Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T08:21:43.827Z Has data issue: false hasContentIssue false

Music as a coevolved system for social bonding

Published online by Cambridge University Press:  20 August 2020

Patrick E. Savage
Affiliation:
Faculty of Environment and Information Studies, Keio University, Fujisawa252-0882, [email protected]; http://PatrickESavage.com
Psyche Loui
Affiliation:
College of Arts, Media and Design, Northeastern University, Boston, MA02115, [email protected]; http://www.psycheloui.com
Bronwyn Tarr
Affiliation:
Institute of Cognitive and Evolutionary Anthropology & Department of Experimental Psychology, University of Oxford, OxfordOX2 6PN, [email protected]; [email protected]://www.anthro.ox.ac.uk/people/dr-bronwyn-tarr
Adena Schachner
Affiliation:
Department of Psychology, University of California San Diego, La Jolla, CA92093, USA; [email protected]; https://madlab.ucsd.edu
Luke Glowacki
Affiliation:
Department of Anthropology, Boston University, Boston, MA02215, [email protected]; https://www.hsb-lab.org/
Steven Mithen
Affiliation:
Department of Archaeology, University of Reading, ReadingRG6 6AB, [email protected]; http://www.reading.ac.uk/archaeology/about/staff/s-j-mithen.aspx
W. Tecumseh Fitch
Affiliation:
Department of Behavioral and Cognitive Biology, University of Vienna, Vienna1090, Austria. [email protected]; https://homepage.univie.ac.at/tecumseh.fitch/

Abstract

Why do humans make music? Theories of the evolution of musicality have focused mainly on the value of music for specific adaptive contexts such as mate selection, parental care, coalition signaling, and group cohesion. Synthesizing and extending previous proposals, we argue that social bonding is an overarching function that unifies all of these theories, and that musicality enabled social bonding at larger scales than grooming and other bonding mechanisms available in ancestral primate societies. We combine cross-disciplinary evidence from archeology, anthropology, biology, musicology, psychology, and neuroscience into a unified framework that accounts for the biological and cultural evolution of music. We argue that the evolution of musicality involves gene–culture coevolution, through which proto-musical behaviors that initially arose and spread as cultural inventions had feedback effects on biological evolution because of their impact on social bonding. We emphasize the deep links between production, perception, prediction, and social reward arising from repetition, synchronization, and harmonization of rhythms and pitches, and summarize empirical evidence for these links at the levels of brain networks, physiological mechanisms, and behaviors across cultures and across species. Finally, we address potential criticisms and make testable predictions for future research, including neurobiological bases of musicality and relationships between human music, language, animal song, and other domains. The music and social bonding hypothesis provides the most comprehensive theory to date of the biological and cultural evolution of music.

Type
Target Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We are delighted to present an unusual BBS publication. In early 2018, we received a double submission: two papers exploring the same topic from different perspectives – “Origins of Music in Credible Signaling,” by Samuel A. Mehr, Max M. Krasnow, Gregory A. Bryant, and Edward H. Hagen; and “Music as a Co-evolved System for Social Bonding,” by Patrick E. Savage, Psyche Loui, Bronwyn Tarr, Adena Schachner, Luke Glowacki, Steven Mithen, and W. Tecumseh Fitch. Each paper was reviewed in parallel, but independently, and both ultimately accepted. Our intention was to encourage consideration of how complex subjects like music might be investigated in different ways, integrating the perspectives of different laboratories and multiple commentators.

Thus, invited commentators might respond to the Mehr et al. article, the Savage et al. article, or both. Most chose both, as hoped. Unlike the usual BBS article presentation, the two target articles, two commentary groups and responses are interleaved. Follow the links above to find the companion target article and for the index of commentaries and responses. – The Editors

References

Alaux, C., Maisonnasse, A., & Le Conte, Y. (2010). Pheromones in a superorganism: From gene to social regulation. Vitamins & Hormones, 83, 401423.CrossRefGoogle Scholar
Anderson, B. R. O. (1991). Imagined communities: Reflections on the origin and spread of nationalism. Verso.Google Scholar
Arbib, M. A. (2005). From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences, 28, 105167.CrossRefGoogle ScholarPubMed
Arom, S. (1991). African polyphony and polyrhythm: Musical structure and methodology. Cambridge University Press.CrossRefGoogle Scholar
Atwood, S., Mehr, S. A., & Schachner, A. (2020). Expectancy effects threaten the inferential validity of synchrony-prosociality research. PsyArXiv. https://doi.org/10.31234/osf.io/zjy8u.CrossRefGoogle Scholar
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2(9), 624636.CrossRefGoogle ScholarPubMed
Atzil, S., Touroutoglou, A., Rudy, T., Salcedo, S., Feldman, R., Hooker, J. M., … Barrett, L. F. (2017). Dopamine in the medial amygdala network mediates human bonding. Proceedings of the National Academy of Sciences of the USA, 114(9), 23612366.CrossRefGoogle ScholarPubMed
Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441451.CrossRefGoogle Scholar
Balsby, T. J. S., & Scarl, J. C. (2008). Sex-specific responses to vocal convergence and divergence of contact calls in orange-fronted conures (Aratinga canicularis). Proceedings of the Royal Society B: Biological Sciences, 275, 21472154.CrossRefGoogle Scholar
Banfield, S. (Ed.). (2009). The sounds of Stonehenge. Archaeopress.Google Scholar
Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21(3), 11551166.CrossRefGoogle ScholarPubMed
Bateson, P. (2004). The active role of behaviour in evolution. Biology and Philosophy, 19, 283298.CrossRefGoogle Scholar
Beadle, J. N., Paradiso, S., & Tranel, D. (2018). Ventromedial prefrontal cortex is critical for helping others who are suffering. Frontiers in Neurology 9: article 288. http://doi.org/10.3389/fneur.2018.00288.CrossRefGoogle ScholarPubMed
Beery, A. K. (2015). Antisocial oxytocin: Complex effects on social behavior. Current Opinion in Behavioral Sciences, 6, 174182. https://doi.org/10.1016/j.cobeha.2015.11.006.CrossRefGoogle Scholar
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464, 99114.CrossRefGoogle Scholar
Benzon, W. (2001). Beethoven's anvil, music in mind and culture. Basic Books.Google Scholar
Bergman, T. J. (2013). Speech-like vocalized lip-smacking in geladas. Current Biology, 23, 268269.CrossRefGoogle ScholarPubMed
Bergman, T. J., & Beehner, J. C. (2015). Measuring social complexity. Animal Behaviour, 103, 203209.CrossRefGoogle Scholar
Bernatzky, G., Presch, M., Anderson, M., & Panksepp, J. (2011). Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neuroscience & Biobehavioral Reviews, 35(9), 19891999.CrossRefGoogle ScholarPubMed
Bigler, R. S., Jones, L. C., & Lobliner, D. B. (1997). Social categorization and the formation of intergroup attitudes in children. Child Development, 68(3), 530543.CrossRefGoogle ScholarPubMed
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the USA, 98(20), 1181811823.CrossRefGoogle ScholarPubMed
Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2(4), 382387.CrossRefGoogle ScholarPubMed
Bowling, D. L., Hoeschele, M., Gill, K. Z., & Fitch, W. T. (2017). The nature and nurture of musical consonance. Music Perception, 35(1), 118121.CrossRefGoogle Scholar
Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences of the USA, 112(36), 1115511160.CrossRefGoogle ScholarPubMed
Bowling, D. L., Purves, D., & Gill, K. Z. (2018). Vocal similarity predicts the relative attraction of musical chords. Proceedings of the National Academy of Sciences of the USA, 115(1), 216221.CrossRefGoogle ScholarPubMed
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. University of Chicago Press.Google Scholar
Bradbury, J. (2001). Vocal communication of wild parrots. Journal of the Acoustical Society of America, 115, 2373.CrossRefGoogle Scholar
Brown, D. (2020). An open letter on racism in music studies: Especially ethnomusicology and music education. My People Tell Stories. https://www.mypeopletellstories.com/blog/open-letter.Google Scholar
Brown, D. E. (1991). Human universals. Temple University Press.Google Scholar
Brown, S. (2000a). Evolutionary models of music: From sexual selection to group selection. In Tonneau, F. & Thompson, N. S. (Eds.), Perspectives in ethology, vol. 13: Evolution, culture, and behavior (pp. 231281). Plenum Publishers.CrossRefGoogle Scholar
Brown, S. (2000b). The “musilanguage” model of musical evolution. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 271300). MIT Press.Google Scholar
Brown, S. (2007). Contagious heterophony: A new theory about the origins of music. Musicae Scientiae, 11(1), 326.CrossRefGoogle Scholar
Brown, S. (2017). A joint prosodic origin of language and music. Frontiers in Psychology, 8(1894), 120. https://doi.org/10.3389/fpsyg.2017.01894.CrossRefGoogle ScholarPubMed
Brown, S., & Jordania, J. (2013). Universals in the world's musics. Psychology of Music, 41(2), 229248.CrossRefGoogle Scholar
Brown, S., & Volgsten, U. (2006). Music and manipulation: On the social uses and social control of music. Berghahn Books.Google Scholar
Cameron, D. J., Pickett, K. A., Earhart, G. M., & Grahn, J. A. (2016). The effect of dopaminergic medication on beat-based auditory timing in Parkinson's disease. Frontiers in Neurology, 7(19), 18. https://doi.org/10.3389/fneur.2016.00019.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: A quantitative approach. Princeton University Press.Google ScholarPubMed
Chanda, M. L., & Levitin, D. J. (2013). The neurochemistry of music. Trends in Cognitive Sciences, 17(4), 179193.CrossRefGoogle ScholarPubMed
Cheung, V. K. M., Harrison, P. M. C., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29(23), 40844092.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 10031011.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Jurewicz, Z. B., & Trehub, S. E. (2019). Effects of maternal singing style on mother–infant arousal and behavior. Journal of Cognitive Neuroscience, 32(19), 12131220.CrossRefGoogle ScholarPubMed
Cirelli, L. K., & Trehub, S. E. (2018). Infants help singers of familiar songs. Music & Science, 1, 205920431876162. https://doi.org/10.1177/2059204318761622.CrossRefGoogle Scholar
Cirelli, L. K., & Trehub, S. E. (2020). Familiar songs reduce infant distress. Developmental Psychology, 56(5), 861868.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Trehub, S. E., & Trainor, L. J. (2018). Rhythm and melody as social signals for infants. Annals of the New York Academy of Sciences, 1423(1), 6672.CrossRefGoogle Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181253.CrossRefGoogle ScholarPubMed
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737740.CrossRefGoogle ScholarPubMed
Corbeil, M., Trehub, S. E., & Peretz, I. (2016). Singing delays the onset of infant distress. Infancy, 21(3), 373391.CrossRefGoogle Scholar
Cross, E. S., Kraemer, D. J., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2008). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315326.CrossRefGoogle ScholarPubMed
Cross, I., & Morley, I. (2009). The evolution of music: Theories, definitions, and the nature of the evidence. In Malloch, S. & Trevarthen, C. (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 6182). Oxford University Press.Google Scholar
Darwin, C. (1871). The descent of man, and selection in relation to sex. John Murray.Google Scholar
Davila Ross, M., Owren, M. J., & Zimmerman, E. (2009). Reconstructing the evolution of laughter in great apes and humans. Current Biology, 19, 11061111.CrossRefGoogle ScholarPubMed
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. NeuroImage, 23(2), 744751.CrossRefGoogle Scholar
Declerck, C. H., Boone, C., Pauwels, L., Vogt, B., & Fehr, E. (2020). A registered replication study on oxytocin and trust. Nature Human Behaviour, 4, 646–55. https://doi.org/10.1038/s41562-020-0878-x.CrossRefGoogle Scholar
De Dreu, C. K. W., & Kret, M. E. (2016). Oxytocin conditions intergroup relations through upregulated in-group empathy, cooperation, conformity, and defense. Biological Psychiatry, 79(3), 165173.CrossRefGoogle ScholarPubMed
Dengler-Crish, C. M., & Catania, K. C. (2007). Phenotypic plasticity in female naked mole-rats after removal from reproductive suppression. Journal of Experimental Biology, 210, 43514358.CrossRefGoogle ScholarPubMed
DeNora, T. (2000). Music in everyday life. Cambridge University Press.CrossRefGoogle Scholar
Deutsch, D., Henthorn, T., & Lapidis, R. (2011). Illusory transformation from speech to song. Journal of the Acoustical Society of America, 129, 22452252.CrossRefGoogle ScholarPubMed
Dissanayake, E. (2000). Antecedents of the temporal arts in early mother–infant interaction. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 389410). MIT Press.Google Scholar
Dissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In Malloch, S. & Trevarthen, C. (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 1730). Oxford University Press.Google Scholar
Dölen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501(7466), 179184.CrossRefGoogle ScholarPubMed
Domes, G., Heinrichs, M., Michel, A., Berger, C., & Herpertz, S. C. (2007). Oxytocin improves “mind-reading” in humans. Biological Psychiatry, 61(6), 731733.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (1991). Functional significance of social grooming in primates. Folia Primatologica, 57, 121131.CrossRefGoogle Scholar
Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16, 681735.CrossRefGoogle Scholar
Dunbar, R. I. M. (2012a). On the evolutionary function of song and dance. In Bannan, N. (Ed.), Music, language, and human evolution (pp. 201214). Oxford University Press.CrossRefGoogle Scholar
Dunbar, R. I. M. (2012b). Bridging the bonding gap: The transition from primates to humans. Philosophical Transactions of the Royal Society B: Biological Science, 367(1597), 18371846.CrossRefGoogle Scholar
Dunbar, R. I. M., & Shultz, S. (2010). Bondedness and sociality. Behaviour, 147(7), 775803.Google Scholar
Durham, W. H. (1991). Coevolution: Genes, culture, and human diversity. University of California Press.Google Scholar
Erber, R., Wegner, D. M., & Therriault, N. (1996). On being cool and collected: Mood regulation in anticipation of social interaction. Journal of Personality and Social Psychology, 70(4), 757766.CrossRefGoogle ScholarPubMed
Evans, N., & Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32(5), 429492.CrossRefGoogle ScholarPubMed
Ewell, P. A. (2020). Music theory and the white racial frame. Music Theory Online, 26(2), 129. https://doi.org/10.30535/mto.26.2.4.CrossRefGoogle Scholar
Falk, D. (2004). Prelinguistic evolution in early hominins: Whence motherese? Behavioral and Brain Sciences, 27(4), 491541.CrossRefGoogle ScholarPubMed
Farabaugh, S. M. (1982). The ecological and social significance of duetting. In Kroodsma, D. S. & Miller, E. H. (Eds.), Acoustic communication in birds (Vol. 2, pp. 85124). Academic Press.Google Scholar
