Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:17:33.882Z Has data issue: false hasContentIssue false

Methodologies for studying human knowledge

Published online by Cambridge University Press:  04 February 2010

John R. Anderson
Affiliation:
Department of Psychology, Carnegie-Mellon University, Pittsburgh, Pa. 15213

Abstract

The appropriate methodology for psychological research depends on whether one is studying mental algorithms or their implementation. Mental algorithms are abstract specifications of the steps taken by procedures that run in the mind. Implementational issues concern the speed and reliability of these procedures. The algorithmic level can be explored only by studying across-task variation. This contrasts with psychology's dominant methodology of looking for within-task generalities, which is appropriate only for studying implementational issues.

The implementation-algorithm distinction is related to a number of other “levels” considered in cognitive science. Its realization in Anderson's ACT theory of cognition is discussed. Research at the algorithmic level is more promising because it is hard to make further fundamental scientific progress at the implementational level with the methodologies available. Protocol data, which are appropriate only for algorithm-level theories, provide a richer source than data at the implementational level. Research at the algorithmic level will also yield more insight into fundamental properties of human knowledge because it is the level at which significant learning transitions are defined.

The best way to study the algorithmic level is to look for differential learning outcomes in pedagogical experiments that manipulate instructional experience. This provides control and prediction in realistically complex learning situations. The intelligent tutoring paradigm provides a particularly fruitful way to implement such experiments.

The implications of this analysis for the issue of modularity of mind, the status of language, research on human/computer interaction, and connectionist models are also examined.

Type
Target article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. (1985) A learning algorithm for Boltzmann machines. Cognitive Science 9: 147–69. [aJRA]Google Scholar
Aho, A. V., Hoperoft, J. E. & Ullman, J. D. (1974) The design and analysis of computer algorithms. Addison-Wesley. [AVR]Google Scholar
Anderson, J. A. (1973) A theory for the recognition of items from short memorized lists. Psychological Review 80: 417–38. [JTT]CrossRefGoogle Scholar
Anderson, J. A. (1983) Cognitive and psychological computation with neural models. In: IEEE Transactions on Systems, Man, and Cybernectics. IEEE. [aJRA]CrossRefGoogle Scholar
Anderson, J. A. & Hinton, G. E. (1981) Models of information processing in the brain. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [aJRA]Google Scholar
Anderson, J. R. (1972) FRAN: A simulation model of free recall. In: The psychology of learning and motivation, vol. 5, ed. Bower, G. H.. Academic Press. [rJRA]Google Scholar
Anderson, J. R. (1976) Language, memory, and thought. Erlbaum. [aJRA]Google Scholar
Anderson, J. R. (1979) Further arguments concerning representations for mental imagery: A response to Hayes-Roth and Pylyshyn. Psychological Review 86:395406. [aJRA]CrossRefGoogle Scholar
Anderson, J. R. (1982) Acquisition of cognitive skill. Psychological Review 89:369406. [JHL]CrossRefGoogle Scholar
Anderson, J. R. (1983) The architecture of cognition. Harvard University Press. [aJRA, AIG, RGR, PSR]Google Scholar
Anderson, J. R. (in press) Analysis of student performance with the LISP tutor. In: Diagnostic monitoring of skill and knowledge acquisition, ed. Frederiksen, N., Glaser, R., Lesgold, A. & Shaffo, M.. Erlbaum. [aJRA]Google Scholar
Anderson, J. R., Boyle, C. F. & Reiser, B.J. (1985) Intelligent tutoring systems. Science 228:456–62. [aJRA]CrossRefGoogle ScholarPubMed
Anderson, J. R., Farrell, R. & Sauers, R. (1984) Learning to program in LISP. Cognitive Science 8:87129. [aJRA]Google Scholar
