No CrossRef data available.
Article contents
Models need mechanisms, but not labels
Published online by Cambridge University Press: 21 May 2024
Abstract
The target article proposes a model involving the important but not well-investigated topics of curiosity and creativity. The model, however, falls short of providing convincing explanations of the basic mechanisms underlying these phenomena. We outline the importance of mechanistic thinking in dealing with the concepts outlined in this article specifically and within psychology and cognitive neuroscience in general.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press
References
Anderson, B. (2011). There is no such thing as attention. Frontiers in Psychology, 2, 246.CrossRefGoogle ScholarPubMed
Bechtel, W. (2008). Mechanisms in cognitive psychology: What are the operations?. Philosophy of Science, 75(5), 983–994.CrossRefGoogle Scholar
Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 933–942.CrossRefGoogle ScholarPubMed
Craver, C. F. (2006). When mechanistic models explain. Synthese, 153(3), 355–376.CrossRefGoogle Scholar
Di Lollo, V. (2018). Attention is a sterile concept; iterative reentry is a fertile substitute. Consciousness and cognition, 64, 45–49.CrossRefGoogle ScholarPubMed
Eppinger, B., Goschke, T., & Musslick, S. (2021). Meta-control: From psychology to computational neuroscience. Cognitive, Affective, & Behavioral Neuroscience, 21(3), 447–452.CrossRefGoogle ScholarPubMed
Goschke, T. (2003). Voluntary action and cognitive control from a cognitive neuroscience perspective.CrossRefGoogle Scholar
Hommel, B. (2015). Between persistence and flexibility: The Yin and Yang of action control. In Elliot, A. J. (Ed.), Advances in motivation science (Vol. 2, pp. 33–67). Elsevier.Google Scholar
Hommel, B. (2020). Pseudo-mechanistic explanations in psychology and cognitive neuroscience. Topics in Cognitive Science, 12(4), 1294–1305.CrossRefGoogle ScholarPubMed
Hommel, B., & Colzato, L. S. (2015). Learning from history: The need for a synthetic approach to human cognition. Frontiers in Psychology, 6, 1435.CrossRefGoogle ScholarPubMed
Hommel, B., & Colzato, L. S. (2017). The social transmission of metacontrol policies: Mechanisms underlying the interpersonal transfer of persistence and flexibility. Neuroscience and Biobehavioral Reviews, 81, 43–58.CrossRefGoogle ScholarPubMed
Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J. H., & Welsh, T. N. (2019). No one knows what attention is. Attention, Perception, & Psychophysics, 81, 2288–2303.CrossRefGoogle ScholarPubMed
Hommel, B., & Wiers, R. W. (2017). Towards a unitary approach to human action control. Trends in cognitive sciences, 21(12), 940–949.CrossRefGoogle ScholarPubMed
Mekern, V., Hommel, B., & Sjoerds, Z. (2019). Computational models of creativity: A review of single- and multi-process recent approaches to demystify creative cognition. Current Opinion in Behavioral Sciences, 27, 47–54.CrossRefGoogle Scholar
van Dooren, R., de Kleijn, R., Hommel, B., & Sjoerds, Z. (2021). The exploration-exploitation trade-off in a foraging task is affected by mood-related arousal and valence. Cognitive, Affective, & Behavioral Neuroscience, 21(3), 549–560.CrossRefGoogle Scholar
Target article
A shared novelty-seeking basis for creativity and curiosity
Related commentaries (29)
A developmental account of curiosity and creativity
A shared “optimal-level of arousal”: Seeking basis for creativity and curiosity
An extension of the novelty-seeking model: Considering the plurality of novelty types and their differential interactions with memory
Be curious: Strategic curiosity drives creativity
Beyond novelty: Learnability in the interplay between creativity, curiosity and artistic endeavours
Breaking down (and moving beyond) novelty as a trigger of curiosity
Commentary on creativity and curiosity
Computational models of intrinsic motivation for curiosity and creativity
Creativity is motivated by novelty. Curiosity is triggered by uncertainty
Curiosity is more than novelty seeking
Curious? The relationship between curiosity and creativity is likely NOT novelty
Dissecting the neuroanatomy of creativity and curiosity: The subdivisions within networks matter
Distinct neurocognitive pathways underlying creativity: An integrative approach
Expanding horizons in reinforcement learning for curious exploration and creative planning
Exploratory exploitation and exploitative exploration: The phenomenology of play and the computational dynamics of search
Getting curiouser and curiouser about creativity: The search for a nuanced model
Ignoring the role of reiterative processing and worldview transformation leads to exaggeration of the role of curiosity in creativity
Is a wandering mind a novelty-seeking mind? The curious case of incubation
Mindfulness, curiosity, and creativity
Models need mechanisms, but not labels
Mood regulation as a shared basis for creativity and curiosity
Novelty seeking is neither necessary nor sufficient for curiosity or creativity, instead both curiosity and creativity may reflect an epistemic drive
Novelty seeking might underlie curiosity and the novelty dimension of creativity, but not the usefulness dimension
On the dual nature of creativity: Same same but different?
Prediction error minimization as a common computational principle for curiosity and creativity
Question-asking as a mechanism of information seeking
The costs of curiosity and creativity: Minimizing the downsides while maximizing the upsides
The creativity of architects
Toward a causal model of curiosity and creativity
Author response
A shared novelty-seeking basis for creativity and curiosity: Response to the commentators