Fazenda, B., Scarre, C., Till, R., Pasalodos, R. J., Guerra, M. R., Tejedor, C., … Foulds, F. (2017). Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response. The Journal of the Acoustic Society of America, 142, 13321349.CrossRefGoogle ScholarPubMed
Feekes, F. (1982). Song mimesis within colonies of Cacicus C. cela (Icteridae: Aves): A colonial password? Zeitschrift Tierpsychology, 58, 119152.CrossRefGoogle Scholar
Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral and Brain Sciences, 24, 263308.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2004). Evolving honest communication systems: Kin selection and “mother tongues.” In Oller, D. K. & Griebel, U. (Eds.), Evolution of communication systems: A comparative approach (pp. 275296). MIT Press.Google Scholar
Fitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100(1), 173215.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2010). The evolution of language. Cambridge University Press.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2015a). Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), e2014.0091. http://doi.org/10.1098/rstb.2014.0091.CrossRefGoogle Scholar
Fitch, W. T. (2015b). The biology and evolution of musical rhythm: An update. In Toivonen, I., Csúri, P. & van der Zee, E. (Eds.), Structures in the mind: Essays on language, music, and cognition in honor of Ray Jackendoff (pp. 293324). MIT Press.Google Scholar
Fitch, W. T. (2017). Empirical approaches to the study of language evolution. Psychonomic Bulletin & Review, 24, 333.CrossRefGoogle Scholar
Fitch, W. T., & Jarvis, E. D. (2013). Birdsong and other animal models for human speech, song, and vocal learning. In Arbib, M. A. (Ed.), Language, music, and the brain: A mysterious relationship (pp. 499539). MIT Press.Google Scholar
Fitch, W. T., von Graevenitz, A., & Nicolas, E. (2009). Bio-aesthetics and the aesthetic trajectory: A dynamic cognitive and cultural perspective. In Skov, M. & Vartanian, O. (Eds.), Neuroaesthetics (pp. 59102). Baywood.Google Scholar
Fletcher, P. T., Whitaker, R. T., Tao, R., DuBray, M. B., Froehlich, A., Ravichandran, C., … Lainhart, J. E. (2010). Microstructural connectivity of the arcuate fasciculus in adolescents with high-functioning autism. NeuroImage, 51(3), 11171125.CrossRefGoogle ScholarPubMed
Freeman, W. (2000). A neurobiological role for music in social bonding. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 411424). MIT Press.Google Scholar
Frigyesi, J. (1993). Preliminary thoughts toward the study of music without clear beat: The example of “Flowing Rhythm” in Jewish “Nusah.” Asian Music, 24, 5988.CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127137.CrossRefGoogle ScholarPubMed
Fujii, T., Schug, J., Nishina, K., Takahashi, T., & Okada, H. (2016). Relationship between salivary oxytocin levels and generosity in preschoolers. Scientific Reports, 6(38662), 17.CrossRefGoogle ScholarPubMed
Fujioka, T., Ross, B., & Trainor, L. J. (2015). Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. Journal of Neuroscience, 35(45), 1518715198.CrossRefGoogle ScholarPubMed
Gadagkar, V., Puzerey, P. A., Chen, R., Baird-Daniel, E., Farhang, A. R., & Goldberg, J. H. (2016). Dopamine neurons encode performance error in singing birds. Science (New York, N.Y.), 354(6317), 12781282.CrossRefGoogle ScholarPubMed
Gamble, C. (2010). Technologies of separation and the evolution of social extension. In Dunbar, R., Gamble, C. & Gowlett, J. (Eds.), Social brain, distributed mind (pp. 1742). Oxford University Press.Google Scholar
Gebauer, L., Witek, M. A. G., Hansen, N. C., Thomas, J., Konvalinka, I., & Vuust, P. (2016). Oxytocin improves synchronisation in leader-follower interaction. Scientific Reports, 6, 38416. https://doi.org/10.1038/srep38416.CrossRefGoogle ScholarPubMed
Geissmann, T. (1999). Duet songs of the siamang, Hylobates syndactylus: II. Testing the pair-bonding hypothesis during a partner exchange. Behaviour, 136(8), 10051039.CrossRefGoogle Scholar
Gelfand, M. J., Caluori, N., Jackson, J. C., & Taylor, M. K. (2020). The cultural evolutionary trade-off of ritualistic synchrony. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190432. https://doi.org/10.1098/rstb.2019.0432.CrossRefGoogle ScholarPubMed
Ghazban, N. (2013). Emotion regulation in infants using maternal singing and speech. PhD dissertation, Ryerson University, Toronto.Google Scholar
Gill, K. Z., & Purves, D. (2009). A biological rationale for musical scales. PLoS ONE, 4(12), e8144. https://doi.org/10.1371/journal.pone.0008144.CrossRefGoogle ScholarPubMed
Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In Honing, H. (Ed.), The origins of musicality (pp. 221250). MIT Press.Google Scholar
Gioia, T. (2019). Music: A subversive history. Basic Books.Google Scholar
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the USA, 116(8), 33103315.CrossRefGoogle ScholarPubMed
Good, A., & Russo, F. A. (2016). Singing promotes cooperation in a diverse group of children. Social Psychology, 47(6), 340344.CrossRefGoogle Scholar
Grahn, J., Bauer, A.-K. R., & Zamm, A. (2020). Music-making brings us together during the coronavirus pandemic. The Conversation. https://theconversation.com/music-making-brings-us-together-during-the-coronavirus-pandemic-137147.Google Scholar
Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893906.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 75407548.CrossRefGoogle ScholarPubMed
Grape, C., Sandgren, M., Hansson, L.-O., Ericson, M., & Theorell, T. (2003). Does singing promote well-being?: An empirical study of professional and amateur singers during a singing lesson. Integrative Physiological & Behavioral Science, 38(1), 6574.CrossRefGoogle ScholarPubMed
Grawunder, S., Crockford, C., Clay, Z., Kalan, A. K., Stevens, J. M. G., Stoessel, A., & Hohmann, G. (2018). Higher fundamental frequency in bonobos is explained by larynx morphology. Current Biology, 28(20), R1188R1189.CrossRefGoogle ScholarPubMed
Greenwood, D. N., & Long, C. R. (2009). Mood specific media use and emotion regulation: Patterns and individual differences. Personality and Individual Differences, 46(5–6), 616621.CrossRefGoogle Scholar
Griffiths, P. E. (2003). Beyond the Baldwin effect: James Mark Baldwin's “social heredity”, epigenetic inheritance, and niche construction. In Weber, B. & Depew, D. J. (Eds.), Learning, meaning and emergence: Possible Baldwinian mechanisms in the co-evolution of mind and language (pp. 193215). MIT Press.Google Scholar
Gustison, M. L., Aliza, L. R., & Bergman, T. (2012). Derived vocalizations of geladas (Theropithecus gelada) and the evolution of vocal complexity in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 18471859.CrossRefGoogle ScholarPubMed
Hagen, E. H., & Bryant, G. A. (2003). Music and dance as a coalition signaling system. Human Nature, 14(1), 2151.CrossRefGoogle ScholarPubMed
Haimoff, E. H. (1986). Convergence in the duetting of monogamous Old World primates. Journal of Human Evolution, 15, 5159.CrossRefGoogle Scholar
Hall, M. L. (2004). A review of hypotheses for the functions of avian duetting. Behavioral Ecology and Sociobiology, 55, 415430.CrossRefGoogle Scholar
Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists, and non-musicians. Frontiers in Psychology, 2, article 156. http://doi.org/10.3389/fpsyg.2011.00156.CrossRefGoogle ScholarPubMed
Hanslick, E. (1858). Vom Musikalisch-Schönen. Ruoldf Weigel.Google Scholar
Harrison, P. M. C., & Pearce, M. T. (2020). Simultaneous consonance in music perception and composition. Psychological Review, 127(2), 216244.CrossRefGoogle ScholarPubMed
Henrich, J. (2016). The secret of our success: How culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.CrossRefGoogle Scholar
Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., McElreath, R., Alvard, M., Barr, A., Ensminger, J., Henrich, N. S., Hill, K., Gil-White, F., Gurven, M., Marlowe, F. W., Patton, J. Q., & Tracer, D. (2005). “Economic man” in cross-cultural perspective: Behavioral experiments in 15 small-scale societies. Behavioral and Brain Sciences, 28, 795855.CrossRefGoogle ScholarPubMed
Hoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2018). Searching for the origins of musicality across species. In Honing, H. (Ed.), The origins of musicality (pp. 149170). MIT Press.Google Scholar
Honing, H. (Ed.). (2018). The origins of musicality. MIT Press.CrossRefGoogle Scholar
Honing, H., Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140088. http://doi.org/10.1098/rstb.2014.0088.CrossRefGoogle ScholarPubMed
Horowitz, J. (2020). Italians find “a moment of joy in this moment of anxiety.” New York Times. https://www.nytimes.com/2020/03/14/world/europe/italians-find-a-moment-of-joy-in-this-moment-of-anxiety.html.Google Scholar
Hove, M. J., & Risen, J. L. (2009). It's all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27(6), 949960.CrossRefGoogle Scholar
Hrdy, S. B. (2009). Mothers and others: The evolutionary origins of mutual understanding. Harvard University Press.Google Scholar
Hurlemann, R., Patin, A., Onur, O. A., Cohen, M. X., Baumgartner, T., Metzler, S., … Kendrick, K. M. (2010). Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. Journal of Neuroscience, 30, 49995007.CrossRefGoogle ScholarPubMed
Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930, 4361.CrossRefGoogle ScholarPubMed
Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. MIT Press.CrossRefGoogle Scholar
Inagaki, T. K. (2018). Opioids and social connection. Current Directions in Psychological Science, 27, 8590.CrossRefGoogle Scholar
Inagaki, T. K., Ray, L. A., Irwin, M. R., Way, B. M., & Eisenberger, N. I. (2016). Opioids and social bonding: Naltrexone reduces feelings of social connection. Social Cognitive and Affective Neuroscience, 11, 728735.CrossRefGoogle ScholarPubMed
Iyer, V., & Born, G. (2020). Of musicalities and musical experience: Vijay Iyer and Georgina Born in conversation. Wigmore Hall Podcasts. https://wigmore-hall.org.uk/podcasts/of-musicalities-and-musical-experience-vijay-iyer-and-georgina-born-in-conversation.Google Scholar
Jablonka, E., Ginsburg, S., & Dor, D. (2012). The co-evolution of language and emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 21522159.CrossRefGoogle ScholarPubMed
Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.Google Scholar
Jackson, S. J., & Hokowhitu, B. (2002). Sport, tribes, and technology: The New Zealand All Blacks haka and the politics of identity. Journal of Sport & Social Issues, 26(2), 125139.CrossRefGoogle Scholar
Jacoby, N., Margulis, E., Clayton, M., Hannon, E., Honing, H., Iversen, J., … Wald-Fuhrmann, M. (2020). Cross-cultural work in music cognition: Methodologies, pitfalls, and practices. Music Perception, 37(3), 185195.CrossRefGoogle Scholar
Jacoby, N., & McDermott, J. H. (2017). Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Current Biology, 27, 359370.CrossRefGoogle ScholarPubMed
Jacoby, N., Polak, R., Grahn, J., Cameron, D., Lee, K. M., Godoy, R., … McDermott, J. H. (Preprint). Universality and cross-cultural variation in mental representations of music revealed by global comparison of rhythm priors. PsyArXiv, https://doi.org/10.31234/osf.io/b879v.CrossRefGoogle Scholar
Jacoby, N., Undurraga, E. A., McPherson, M. J., Valdés, J., Ossandón, T., & McDermott, J. H. (2019). Universal and non-universal features of musical pitch perception revealed by singing. Current Biology, 29, 32293243.CrossRefGoogle ScholarPubMed
Janata, P., Tomic, S. T., & Haberman, J. M. (2012). Sensorimotor coupling in music and the psychology of the groove. Journal of Experimental Psychology, 141(1), 5475.CrossRefGoogle Scholar
Janik, V. M., & Slater, P. J. B. (1999). Vocal learning in mammals. Advances in the Study of Behavior, 26, 5999.CrossRefGoogle Scholar
Järvinen-Pasley, A., Vines, B. W., Hill, K. J., Yam, A., Grichanik, M., Mills, D., & …Bellugi, U. (2010). Cross-modal influences of affect across social and non-social domains in individuals with Williams syndrome. Neuropsychologia, 48(2): 456466.CrossRefGoogle ScholarPubMed
Jarvis, E. D. (2019). Evolution of vocal learning and spoken language. Science (New York, N.Y.), 366, 5054.CrossRefGoogle ScholarPubMed
Jones, M. R. (2018). Time will tell: A theory of dynamic attending. Oxford University Press.Google Scholar
Josef, L., Goldstein, P., Mayseless, N., Ayalon, L., & Shamay-tsoory, S. G. (2019). The oxytocinergic system mediates synchronized interpersonal movement during dance. Scientific Reports, 9(1894), 18.CrossRefGoogle ScholarPubMed
Keeler, J. R., Roth, E. A., Neuser, B. L., Spitsbergen, J. M., Waters, D. J. M., & Vianney, J.-M. (2015). The neurochemistry and social flow of singing: Bonding and oxytocin. Frontiers in Human Neuroscience, 9, article 518. https://doi.org/10.3389/fnhum.2015.00518.CrossRefGoogle ScholarPubMed
Keverne, E. B., Martensz, N. D., & Tuite, B. (1989). Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology, 14, 155161.CrossRefGoogle ScholarPubMed
Kim, M., & Schachner, A. (2020). The origins of dance: Characterizing the development of infants’ earliest dance behavior. Poster presented at the Brain Cognition Emotion Music Conference. https://osf.io/meetings/BCEM/.Google Scholar
Kirby, S. (2017). Culture and biology in the origins of linguistic structure. Psychonomic Bulletin & Review, 24, 118137.CrossRefGoogle ScholarPubMed
Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354364.CrossRefGoogle Scholar
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). fMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 2027.CrossRefGoogle ScholarPubMed
Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 6377.CrossRefGoogle ScholarPubMed
Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment – if the rhythm comes easily. PLoS ONE, 6(11), e27272. http://doi.org/10.1371/journal.pone.0027272.CrossRefGoogle ScholarPubMed
Kornhaber, S. (2020). The coronavirus has forced a repurposing of music. The Atlantic. https://www.theatlantic.com/culture/archive/2020/04/coronavirus-has-forced-repurposing-music/609601/.Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673676.CrossRefGoogle ScholarPubMed
Kroodsma, D. E. (1978). Continuity and versatility in bird song: Support for the monotony-threshold hypothesis. Nature, 274(5672), 681683.CrossRefGoogle Scholar
Kuroyanagi, J., Sato, S., Ho, M.-J., Chiba, G., Six, J., Pfordresher, P., … Savage, P. E. (2019). Automatic comparison of human music, speech, and bird song suggests uniqueness of human scales. Proceedings of the 9th International Workshop on Folk Music Analysis (FMA2019), pp. 3540. http://doi.org/10.31234/osf.io/zpv5w.CrossRefGoogle Scholar
Lagacé, R. O. (1979). The HRAF probability sample: Retrospect and prospect. Cross-Cultural Research, 14(3), 211229.Google Scholar
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110113.CrossRefGoogle ScholarPubMed
Lakens, D., & Stel, M. (2011). If they move in sync, they must feel in sync: Movement synchrony leads to attributions of rapport and entitativity. Social Cognition, 29(1), 114.CrossRefGoogle Scholar
Laland, K. N., & Brown, G. R. (2011). Sense and nonsense: Evolutionary perspectives on human behaviour (2nd ed.). Oxford University Press.Google Scholar
Laland, K. N., Odling-Smee, J., & Feldman, M. W. (2000). Niche construction, biological evolution, and cultural change. Behavioral and Brain Sciences, 23, 131175.CrossRefGoogle ScholarPubMed
Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. Nature Reviews Genetics, 11, 137148.CrossRefGoogle ScholarPubMed
Laland, K., Wilkins, C., & Clayton, N. (2016). The evolution of dance. Current Biology, 26(1), R5R9.CrossRefGoogle ScholarPubMed
Lang, M., Bahna, V., Shaver, J. H., Reddish, P., & Xygalatas, D. (2017). Sync to link: Endorphin-mediated synchrony effects on cooperation. Biological Psychology, 127, 191197.CrossRefGoogle ScholarPubMed
Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119159.CrossRefGoogle Scholar
Large, E. W., Kim, J. C., Flaig, N. K., Bharucha, J., & Krumhansl, C. L. (2016). A neurodynamic account of musical tonality. Music Perception, 33(3), 319331.CrossRefGoogle Scholar
Launay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60(1), 5363.CrossRefGoogle ScholarPubMed
Launay, J., Tarr, B., & Dunbar, R. I. M. (2016). Synchrony as an adaptive mechanism for large-scale human social bonding. Ethology, 122, 779789.CrossRefGoogle Scholar
Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89(4), 13791412.CrossRefGoogle Scholar
Lense, M. D., Gordon, R. L., Key, A. P. F., & Dykens, E. M. (2014). Neural correlates of cross-modal affective priming by music in Williams syndrome. Social Cognitive and Affective Neuroscience, 9(4), 529537.CrossRefGoogle ScholarPubMed
Lepage, C., Drolet, P., Girard, M., Grenier, Y., & DeGagné, R. (2001). Music decreases sedative requirements during spinal anesthesia. Anesthesia & Analgesia, 93(4), 912916.CrossRefGoogle ScholarPubMed
Loersch, C., & Arbuckle, N. L. (2013). Unraveling the mystery of music: Music as an evolved group process. Journal of Personality and Social Psychology, 105(5), 777798.CrossRefGoogle ScholarPubMed
Lomax, A. (Ed.). (1968). Folk song style and culture. American Association for the Advancement of Science.Google Scholar
London, J. (2004). Hearing in time: Psychological aspects of musical meter. Oxford University Press.CrossRefGoogle Scholar
Longfellow, H. W. (1835). A pilgrimage beyond the sea. Harper & Bros.Google Scholar
Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? The Journal of Neuroscience, 29(33), 1021510220.CrossRefGoogle ScholarPubMed
Loui, P., Li, H. C., & Schlaug, G. (2011). White matter integrity in right hemisphere predicts pitch-related grammar learning. NeuroImage, 55(2), 500507.CrossRefGoogle ScholarPubMed
Loui, P., Patterson, S., Sachs, M. E., Leung, Y., Zeng, T., & Przysinda, E. (2017). White matter correlates of musical anhedonia: Implications for evolution of music. Frontiers in Psychology, 8, article 1664. http://doi.org/10.3389/fpsyg.2017.01664.CrossRefGoogle ScholarPubMed
Love, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology Biochemistry and Behavior, 119, 4960.CrossRefGoogle ScholarPubMed
Maestripieri, D. (2010). Neurobiology of social behavior. In Platt, M. & Ghazanfar, A. (Eds.), Primate neuroethology (pp. 359384). Oxford University Press.CrossRefGoogle Scholar
Mann, N. I., Dingess, K. A., Barker, K., Graves, J. A., & Slater, P. J. B. (2009). A comparative study of song form and duetting in neotropical Thryothorus wrens. Behaviour, 146, 143.Google Scholar
Mann, N. I., Dingess, K. A., & Slater, P. J. B. (2006). Antiphonal four-part synchronized chorusing in a neotropical wren. Biology Letters, 2, 14.CrossRefGoogle Scholar
Margulis, E. H. (2014). On repeat: How music plays the mind. Oxford University Press.Google Scholar
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the USA, 113(46), E7337E7345.CrossRefGoogle ScholarPubMed
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699704.CrossRefGoogle ScholarPubMed
McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135(3), 348367.CrossRefGoogle ScholarPubMed
McBride, J. M., & Tlusty, T. (2020). Cross-cultural data shows musical scales evolved to maximise imperfect fifths. ArXiv Preprint. http://arxiv.org/abs/1906.06171.Google Scholar
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2010). Individual differences reveal the basis of consonance. Current Biology, 20(11), 10351041.CrossRefGoogle ScholarPubMed
McDermott, J. H., Schultz, A. F., Undurraga, E. A., & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 535, 547550.CrossRefGoogle ScholarPubMed
McNeil, W. H. (1995). Keeping together in time: Dance and drill in human history. Harvard University Press.Google Scholar
Mehr, S. A., & Krasnow, M. M. (2017). Parent-offspring conflict and the evolution of infant-directed song. Evolution and Human Behavior, 38, 674684.CrossRefGoogle Scholar
Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., … Glowacki, L. (2019). Universality and diversity in human song. Science (New York, N.Y.), 366(6468), 957970. https://doi.org/10.1126/science.aax0868.CrossRefGoogle ScholarPubMed
Mehr, S. A., Singh, M., York, H., Glowacki, L., & Krasnow, M. M. (2018). Form and function in human song. Current Biology, 28, 356368.CrossRefGoogle ScholarPubMed
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27(4), 486501.CrossRefGoogle ScholarPubMed
Mercado, E., Mantell, J. T., & Pfordresher, P. Q. (2014). Imitating sounds: A cognitive approach to understanding vocal imitation. Comparative Cognition & Behavior Reviews, 9, 1774.CrossRefGoogle Scholar
Merchant, H., Grahn, J., Trainor, L., Rohrmeier, M., & Fitch, W. T. (2015). Finding the beat: A neural perspective across humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140093. http://doi.org/10.1098/rstb.2014.0093.CrossRefGoogle ScholarPubMed
Merker, B. (1999). Synchronous chorusing and the origins of music. Musicae Scientiae, 3, 5973.CrossRefGoogle Scholar
Merker, B. (2000). Synchronous chorusing and human origins. The origins of music (pp. 315328). MIT Press.Google Scholar
Merker, B. (2002). Music: The missing Humboldt system. Musicae Scientiae, 6(1), 321.CrossRefGoogle Scholar
Merker, B., Morley, I., & Zuidema, W. (2018). Five fundamental constraints on theories of the origins of music. In Honing, H. (Ed.), The origins of musicality (pp. 70104). MIT Press.Google Scholar
Merker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 417.CrossRefGoogle ScholarPubMed
Merriam, A. P. (1964). The anthropology of music. Northwestern University Press.Google Scholar
Miles, L. K., Nind, L. K., & Macrae, C. N. (2009). The rhythm of rapport: Interpersonal synchrony and social perception. Journal of Experimental Social Psychology, 45(3), 585589.CrossRefGoogle Scholar
Miller, G. F. (2000). Evolution of human music through sexual selection. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 329360). MIT Press.Google Scholar
Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). The link between social cognition and self-referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience, 17(8), 13061315.CrossRefGoogle ScholarPubMed
Mithen, S. J. (2005). The singing Neanderthals: The origins of music, language, mind, and body. Weldenfeld & Nicholson.Google Scholar
Mogan, R., Fischer, R., & Bulbulia, J. A. (2017). To be in synchrony or not? A meta-analysis of synchrony's effects on behavior, perception, cognition and affect. Journal of Experimental Social Psychology, 72, 1320.CrossRefGoogle Scholar
Moore, E., Schaefer, R. S., Bastin, M. E., Roberts, N., & Overy, K. (2017). Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training. Brain and Cognition, 116, 4046.CrossRefGoogle ScholarPubMed
Morillon, B., & Baillet, S. (2017). Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences of the USA, 114(42), E8913E8921.CrossRefGoogle ScholarPubMed
Morley, I. (2013). The prehistory of music: Human evolution, archaeology, and the origins of musicality. Oxford University Press.CrossRefGoogle Scholar