Anderson, J. R., Greeno, J. G., Kline, P. J. & Neves, D. M. (1981) Acquisition of problem-solving skill. In: Cognitive skills and their acquisition, ed. Anderson, J. R.. Erlbaum. [EPS]Google Scholar
Anderson, J. R., Pirolli, P. & Farrell, R. (in press) Learning to program recursive functions. In: The nature of expertise, ed. Chi, M., Glaser, R. & Farr, M.. Erlbaum. [aJRA]Google Scholar
Anderson, J. R. & Skwarecki, E. (1986) The automated tutoring of introductory computer programming. Communications of the ACM 29: 842–49. [AC]CrossRefGoogle Scholar
Arbib, M. A. (1987) Modularity and interaction of brain regions underlying visuo-motor coordination. In: Modularity in knowledge representation and natural language understanding, ed. Garfield, J. L.. MIT Press/Bradford Books. [MAA]Google Scholar
Arbib, M. A., Caplan, D. & Marshall, J. C., eds. (1982) Neural models of language processes. Academic Press. [J-PE]Google Scholar
Ashby, W. R. (1952) Design for a brain. Wiley. [JTT]Google Scholar
Atkinson, R. C. & Paulson, J. A. (1972) An approach to the psychology of instruction. Psychological Bulletin 78:4961. [RG]CrossRefGoogle Scholar
Barto, A. G., Sutton, R. S. & Anderson, C. W. (1983) Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics SMC 13:834– 46. [DSL]Google Scholar
Berwick, R. (in press) Parsability and learnability. In: Mechanisms of language acquisition, ed. MacWhinney, B.. [aJRA]Google Scholar
Bindra, D. (1976). A theory of intelligent behavior. Wiley. [J-PE]Google Scholar
Bledsoe, W. W. (1977) Non-resolution theorem proving. Artificial Intelligence 9: 135. [EPS]CrossRefGoogle Scholar
Braine, M. D. S. (in press) What is learned in acquiring word classes: A step toward an acquisition theory. In: Mechanisms of language acquisition, ed. MacWhinney, B.. [aJRA]Google Scholar
Broadbent, D. (1985) A question of levels: Comment on McClelland and Rumelhart. Journal of Experimental Psychology: General 114:189–92. [aJRA, KS]CrossRefGoogle Scholar
Brown, J. S. & Greeno, J. (1984) Research briefings 1984. National Academy Press. [aJRA]Google Scholar
Brown, J. S. & VanLehn, K. (1980) Repair theory: A generative theory of bugs in procedural skills. Cognitive Science 4:379426. [aJRA]CrossRefGoogle Scholar
Bullock, T. H. (1983) Implications for neuroethology from comparative neurology. In: Advances in vertebrate neuroethology, ed. Ewert, J. -P., Capranica, R. R. & Ingle, D. J.. Plenum. [J-PE]Google Scholar
Bundy, A. (1983) The computer modelling of mathematical reasoning. Academic Press. [EPS]Google Scholar
Card, S. K., Moran, T. P. & Newell, A. (1983) The psychology of humancomputer interaction. Erlbaum [aJRA, CS]Google Scholar
Card, S. K. & Newell, A. (1985) The prospects for psychological science in human-computer interaction. Human—Computer Interaction 1: 209–42. [aJRA]Google Scholar
Cazden, C. G. (1965) Environmental assistance to the child's acquisition of grammar. Doctoral dissertation, Harvard University. [aJRA]Google Scholar
Chandrasekaran, B. (1984) Expert systems: Matching techniques to tasks. In: Al applications for business, ed. Reitman, W.. Ablex Publishing. [WJG]Google Scholar
Charniak, E. (1983) Passing markers: A theory of contextual influence in language comprehension. Cognitive Science 7: 171–90. [JH]Google Scholar
Chase, W. G. & Clark, H. H. (1972) Mental operations in the comparison of sentences and pictures. In: Cognition in learning and memory, ed, Gregg, L.. Wiley. [aJRA]Google Scholar
Chase, W. G. & Ericsson, K. A. (1981) Skilled memory. In: Cognitice skills and their acquisition, ed. Anderson, J. R.. Erlbaum. [KAE]Google Scholar
Chase, W. G. & Ericsson, K. A. (1982) Skill and working memory. In: The psychology of learning and motivation, vol. 16, ed. Bower, G. H.. Academic Press. [KAE]Google Scholar
Chi, M. T. H., Feltovich, P. J. & Glaser, R. (1981) Categorization and representation of physics problems by experts and novices. Cognitive Science 5:121–52. [aJRA]CrossRefGoogle Scholar
Chomsky, N. (1965) Aspects of the theory of syntax. MIT Press. [aJRA, AVR]Google Scholar
Chomsky, N. (1975) Reflections on language. Pantheon Books. [EPS]Google Scholar
