CrossRefGoogle Scholar
Tinbergen, W. (1948) Social releasers and the experimental method required for their study. Wilson Bulletin 60:652. [aJ-PE]Google Scholar
Tinbergen, W. (1951) The study of instinct. Clarendon. [arJ-PE]Google Scholar
Tinbergen, N. & Kuenen, D. J. (1939) Ü0ber die auslösenden und richtungsgebenden Reizsituationen der Sperrbewegung von jungen Drosseln (Turdus m. merula L.) und T.e.ericetorum Turdon). Zeitschrift für Tierpsychologie 3:3760. [aJ-PE]CrossRefGoogle Scholar
Tóth, P., Csank, G. & Lázár, G. (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. Journal fur Hirnforschung 26:365–83. [aJ-PE]Google Scholar
Trachtenberg, M. C. & Ingle, D. (1974) Thalamo-tectal projections in the frog. Brain Research 79:419–30. [aJ-PE]CrossRefGoogle ScholarPubMed
Traud, R. (1983) Einfluss von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L.). Ph.D. Dissertation, University of Kassel. [aJ-PE, DMB]Google Scholar
Tsai, H.-J. & Ewert, J.-P. (in press) Influence of stationary and moving background structures on the response of visual neurons in toads (Bufo bufo). Brain, Behavior and Evolution. [aJ-PE]Google Scholar
Tsai, H.-J. & Ewert, J.-P. (1987) Edge preference of retinal and tectal neurons in common toads (Bufo blifo) in response to worm-like moving stripes: The question of behaviorally relevant “position indicators.” Journal of Comparative Physiology 161:295304. [rJ-PE]CrossRefGoogle ScholarPubMed
von Frey, M. (1910) Physiologie der Sinnesorgane der mesenchlichen Haut. Ergebnisse der Physiologie 9:351–68. [GS]CrossRefGoogle Scholar
von Hoist, E. (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie 13:228306. [aJ-PE]Google Scholar
von Hoist, E. & Mittelstaedt, H. (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–76. [aJ-PE]CrossRefGoogle Scholar
von Seelen, W. (1970) Zur Informationsverarbeitung im visuellen System der Wirbeltiere I/II. Kybernetik 7:4360; 89–106. [rJ-PE]CrossRefGoogle Scholar
von Seelen, W. (1973) Systemtheoretische Beschreibung der Mustererkennung bei der Kröte. Biokybernetik V, ed. Drischel, H., Dettmar, P.. Jena: VEG C. Fischer Verlag. [rJ-PE]Google Scholar
von Uexküll, J. (1909) Umtvelt und Innenwelt der Tiere. Springer-Verlag. [rJ-PE]Google Scholar
von Wietersheim, A. & Ewert, J.-P. (1978) Neurons of the toad's (Bufo bufo L.) visual system sensitive to moving configurational stimuli: A statistical analysis. Journal of Comparative Physiology 126:3542. [arJ-PE]CrossRefGoogle Scholar
Weerasuriya, A. (1983) Snapping in toads: Some aspects of sensorimotor interfacing and motor pattern generation. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J.. Plenum. [aJ-PE]Google Scholar
Weerasuriya, A. & Ewert, J.-P. (1981) Prey-selective neurons in the toad's optic tectum and sensori-motor interfacing: HRP studies and recording experiments. Journal of Comparative Physiology 144:429–34. [aJ-PE]CrossRefGoogle Scholar
Weerasuriya, A. & Ewert, J.-P. (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufo. Society for Neuroscience Abstracts 9:536. [aJ-PE]Google Scholar
Weerasuriya, A. & Ewert, J.-P. (submitted) Afferents of the hypoglossal nucleus in the toad, Bufo bufo. Brain, Behavior and Evolution [aJ-PE]Google Scholar
Wehner, R. (1973) Das Koordinationssystem des Sehfeldes bei Arthropoden. Fortschritte der Zoologie 21:258–93. [rJ-PE]Google Scholar
Wiersma, C. A. G. & Ikeda, K. (1964) Intemeurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comparative Biochemistry and Physiology 12:509525. [aJ-PE]CrossRefGoogle Scholar
Wilczynski, W. & Northcutt, R. G. (1977) Afferents to the optic tectum of the leopard frog: An HRP study. Journal of Comparative Neurology 173:219–29. [aJ-PE]CrossRefGoogle Scholar
Wilczynski, W. & Northcutt, R. G. (1983a) Connections of the bullfrog striatum: Efferent projections. Journal of Comparative Neurology 214:333–43. [aJ-PE]CrossRefGoogle ScholarPubMed
Wilczynski, W. & Northcutt, R. G. (1983b) Connections of the bullfrog striatum: Afferent organization. Journal of Comparative Neurology 214:321–32. [arJ-PE]CrossRefGoogle ScholarPubMed
Wine, J. J. & Krasne, F. B. (1982) The cellular organization of crayfish escape behavior. In: The biology of Crustacea, vol. 4, Neural integrarion, ed. Bliss, D. E., Atwood, H. [JMC]Google Scholar
Wurtz, R. H. (1979) Modulation of the primate visual system by attention and readiness to respond. In: Neurosdences research program bulletin vol. 17: Cellular mechanisms in the selection and modulation of behavior, ed. Kandel, E. R., Krasne, F. B., Strumwasser, F. [aJ-PE]Google Scholar
Zucker, I. (1983) Motivation, biological clocks, and temporal organization of behavior. In: Handbook of behavioral neurobiology, vol. 6: Motivation, ed. Satinoff, E., Teitelbaum, P.. Plenum. [rJ-PE]Google Scholar
Zusne, L. (1970) Visual perception of form. Academic Press. [aJ-PE]Google Scholar