Mueller, C., Klega, A., Buchholz, H.-G., Rolke, R., Magerl, W., Schirrmacher, R., … Schreckenberger, M. (2010). Basal opioid receptor binding is associated with differences in sensory perception in healthy human subjects: A [18F]diprenorphine PET study. NeuroImage, 49(1), 731737.CrossRefGoogle Scholar
Nakata, T., & Trehub, S. E. (2004). Infants’ responsiveness to maternal speech and singing. Infant Behavior and Development, 27(4), 455464.CrossRefGoogle Scholar
Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772789.CrossRefGoogle ScholarPubMed
Nettl, B. (2015). The study of ethnomusicology: Thirty-three discussions (3rd ed.). University of Illinois Press.Google Scholar
Nettl, B., Stone, R., Porter, J., & Rice, T. (Eds.). (1998–2002). The Garland encyclopedia of world music. Garland Pub.Google Scholar
Niarchou, M., Sathirapongsasuti, J. F., Jacoby, N., Bell, E., McArthur, E., Straub, P., … Gordon, R. L. (2019). Unravelling the genetic architecture of rhythm. bioRxiv preprint. https://doi.org/10.1101/836197.CrossRefGoogle Scholar
Nooshin, L. (2011). Introduction to the special issue: The ethnomusicology of Western art music. Ethnomusicology Forum, 20(3), 285300.CrossRefGoogle Scholar
North, A. C., Hargreaves, D. J., & Hargreaves, J. J. (2004). Uses of music in everyday life. Music Perception, 22(1), 4177.CrossRefGoogle Scholar
Notroff, J., Dietrich, O., & Schmidt, K. (2015). Gathering of the dead? The early Neolithic sanctuaries of Gobekli Tepe, southerneastern Turkey. In Renfrew, S. C., Boyd, M. J. & Morely, I. (Eds.), Death rituals, social order and the archaeology of immortality in the ancient world (pp. 65–18). Cambridge University Press.Google Scholar
Nowicki, S., & Searcy, W. A. (2014). The evolution of vocal learning. Current Opinion in Neurobiology, 28, 4853.CrossRefGoogle ScholarPubMed
Oesch, N. (2019). Music and language in social interaction: Synchrony, antiphony, and functional origins. Frontiers in Psychology, 10, 1514. https://doi.org/10.3389/fpsyg.2019.01514.CrossRefGoogle ScholarPubMed
Parkinson, C., & Wheatley, T. (2014). Relating anatomical and social connectivity: White matter microstructure predicts emotional empathy. Cerebral Cortex, 24(3), 614625.CrossRefGoogle ScholarPubMed
Patel, A. D. (2008). Music, language and the brain. Oxford University Press.Google Scholar
Patel, A. D. (2014). The evolutionary biology of musical rhythm: Was Darwin wrong? PLoS Biology, 12(3), e1001821. http://doi.org/10.1371/journal.pbio.1001821.CrossRefGoogle ScholarPubMed
Patel, A. D. (2018). Music as a transformative technology of the mind: An update. In Honing, H. (Ed.), The origins of musicality (pp. 113126). MIT Press.Google Scholar
Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19, 827830.CrossRefGoogle Scholar
Pearce, E., Launay, J., & Dunbar, R. I. M. (2015). The ice-breaker effect: Singing mediates fast social bonding. Royal Society Open Science, 2, 150221. http://doi.org/10.1098/rsos.150221.CrossRefGoogle ScholarPubMed
Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688691.CrossRefGoogle ScholarPubMed
Peretz, I., Vuvan, D. T., Lagrois, M.-É., & Armony, J. (2018). Neural overlap in processing music and speech. In Honing, H. (Ed.), The origins of musicality (pp. 205220). MIT Press.Google Scholar
Pfordresher, P. Q., & Brown, S. (2017). Vocal mistuning reveals the origin of musical scales. Journal of Cognitive Psychology, 29(1), 3552.CrossRefGoogle Scholar
Pinker, S. (1997). How the mind works. Norton.Google Scholar
Pinker, S. (2007). Toward a consilient study of literature. Philosophy and Literature, 31(1), 162178.CrossRefGoogle Scholar
Pinker, S. (2012). The false allure of group selection. Edge. Available at https://www.edge.org/conversation/steven_pinker-the-false-allure-of-group-selection.Google Scholar
Podlipniak, P. (2017). The role of the Baldwin effect in the evolution of human musicality. Frontiers in Neuroscience, 11(542), 112. https://doi.org/10.3389/fnins.2017.00542.CrossRefGoogle ScholarPubMed
Polak, R., Jacoby, N., Fischinger, T., Goldberg, D., Holzapfel, A., & London, J. (2018). Rhythmic prototypes across cultures: A comparative study of tapping synchronization. Music Perception, 36(1), 123.CrossRefGoogle Scholar
Prince, J. B., Thompson, W. F., & Schmuckler, M. A. (2009). Pitch and time, tonality and meter: How do musical dimensions combine? Journal of Experimental Psychology: Human Perception and Performance, 35(5), 15981617.Google ScholarPubMed
Rabinowitch, T.-C., Cross, I., & Burnard, P. (2013). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41(4), 484498.CrossRefGoogle Scholar
Rabinowitch, T. C., & Meltzoff, A. N. (2017). Synchronized movement experience enhances peer cooperation in preschool children. Journal of Experimental Child Psychology, 160, 2132.CrossRefGoogle ScholarPubMed
Ragen, B. J., Maninger, N., Mendoza, S. P., Jarcho, M. R., & Bales, K. L. (2013). Presence of a pair-mate regulates the behavioral and physiological effects of opioid manipulation in the monogamous titi monkey (Callicebus cupreus). Psychoneuroendocrinology, 38(11), 24482461.CrossRefGoogle Scholar
Rainio, R., Lahelma, A., Aikas, T., Lassfolk, K., & Okkonen, J. (2018). Acoustic measurements and digital image processing suggest a link between sound rituals and sacred sites in northern Finland. Journal of Archaeological Method and Theory, 25, 453474.CrossRefGoogle Scholar
Ravignani, A., Delgado, T., & Kirby, S. (2017). Musical evolution in the lab exhibits rhythmic universals. Nature Human Behaviour, 1, article 7. http://doi.org/10.1038/s41562-016-0007.CrossRefGoogle Scholar
Read, D., & Van der Feeuw, S. (2015). The extension of social relations in time and space during the Palaeolithic and beyond. In Coward, F., Hosfield, R., Pope, M. & Wenban-Smith, F. (Eds.), Settlement, society and cognition in human evolution (pp. 3153). Cambridge University Press.CrossRefGoogle Scholar
Reddish, P., Bulbulia, J., & Fischer, R. (2014). Does synchrony promote generalized prosociality? Religion, Brain & Behavior, 4(1), 319.CrossRefGoogle Scholar
Reddish, P., Fischer, R., & Bulbulia, J. (2013). Let's dance together: Synchrony, shared intentionality and cooperation. PLoS ONE, 8(8), e71182. http://doi.org/10.1371/journal.pone.0071182.CrossRefGoogle ScholarPubMed
Rennung, M., & Göritz, A. S. (2016). Prosocial consequences of interpersonal synchrony: A meta-analysis. Zeitschrift für Psychologie, 224(3), 168189.CrossRefGoogle ScholarPubMed
Rentfrow, P. J., & Gosling, S. D. (2006). Message in a ballad: The role of music preferences in interpersonal perception. Psychological Science, 17(3), 236242.CrossRefGoogle Scholar
Richerson, P., Baldini, R., Bell, A., Demps, K., Frost, K., Hillis, V., … Zefferman, M. (2016). Cultural group selection plays an essential role in explaining human cooperation: A sketch of the evidence. Behavioral and Brain Sciences, 39, e30. http://doi.org/10.1017/S0140525X1400106X.CrossRefGoogle Scholar
Richerson, P. J., Boyd, R., & Henrich, J. (2010). Gene-culture coevolution in the age of genomics. Proceedings of the National Academy of Sciences of the USA, 107, 89858992.CrossRefGoogle ScholarPubMed
Richman, B. (1978). The synchronisation of voices by gelada monkeys. Primates, 19, 569581.CrossRefGoogle Scholar
Richman, B. (1987). Rhythm and melody in gelada vocal exchanges. Primates, 28, 199223.CrossRefGoogle Scholar
Rock, A. M. L., Trainor, L. J. D., & Addison, T. L. (1999). Distinctive messages in infant-directed lullabies and play songs. Developmental Psychology, 35(2), 527534.CrossRefGoogle ScholarPubMed
Roederer, J. G. (1984). The search for a survival value of music. Music Perception, 1(3), 350356.CrossRefGoogle Scholar
Sachs, M. E., Ellis, R. J., Schlaug, G., & Loui, P. (2016). Brain connectivity reflects human aesthetic responses to music. Social Cognitive and Affective Neuroscience, 11(6), 884891.CrossRefGoogle Scholar