Chomsky, N. (1980) Rules and representations. Behavioral and Brain Sciences 3: 161. [aJRA]CrossRefGoogle Scholar
Church, A. (1936) A note on the Entscheidungs problem. Journal of Symbolic Logic 1: 4041. [AC]CrossRefGoogle Scholar
Clancey, W. J. (1984) Acquiring, representing, and evaluating a competence model of diagnosis. Heuristic Programing Project Memo 84–2, Stanford University. (To appear in Chi, M., Glaser, R. & Farr, M., eds., The nature of expertise, in preparation.) [WJC]Google Scholar
Clancey, W. J. (1985) Heuristic classification. Artificial Intelligence 27: 289350. [WJC]CrossRefGoogle Scholar
Clancey, W. J. (1986) Viewing knowledge bases as qualitative models (Knowledge Systems Laboratory Report 86–27). Stanford University. [WJC]Google Scholar
Clancey, W. J. (in press) Qualitative students models. Annual Review of Computer Science. [aJRA]Google Scholar
Cottrell, G. W. (1985) A connectionist approach to word sense disambiguation. Doctoral dissertation, University of Rochester. [JH]Google Scholar
Craik, K. J. W. (1943) The nature of explanation. Cambridge University Press. [J-PE]Google Scholar
Creutzfeldt, O. (1983) Cortex cerebri. Springer-Verlag. [J-PE]CrossRefGoogle Scholar
Creutzfeldt, O. (1986) Gehim und Geist. Bursfelder Universitätsreden 5: 339. [J-PE]Google Scholar
Cronbach, L. J. & Snow, R. E. (1977) Aptitudes and instructional methods. Halstead Press. [RG]Google Scholar
Crowder, R. G. (1982) The psychology of reading: An introduction. Oxford University Press. [aJRA]Google Scholar
Dawson, M. E. & Schell, A. M. (1982) Electrodermal responses to attended and nonattended significant stimuli during dichotic listening. Journal of Experimental Psychology: Human Perception and Performance 8: 315–24. [MVK]Google ScholarPubMed
Derthick, M. A. & Plaut, D. C. (1986) Is distributed connectionism compatible with the physical symbol system hypothesis? Proceedings of the Eighth Annual Conference of the Cognitice Science Society, Amherst, Mass., pp. 639–44. [DST]Google Scholar
Desmedt, J. E., ed. (1977) Language and hemispheric specialization in man: Cerebral event-related potentials. S. Karger. [MVK]Google Scholar
Dreyfus, H. L. (1979) What computers can't do. Harper & Row. [JTT]Google Scholar
Ebbesson, S. O. E., ed. (1980) Comparative neurology of the telencephalon. Plenum. [J-PE]CrossRefGoogle Scholar
Ebbesson, S. O. E., ed.(1984) Evolution and ontogeny of neural circuits. Behavioral and Brain Sciences 7: 321–66. [J-PE]CrossRefGoogle Scholar
Eccles, J. C, Ito, M. & Szentagothai, J. (1967) The cerebellum as a neuronal machine. Springer-Verlag. [J-PE]CrossRefGoogle Scholar
Ericsson, K. A. (1985) Memory skill. Canadian Journal of Psychology 39: 188231. [KAE]CrossRefGoogle Scholar
Ericsson, K. A. & Polson, P. G. (in press) Memory for restaurant orders. In: The nature of expertise, ed. Chi, M. T. H., Glaser, R. & Farr, M. J.. Erlbaum. [KAE]Google Scholar
Ericsson, K. A. & Simon, H. A. (1984) Protocol analysis: Verbal reports as data. MIT Press. [arJRA, KAE]Google Scholar
Ewert, J. -P. (1987a) Measuring visual discrimination: Principles in configurational perception. In: Methods and aims in neuroethology. ed. Guthrie, D. M.. Manchester University Press. [J-PE]Google Scholar
Ewert, J. -P. (1987b) Neurethology: Toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Cognitive processes and spatial orientation in animal and man, vol. 1, ed. Ellen, P. & Thinus-Blanc, C.. Dordrecht: Martinus Nijhoff. [J-PE]Google Scholar
Ewert, J. P. & Finkenstadt, T. (1987) Modulation of tectal functions by prosencephalic loops in amphibians. Behavioral and Brain Sciences 10:122–23. [J-PE]CrossRefGoogle Scholar
Fahlman, S. E. (1979) NETL: A system for representing and using real world knowledge. MIT Press. [JH]CrossRefGoogle Scholar
Feldman, J. A. (1981) A connectionist model of visual memory. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [MVK]Google Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6: 205–54. [aJRA, JH]CrossRefGoogle Scholar
Fodor, J. A. (1983) The modularity of mind. MIT Press/Bradford Books. [aJRA, EPS]CrossRefGoogle Scholar
Fuster, J. (1980) The prefrontal cortex. Raven. [DSL]Google Scholar
Gaffan, D. (1976) Recognition memory in animals. In: Recognition and recall, ed. Brown, J.. Wiley. [J-PE]Google Scholar
Gigley, H. M. (1983) HOPE - AI and the dynamic process of language behavior. Cognition and Brain Theory 6:3988. [MAA]Google Scholar
Gleitman, H. (1983) Basic psychology. Norton. [aJRA, WJC]Google Scholar
Goldman, A. I. (1986) Epistemology and cognition. Harvard University Press. [AIG]Google Scholar
Griffin, D. R. (1982) Animal mind - human mind. Springer-Verlag. [J-PE]CrossRefGoogle Scholar
Grossberg, S. (1971) On the dynamics of operant conditioning. Journal of Theoretical Biology 33:225–55. [DSL]CrossRefGoogle ScholarPubMed
Grossberg, S. (1975) A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology 18:263327. [DSL]CrossRefGoogle ScholarPubMed
Grossberg, S. (1980) How does a brain build a cognitive code? Psychological Review 87:151. [JTT]CrossRefGoogle ScholarPubMed
Grossberg, S. (1982) Processing of expected and unexpected events during conditioning and attention: A psychophysiological theory. Psychological Review 89: 529–72. [DSL]CrossRefGoogle ScholarPubMed
Grossberg, S. & Levine, D. S. (1975) Some developmental and attentional biases in the contrast enhancement and short-term memory of recurrent neural networks. Journal of Theoretical Biology 53: 341–80. [DSL]CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949) The organization of behavior. Wiley. [J-PE]Google Scholar
Hendler, J. A. (in press) Integrating marker-passing and problem solving: A spreading activation approach to improved choice in planning. Erlbaum. [JH]Google Scholar
Herrick, C. J. (1933) The amphibian forebrain, 8, Cerebral hemispheres and pallial primordia. Journal of Comparative Neurology 58:737–59. [J-PE]CrossRefGoogle Scholar
Hill, J. C. (1983) A computational model of language acquisition in the twoyear-old. Cognition and Brain Theory 6:287317. [MAA]Google Scholar
Hillyard, S. A., Munte, T. F. & Neville, H. (1985) Visual-spatial attention, orienting, and brain physiology. In: Attention and performance, vol. 11, ed. Posner, M. I. & Marin, O. S. M.. Erlbaum. [MVK]Google Scholar
Hinton, G. E. (1987) Representing part-whole hierarchies in connectionist networks. Manuscript. [PS]Google Scholar
Hinton, G. E. & Anderson, J. A. (1981) Parallel models of associative memory. Erlbaum. [aJRA]Google Scholar
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986) Distributed representations. In: Parallel distributed processing: Explorations in the microstructurc of cognition, vol. 1, ed. Rumelhart, D. E., J. L.McClelland & the PDP Research Group. MIT Press/Bradford Books. [DST]Google Scholar
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986a) Distributed representations. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2, Psychological and biological models, ed. McClelland, J. L., D. E. Rumelhart & the PDP Research Group. MIT Press/Bradford Books. [PS]Google Scholar
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences (U.S.A.) 79:2554–58. [JTT]CrossRefGoogle ScholarPubMed
Hubel, D. H. & Wiesel, T. N. (1977) Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society (London) B198: l59. [J-PE]Google Scholar
Hume, D. (1902) Enquiries concerning the human understanding and concerning the principles of morals, ed. Selby-Bigge, L. A.. Clarendon Press. [J-PE]Google Scholar
Hutchins, E. (1986) Mediation and automatization. Quarterly Newsletter of the Laboratory of Comparative Human Cognition 8(2). University of California, San Diego. [CS]Google Scholar
Jeffrey, R. (1981) Formal logic: Its scope and limits, 2nd ed.McGraw-Hill. [AC]Google Scholar
Johnson, L. & Soloway, E. (1984) Intention-based diagnosis of programming errors. Proceedings of the National Conference on Artificial Intelligence, Austin, Tex. [aJRA]Google Scholar
Just, M. A. & Carpenter, P. A. (1979) The computer and eye processing pictures. Behavioral Research Methods and Instrumentation 11:172–76. [aJRA]CrossRefGoogle Scholar