Sakata, J. T., & Brainard, M. S. (2008). Online contributions of auditory feedback to neural activity in avian song control circuitry. Journal of Neuroscience, 28(44), 1137811390.CrossRefGoogle ScholarPubMed
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257264.CrossRefGoogle Scholar
Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science (New York, N.Y.), 340(6129), 216219.CrossRefGoogle ScholarPubMed
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 8691.CrossRefGoogle ScholarPubMed
Sammler, D., Grosbras, M. H., Anwander, A., Bestelmeyer, P. E. G., & Belin, P. (2015). Dorsal and ventral pathways for prosody. Current Biology, 25(23), 30793085.CrossRefGoogle ScholarPubMed
Sanchez, J. L. J. (2007). Procession and performance: Recreating ritual soundscapes among the Ancient Maya. The World of Music, 49, 3544.Google Scholar
Savage, P. E. (2018). Alan Lomax's Cantometrics Project: A comprehensive review. Music & Science, 1, 119. http://doi.org/10.1177/2059204318786084.CrossRefGoogle Scholar
Savage, P. E. (2019a). Cultural evolution of music. Palgrave Communications, 5, article 16. http://doi.org/10.1057/s41599-019-0221-1.CrossRefGoogle Scholar
Savage, P. E. (2019b). Universals. In Sturman, J. L. (Ed.), The Sage international encyclopedia of music and culture (pp. 22822285). Sage Publications. http://doi.org/10.4135/9781483317731.n759.Google Scholar
Savage, P. E. (2019c). An overview of cross-cultural music corpus studies. In Shanahan, D., Burgoyne, A. & Quinn, I. (Eds.), Oxford handbook of music and corpus studies (pp. 1–15). Oxford University Press. http://doi.org/10.31235/osf.io/nxtbg.Google Scholar
Savage, P. E., & Brown, S. (2013). Toward a new comparative musicology. Analytical Approaches to World Music, 2(2), 148197.Google Scholar
Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences of the USA, 112(29), 89878992.CrossRefGoogle ScholarPubMed
Savage, P. E., Merritt, E., Rzeszutek, T., & Brown, S. (2012). Cantocore: A new cross-cultural song classification scheme. Analytical Approaches to World Music, 2(1), 87137.Google Scholar
Savage, P. E., Yamauchi, M., Hamaguchi, M., Tarr, B., Kitayama, Y., & Fujii, S. (2020). Rhythm, synchrony, and cooperation [Stage 1 Registered Report]. PsyArXiv. https://doi.org/10.31234/osf.io/46bd9.CrossRefGoogle Scholar
Scarl, J. C., & Bradbury, J. W. (2009). Rapid vocal convergence in an Australian cockatoo, the galah. Animal Behaviour, 77, 10191026.CrossRefGoogle Scholar
Schachner, A., Brady, T. F., Oro, K., & Lee, M. (Preprint). Intuitive archeology: Detecting social transmission in the design of artifacts. PsyArXiv. https://doi.org/10.31234/osf.io/g6qxh.CrossRefGoogle Scholar
Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology, 19, 831836.CrossRefGoogle ScholarPubMed
Schino, G., & Troisi, A. (1992). Opiate receptor blockade in juvenile macaques: Effect on affiliative interactions with their mothers and group companions. Brain Research, 576, 125130.CrossRefGoogle ScholarPubMed
Schruth, D., Templeton, C. N., & Holman, D. J. (Preprint). A definition of song from human music universals observed in primate calls. BioRxiv preprint. https://doi.org/10.1101/649459.Google Scholar
Schulkin, J., & Raglan, G. B. (2014). The evolution of music and human social capability. Frontiers in Neuroscience, 8, article 292. https://doi.org/10.3389/fnins.2014.00292.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science (New York, N.Y.), 275(5306), 15931599.CrossRefGoogle ScholarPubMed
Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473500.CrossRefGoogle ScholarPubMed
Sethares, W. (2004). Tuning, timbre, spectrum, scale. Springer-Verlag.Google Scholar
Shamay-Tsoory, S. G., & Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biological Psychiatry, 79(3), 194202.CrossRefGoogle ScholarPubMed
Shilton, D., Breski, M., Dor, D., & Jablonka, E. (2020). Human social evolution: Self-domestication or self-control? Frontiers in Psychology, 11(134), 122. https://doi.org/10.3389/fpsyg.2020.00134.CrossRefGoogle ScholarPubMed
Shultz, S., Opie, C., & Atkinson, Q. D. (2011). Stepwise evolution of stable sociality in primates. Nature, 479(7372), 219222.CrossRefGoogle ScholarPubMed
Silk, J. B. (2007). Social components of fitness in primate groups. Science (New York, N.Y.), 317, 13471351.CrossRefGoogle ScholarPubMed
Sloboda, J. A., O'Neill, S. A., & Ivaldi, A. (2001). Functions of music in everyday life: An exploratory study using the experience sampling method. Musicae Scientiae, 5(1), 932.CrossRefGoogle Scholar
Small, C. (1998). Musicking: The meanings of performing and listening. University Press of New England.Google Scholar
Soley, G., & Spelke, E. S. (2016). Shared cultural knowledge: Effects of music on young children's social preferences. Cognition, 148, 106116.CrossRefGoogle Scholar
Stefano, G. B., Zhu, W., Cadet, P., Salamon, E., & Mantione, K. J. (2004). Music alters constitutively expressed opiate and cytokine processes in listeners. Medical Science Monitor, 10(6), MS18-27.Google ScholarPubMed
Stevens, C., & Byron, T. (2016). Universals in music processing. In Hallam, S., Cross, I., & Thaut, M. (Eds.), Oxford handbook of music psychology (pp. 1931). Oxford University Press.Google Scholar
Stokes, M. (Ed.). (1994). Ethnicity, identity, and music: The musical construction of place. Berg.Google Scholar
Stupacher, J., Hove, M. J., Novembre, G., Schutz-Bosbach, S., & Keller, P. E. (2013). Musical groove modulates motor cortex excitability: A TMS investigation. Brain and Cognition, 82(2), 127136.CrossRefGoogle ScholarPubMed
Syal, S., & Finlay, B. L. (2011). Thinking outside the cortex: Social motivation in the evolution and development of language. Developmental Science, 14(2), 417430.CrossRefGoogle ScholarPubMed
Tamir, D. I., & Mitchell, J. P. (2012). Disclosing information about the self is intrinsically rewarding. Proceedings of the National Academy of Sciences of the USA, 109(21), 80388043.CrossRefGoogle ScholarPubMed
Tarr, B. (2017). Social bonding through dance and “musiking.” In Enfield, N. L. & Kockelman, P. (Eds.), Distributed agency (pp. 151158). Oxford University Press.CrossRefGoogle Scholar
Tarr, B., Launay, J., Benson, C., & Dunbar, R. I. M. (2017). Naltrexone blocks endorphins released when dancing in synchrony. Adaptive Human Behavior and Physiology, 3(3), 241254.CrossRefGoogle Scholar
Tarr, B., Launay, J., Cohen, E., & Dunbar, R. I. M. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters, 11, 20150767. http://doi.org/http://dx.doi.org/10.1098/rsbl.2015.0767.CrossRefGoogle ScholarPubMed
Tarr, B., Launay, J., & Dunbar, R. I. M. (2014). Music and social bonding: “self-other” merging and neurohormonal mechanisms. Frontiers in Psychology, 5, article 1096. https://doi.org/10.3389/fpsyg.2014.01096.CrossRefGoogle ScholarPubMed
Tarr, B., Launay, J., & Dunbar, R. I. M. (2016). Silent disco: Dancing in synchrony leads to elevated pain thresholds and social closeness. Evolution and Human Behavior, 37(5), 343349.CrossRefGoogle ScholarPubMed
Tarr, B., Slater, M., & Cohen, E. (2018). Synchrony and social connection in immersive virtual reality. Scientific Reports, 8, article 3693. http://doi.org/10.1038/s41598-018-21765-4.CrossRefGoogle ScholarPubMed
Tchalova, K., & Macdonald, G. (2020). Opioid receptor blockade inhibits self-disclosure during a closeness-building social interaction. Psychoneuroendocrinology, 113, 104559.CrossRefGoogle ScholarPubMed
Terhardt, E. (1984). The concept of musical consonance: A link between music and psychoacoustics. Music Perception, 1(3), 276295.CrossRefGoogle Scholar
Thornton, S. (1995). Club cultures: Music, media, and subcultural capital. Wesleyan University Press.Google Scholar