Kandel, E. (1985) Cellular mechanisms of learning and the biological basis of individuality. In: Principles of neural science (2nd ed.), ed. Kandel, E. R. & Schwartz, J. M.. Elsevier. [MVK]Google Scholar
Klopf, A. H. (1982) The hedonistic neuron. Hemisphere. [DSL]Google Scholar
Knuth, D. E. (1973) The art of computer programming, vol. 1, Fundamental algorithms. Addison-Wesley. [AC]Google Scholar
Kosslyn, S. M. (1980) Image and mind. Harvard University Press. [aJRA]Google Scholar
Kosslyn, S. M. (1987) Seeing and imagining in the cerebral hemispheres: A computational approach. Psychological Review 94: 148–75. [MVK]CrossRefGoogle ScholarPubMed
Kounios, J., Osman, A. M. & Meyer, D. E. (1987) Structure and process in semantic memory: New evidence based on speed-accuracy decomposition. Journal of Experimental Psychology: General 116:325. [PS]CrossRefGoogle ScholarPubMed
Laird, J. E. & Newell, A. (1983) Universal weak method: Summary of results. In: Proceedings of the Eight IJCAl, vol. 1. International Joint Conference on Artificial Intelligence. [aJRA]Google Scholar
Laird, J. E., Newell, A. & Rosenbloom, P. S. (in press) SOAR: An architecture for general intelligence. Artificial Intelligence 33. [PSR]Google Scholar
Larkin, J. H. (1981) Enriching formal knowledge: A model for learning to solve textbook physics problems. In: Cognitive skills and their acquisition, ed. Anderson, J. R.. Erlbaum. [arJRA, EPS]Google Scholar
Leven, S. J. & Levine, D. S. (submitted) A theory of decision-making in psychology and economics: Emotion, reason, and optimality revisited. [DSL]Google Scholar
Levine, D. S. (1986) A neural network theory of frontal lobe function. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Erlbaum. [DSL]Google Scholar
Lorenz, K. (1943) Die angeborenen Formen möglicher Erfahrung. Zeitschrift für Tierpsychologie 5:235409. [J-PE]CrossRefGoogle Scholar
Loveland, D. W. (1984). Automated theorem proving: A quarter century review. In: Automated theorem proving: After 25 years, ed. Bledsoe, W. W. & Loveland, D. W.. American Mathematical Society. [EPS]Google Scholar
Lynch, G., McGaugh, J. L. & Weinberger, N. M., eds. (1984) Neurobiology of learning and memory. Guilford Press. [J-PE]Google Scholar
MacLean, P. (1970) The triune brain, emotion, and scientific bias. In: The neurosdences second study program, ed. Schmitt, F. O.. Rockefeller University Press. [DSL]Google Scholar
Marr, D. (1979) Representing and computing visual information. In: Artificial intelligence: An MIT perspective, vol. 2, ed. Winston, P. H. & Brown, R. H.. MIT Press [EPS]Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H Freeman. [aJRA, MAA, AC, JH, MVK, AVR]Google Scholar
Mazziotta, J. C., Phelps, M. E., Carson, R. E. & Kuhl, D. E. (1982) Tomographic mapping of human cerebral metabolism: Auditory stimulation. Neurology 32: 921–37. [MVK]CrossRefGoogle ScholarPubMed
McLaughlin, B. (1984) Second language acquisition in childhood. Erlbaum. [aJRA]Google Scholar
McClelland, J. L. & Kawamoto, A. H. (1986) Mechanisms of sentence processing: Assigning roles to constituents. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2, ed. McClelland, J. L., D. E. Rumelhart & the PDP Research Group. MIT Press/Bradford Books. [DST]Google Scholar
McClelland, J. L. & Rumelhart, D. E., eds. (1986). Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2, Psychological and biological models. MIT Press/Bradford Books. [aJRA, MVK]Google Scholar
McClelland, J. L. & Rumelhart, D. E. (1986a) On learning the past tenses of English verbs. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2, ed. McClelland, J. L., D. E. Rumelhart & the PDP Research Group. MIT Press/Bradford Books. [DST]Google Scholar
McCulloch, W. S. & Pitts, W. (1943) A logicalculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5:115–33. [JTT]CrossRefGoogle Scholar
Miller, G. (1986) Dismembering cognition. In: One hundred years of psychological research in America, ed. Hulse, G. S. & Green, B. F. Jr, Johns Hopkins University Press. [RG]Google Scholar
Moran, T. (1983) Getting into a system: External-internal task-mapping analysis. In: Proceedings of CHI 1983: Human factors in computing systems. Boston: CHI (Computer Human Interaction). [aJRA]Google Scholar
Morgan, J. L. & Newport, E. L. (1981) The role of constituent structure in the induction of an artificial language. Journal of Verbal Learning and Verbal Behavior 20: 6785. [aJRA]CrossRefGoogle Scholar
Mortensen, C. (1985) Mental images: Should cognitive science learn from neurophysiology? Presented at AAP Conference on Cognitive Science, University of N.S.W. (To appear in the published proceedings, ed. Slezack, P.. Reidel. [CM]Google Scholar
Mounteastle, V. B. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. Journal of Neurophysiology 20: 403–34. [J-PE]Google Scholar
Mueller, G. E. (1911) Zur Analyse der Gedaechtnistaetigkeit iind desVorstellungsverlaufes: Teil I. Zeitschrift für Psychologie Ergaenzungsband 5. [KAE]Google Scholar
Mueller, G. E. (1917) Zur Analyse der Gedaechtnistaetigkeit und des Vorstellungsverlaufes: Teil II. Zeitschrift für Psychologie Ergaenzungsband 9. [KAE]Google Scholar
Murdock, B. B. (1982) A theory for the storage and retrieval of items and associative information. Psychological Review 89:609–26. [JTT]CrossRefGoogle Scholar
Nauta, W. (1971) The problem of the frontal lobe: A reinterpretation. Journal of Psychiatric Research 8: 167–87. [DSL]CrossRefGoogle ScholarPubMed
Nelson, K. E., Carskadden, G. & Bonvillian, J. D. (1973) Syntax acquisition: Impact of experimental variation in adult verbal interaction with the child. Child Development 44: 497504. [aJRA]CrossRefGoogle Scholar
Neves, D. M. (1981) Learning procedures from examples. Unpublished doctoral dissertation. Department of Psychology, Carnegie-Mellon University. [aJRA]Google Scholar
Newell, A. (1973) Production systems: Models of control structures. In: Visual information processing, ed. Chase, W. G.. Academic Press. [aJRA]Google Scholar
Newell, A. (1980) Physical symbol systems. Cognitive Science 4: 135–83. [arJRA]Google Scholar
Newell, A. (1981) The knowledge level. Al Magazine 2: 120. [arJRA]Google Scholar
Newell, A. & Rosenbloom, P. (1981) Mechanisms of skill acquisition and the law of practice. In: Cognitive skills and their acquisition, ed. Anderson, J. R.. Erlbaum. [aJRA]Google Scholar
Newell, A. & Simon, H. A. (1972) Human problem solving. Prentice-Hall. [arJRA, CS]Google Scholar
Norman, D. A. (1981) Categorization of action slips. Psychological Review 88: 115. [aJRA]CrossRefGoogle Scholar
Norman, D. A. (in press) The psychology of everyday things. Basic Books. [CS]Google Scholar
Northcutt, R. G. (1981) Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience 4: 301–50. [J-PE]CrossRefGoogle ScholarPubMed
Norman, D. A. (1986) Strategies of comparison: How do we study brain evolution? Verhandlungen der Deutschen Zoologischen Gesellschaft 79: 91103. [J-PE]Google Scholar
O'Keefe, J. & Nadel, L. (1979) Précis of O'Keefe & Nadel's The hippocampus as a cognitive map. Behavioral and Brain Sciences 2: 487533. [J-PE]CrossRefGoogle Scholar
Paillard, J. (1987) Cognitive versus sensorimotor encoding of spatial information. In: Cognitive processes and spatial orientation in animal and man, vol. 2, ed. Ellen, P. & Thinus-Blanc, C.. Dordrecht: Martinus Nijhoff. [J-PE]Google Scholar
Phelps, M. E. & Mazziotta, J. E. (1985) Positron emission tomography: Brain function and biochemistry. Science 228: 799809. [MVK]CrossRefGoogle ScholarPubMed
Piaget, J. (1971) Biology of knowledge. Edinburgh University Press. [J-PE]Google Scholar
Pirolli, P. L. & Anderson, J. R. (1985) The role of learning from examples in the acquisition of recursive programming skills. Canadian Journal of Psychology 39: 240–72. [KAE]CrossRefGoogle Scholar
Ploog, D. & Gottwald, P. (1974) Verhaltensforschung: lnstinkt, Lemen, Hirttfunktion. Urgan & Schwarzenberg. [J-PE]Google Scholar
Poison, P. G. & Kieras, D. E. (1985) A quantitative model of the learning and performance of text editing. In: Proceedings of the conference on human factors in computer systems, ed. CHI, (Computer Human Interaction). Association for Computing Machinery. [aJRA]Google Scholar