Thorpe, W. H. (1972). Duetting and antiphonal song in birds: Its extent and significance. Behaviour. Supplement, 18, 1197.Google Scholar
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift Für Tierpsychologie, 20, 410433.CrossRefGoogle Scholar
Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., … Deloukas, P. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39(1), 3140.CrossRefGoogle ScholarPubMed
Titze, I. R. (1989). Physiologic and acoustic differences between male and female voices. Journal of the Acoustical Society of America, 85(4), 16991707.CrossRefGoogle ScholarPubMed
Tolbert, E. (1990). Women cry with words: Symbolization of affect in the Karelian lament. Yearbook for Traditional Music, 22, 80105.CrossRefGoogle Scholar
Tomasello, M., & Vaish, A. (2013). Origins of human cooperation and morality. Annual Review of Psychology, 64(1), 231255.CrossRefGoogle ScholarPubMed
Tomlinson, G. (2018). Culture and the course of human evolution. University of Chicago Press.CrossRefGoogle Scholar
Trainor, L. J. (2018). The origins of music: Auditory scene analysis, evolution, and culture in music creation. In Honing, H. (Ed.), The origins of musicality (pp. 81112). MIT press.Google Scholar
Trainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech prosody a result of the vocal expression of emotion? Psychological Science, 11(3), 188195.CrossRefGoogle ScholarPubMed
Trainor, L. J., Clark, E. D., Huntley, A., & Adams, B. A. (1997). The acoustic basis of preferences for infant-directed singing. Infant Behavior and Development, 20(3), 383396.CrossRefGoogle Scholar
Traulsen, A., & Nowak, M. A. (2006). Evolution of cooperation by multilevel selection. Proceedings of the National Academy of Sciences of the USA, 103(29), 1095210955.CrossRefGoogle ScholarPubMed
Trehub, S. E. (2016). Infant musicality. In Hallam, S., Cross, I. & Thaut, M. (Eds.), The Oxford handbook of music psychology (2nd ed., pp. 387397). Oxford University Press.Google Scholar
Trehub, S. E., Becker, J., & Morley, I. (2018). Cross-cultural perspectives on music and musicality. In Honing, H. (Ed.), The origins of musicality (pp. 129148). MIT Press.Google Scholar
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993). Adults identify infant-directed music across cultures. Infant Behavior and Development, 16, 193211.CrossRefGoogle Scholar
Trehub, S. S. E., Unyk, A. A., Kamenetsky, S., Hill, D., Trainor, L. J. D., Henderson, J. L., & Saraza, M. (1997). Mothers’ and fathers’ singing to infants. Developmental Psychology, 33(3), 500507.CrossRefGoogle ScholarPubMed
Turchin, P., Currie, T. E., Whitehouse, H., François, P., Feeney, K., Mullins, D., … Spencer, C. (2018). Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization. Proceedings of the National Academy of Sciences of the USA, 115(2), E144E151.CrossRefGoogle ScholarPubMed
Turino, T. (2008). Music as social life: The politics of participation. University of Chicago Press.Google Scholar
Valdesolo, P., & Desteno, D. (2011). Synchrony and the social tuning of compassion. Emotion (Washington, D.C.), 11(2), 262266.CrossRefGoogle ScholarPubMed
Vanden Bosch der Nederlanden, C. M., Joanisse, M. F., & Grahn, J. A. (2020). Music as a scaffold for listening to speech: Better neural phase-locking to song than speech. NeuroImage, 214, 116767. https://doi.org/10.1016/j.neuroimage.2020.116767.CrossRefGoogle Scholar
Vlismas, W., Malloch, S., & Burnham, D. (2013). The effects of music and movement on mother-infant interactions. Early Child Development and Care, 183(11), 16691688.CrossRefGoogle Scholar
Wallin, N. L., Merker, B., & Brown, S. (Eds.). (2000). The origins of music. MIT Press.Google Scholar
Walum, H., Waldman, I. D., & Young, L. J. (2016). Statistical and methodological considerations for the interpretation of intranasal oxytocin studies. Biological Psychiatry, 79(3), 251257.CrossRefGoogle ScholarPubMed
Wan, C. Y., Demaine, K., Zipse, L., Norton, A., & Schlaug, G. (2010). From music making to speaking: Engaging the mirror neuron system in autism. Brain Research Bulletin, 82(3–4), 161168.CrossRefGoogle ScholarPubMed
Wanker, R., Sugama, Y., & Prinage, S. (2005). Vocal labelling of family members in spectacled parrotlets, Forpus conspicillatus. Animal Behaviour, 70, 111118.CrossRefGoogle Scholar
Watson, A., & Keating, D. (1999). Architecture and sound: An acoustic analysis of megalithic monuments in prehistoric Britain. Antiquity, 73, 325336.CrossRefGoogle Scholar
Weinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Group music performance causes elevated pain thresholds and social bonding in small and large groups of singers. Evolution and Human Behavior, 37(2), 152158.CrossRefGoogle ScholarPubMed
Welch, S. P., & Eads, M. (1999). Synergistic interactions of endogenous opioids and cannabinoid systems. Brain Research, 848, 183190.CrossRefGoogle ScholarPubMed
Whitehouse, H. (2004). Modes of religiosity: A cognitive theory of religious transmission. AltaMira Press.Google Scholar
Whitehouse, H. (2018). Dying for the group: Towards a general theory of extreme self-sacrifice. Behavioral and Brain Sciences, 41, e192. http://doi.org/10.1017/S0140525X18000249.CrossRefGoogle Scholar
Whitehouse, H., François, P., Savage, P. E., Hoyer, D., Feeney, K. C., Cioni, E., … Turchin, P. (Preprint). Big Gods did not drive the rise of big societies throughout world history. SocArXiv preprint. https://doi.org/10.31219/osf.io/mbnvgGoogle Scholar
Wickler, W. (1980). Vocal Duetting and the pair bond: 1. Coyness and partner commitment: A hypothesis. Zeitschrift für Tierpsychologie, 52, 201209.CrossRefGoogle Scholar
Wiggins, G. A., Tyack, P., Scharff, C., & Rohrmeier, M. (2018). The evolutionary roots of creativity: Mechanisms and motivations. In Honing, H. (Ed.), The origins of musicality (pp. 286308). MIT Press.Google Scholar
Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press.Google Scholar
Wilson, D. S., & Wilson, E. O. (2007). Rethinking the theoretical foundation of sociobiology. The Quarterly Review of Biology, 82(4), 327348.CrossRefGoogle ScholarPubMed
Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20(1), 15.CrossRefGoogle ScholarPubMed
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences of the USA, 106(7), 24682471.CrossRefGoogle Scholar
Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L., & Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PLOS ONE, 9(4), e94446. https://doi.org/10.1371/journal.pone.0094446CrossRefGoogle ScholarPubMed
Wood, A. L. C., Kirby, K. R., Ember, C. R., Silbert, S., Daikoku, H., McBride, J., … Savage, P. E. (Preprint). The Global Jukebox: A public database of performing arts and culture. PsyArXiv. https://doi.org/10.31234/osf.io/4z97jGoogle Scholar
Wrangham, R. (2009). Catching fire: How cooking made us human. Basic Books.Google Scholar
Zak, P., Kurzban, R., & Matzner, W. T. (2005). Oxytocin is associated with human trustworthiness. Hormones and Behavior, 48(5), 522527.CrossRefGoogle ScholarPubMed
Zak, P., Stanton, A. A., & Ahmadi, S. (2007). Oxytocin increases generosity in humans. PLoS ONE, 2(11), e1128. http://doi.org/10.1371/journal.pone.0001128.CrossRefGoogle ScholarPubMed
Zaki, J., & Mitchell, J. P. (2013). Intuitive prosociality. Current Directions in Psychological Science, 22(6), 466470.CrossRefGoogle Scholar
Zatorre, R. J. (2018). Why do we love music? Cerebrum. http://www.dana.org/Cerebrum/2018/Why_Do_We_Love_Music/.Google Scholar
Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the USA, 110(Suppl. 2), 1043010437.CrossRefGoogle ScholarPubMed
Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences of the USA, 107(13), 57685773.CrossRefGoogle ScholarPubMed