Pylyshyn, Z. W. (1980) Computation and cognition: Issues in the foundations of cognitive science. Behavioral and Brain Sciences 3:111–69. [aJRA, JH, AVR]CrossRefGoogle Scholar
Pylyshyn, Z. W. (1981) The imagery debate: Analogue media versus tacit knowledge. Psychological Review 88: 124. [aJRA]CrossRefGoogle Scholar
Pylyshyn, Z. W. (1984) Computation and cognition. MIT Press/Bradford Books. [rJRA]Google Scholar
Quillian, M. R. (1966) Semantic memory. Doctoral dissertation, Carnegie Institute of Technology. (Available as [1966] Report 2, Project 8668, Bolt, Baranek, and Newman.) [JH]Google Scholar
Rashevsky, N. (1931) Learning as a property of physical systems. Journal of General Psychology 5: 207–29. [JTT]CrossRefGoogle Scholar
Reed, A. V. (1973) Speed-accuracy tradeoff in recognition memory. Science 181: 574–76. [AVR]CrossRefGoogle ScholarPubMed
Reed, A. V. (1976) List length and the time-course of recognition in immediate memory. Memory and Cognition 4: 1630. [AVR]CrossRefGoogle ScholarPubMed
Resnick, L. (1982) Syntax and semantics in learning to subtract. In: Addition and subtraction: A cognitive perspective, ed. Carpenter, T., Moser, J. & Romberg, T.. Erlbaum. [aJRA]Google Scholar
Rogers, H. Jr, (1967) Theory of recursive functions and effective computability. McGraw-Hill. [AC]Google Scholar
Rosenblatt, F. (1959) Two theorems of statistical separability in the perception. Proceedings of a symposium on the mechanization of thought processes, Her Majesty's Stationary Office, London. [JTT]Google Scholar
Rosenbloom, P. S. (1983) The chunking of goal hierarchies: A model of practice and stimulus-response compatibility. Unpublished Ph.D. thesis, Carnegie-Mellon University. [rJRA]Google Scholar
Rosenbloom, P. S. & Newell, A. (1986) The chunking of goal hierarchies: A generalized model of practice. In: Machine learning II, ed. Miehalski, R. S., Carbonell, J. G. & Mitchell, T. M.. Morgan Kaufman. [aJRA]Google Scholar
Rumelhart, D. E. & McClelland, J. L. (1985) Levels indeed! A response to Broadbent. Journal of Experimental Psychology: General 114: 193–97. [aJRA, AC, KS, DST]CrossRefGoogle Scholar
Rumelhart, D. E. & McClelland, J. L., eds. (1986) Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1, Foundations. MIT Press/Bradford Books. [aJRA, MAA, J-PE, MVK]CrossRefGoogle Scholar
Rumelhart, D. E. & McClelland, J. L. (1986a) PDP models and general issues in cognitive science. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1, ed. Rumelhart, D. E., J. L. McClelland & the PDP Research Group. MIT Press/Bradford Books. [DST]CrossRefGoogle Scholar
Rumelhart, D. E. & Norman, D. A. (1982) Simulating a skilled typist: A study of skilled cognitive-motor performance. Cognitive Science 6: 136. [CS]Google Scholar
Rumelhart, D. E., Smolensky, P., McClelland, J. L. & Hinton, G. E., (1986) Schemata and sequential thought processes in parallel distributed processing models. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2, Psychological and biological models, ed. McClelland, J. L., D. E. Rumelhart & the PDP Research Group. MIT Press/Bradford Books. [PS]CrossRefGoogle Scholar
Sauers, R. & Farrell, R. (1982) GRAPES user's manual (Technical Report ONR-82–3). Carnegie-Mellon University. [aJRA, PSR]Google Scholar
Schopenhauer, A. (1883) The world as will and idea. (Translation by Haldane, R. B. & Kemp, I.) London: Kegan Paul, Trench, Trubner. [J-PE]Google Scholar
Sebrechts, M. M. & Black, J. B. (1982) Software technology: A rich new domain for applied psychology. Applied Psycholinguistics 3: 123–43. [aJRA]Google Scholar
Sejnowski, T. J. & Rosenberg, C. R. (1986) NETtalk: A parallel network that learns to read aloud (Technical Report JHU/EECS-86/01). The Johns Hopkins University Electrical Engineering and Computer Science Department. [DST]Google Scholar
Shastri, L. (1985) Evidential reasoning in semantic networks: A formal theory and its parallel implementation. Doctoral dissertation, University of Rochester. [JH]Google Scholar
Simon, H. A. (1969) The sciences of the artificial. MIT Press. [arJRA]Google Scholar
Simon, H. A. (1981) The sciences of the artificial (rev. ed.). MIT Press. [JHL]Google Scholar
Smolensky, P. (1986) Neural and conceptual interpretations of parallel distributed processing models. In: Parallel distributed processing: Explorations in the microstructure of cognition, vol. 2. Psychological and biological models, ed. McClelland, J. L., D. E. Rumelhart & the PDP Research Group. MIT Press/Bradford Books. [PS]Google Scholar
Smolensky, P. (1987a) Connectionist AI, symbolic AI, and the brain. Al Review 1: 95109. [PS]Google Scholar
Smolensky, P. (1987b) On the proper treatment of connectionism (Technical Report CUCS-359–87). Department of Computer Science, University of Colorado at Boulder. In preparation for Behavioral and Brain Sciences, vol. 11 (1988). [PS]CrossRefGoogle Scholar
Smolensky, P. (1987c) On variable binding and the representation of symbolic structures in connectionist systems (Technical Report CU-CS-355-87). Department of Computer Science, University of Colorado at Boulder. [PS]Google Scholar
Staszewski, J. (1986) The psychological reality of retrieval structures: An investigation of expert knowledge. Unpublished Ph.D. dissertation, Cornell University. [KAE]Google Scholar
Stenning, K., Shepherd, M. & Levy, J. P. (1987) On the construction of representations for individuals during text comprehension (Research Paper No. 9). Centre for Cognitive Science, University of Edinburgh. [KS]Google Scholar
Sternberg, S. (1969) Memory scanning: Mental processes revealed by reaction time experiments. American Scientist 57: 421–57. [aJRA]Google ScholarPubMed
Sutton, R. S. & Barto, A. G. (1981) Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review 88: 135–70. [DSL]CrossRefGoogle Scholar
Taylor, M. M. (1984) The Bilateral Cooperative Model of reading: A human paradigm for artificial intelligence. In: Artificial and human intelligence. ed. Elithorn, A. & Banerji, R., Elsevier, . (First published in 1981 by Defence and Civil Institute of Environmental Medicine, Ontario, Canada, as Research Paper 81-P-4). [MMT]Google Scholar
Taylor, M. M. (in press) Natural dialogue is not natural language: Response timing layered protocol. In: Structure of multimodal dialogue, ed. Taylor, M. M., Neel, F. & Bouwhuis, D. G.. North-Holland. [MMT]CrossRefGoogle Scholar
Taylor, I. K. & Taylor, M. M. (1983) The psychology of reading. Academic Press. [MMT]Google Scholar
Thompson, T. & Clancey, W. J. (1986) A qualitative modeling shell for process diagnosis. IEEE Transactions on Software 3(2): 615. [WJC]CrossRefGoogle Scholar
Thorndike, E. L. (1922) The psychology of arithmetic. Macmillan. [RG]CrossRefGoogle Scholar
Tikhomirov, O. (1985) Informal heuristic principles of motivation and emotion in human problem solving. In: Methods of heuristics, ed. Groner, R., Groner, & Bischof, W.. Erlbaum. [DSL]Google Scholar
Tinbergen, N. (1951) The study of instinct. Clarendon Press. [J-PE]Google Scholar
Tolman, E. C. (1948) Cognitive maps in rats and men. Psychological Review 55: 189208. [J-PE]CrossRefGoogle ScholarPubMed
Touretzky, D. S. (1986) BoltzCONS: Reconciling connectionism with the recursive nature of stacks and trees. Proceedings of the 8th Conference of the Cognitive Science Society, Amherst, Mass. [PS]Google Scholar
Touretzky, D. S. & Derthick, M. A. (1987) Symbol structures in connectionist networks: Five properties and two architectures. COMPCON Spring 32nd IEEE Computer Society International Conference, San Francisco. [DST]Google Scholar
Touretzky, D. S. & Hinton, G. E. (1985) Symbols among the neurons: of a connectionist inference architecture. Proceedings of the International Joint Conference on Artificial Intelligence. [PS]Google Scholar
Townsend, J. T. (1974) Issues and models concerning the processing of a finite number of inputs. In: Human information processing: Tutorials in performance and cognition, ed. Kantowitz, B. H.. Erlbaum. [aJRA]Google Scholar
Townsend, J. T. & Ashby, F. G. (1983) Stochastic modeling of elementary psychological processes. Cambridge University Press. [JTT]Google Scholar
Tulving, E. (1983) Elements of episodic memory. Oxford University Press. [aJRA]Google Scholar
Uexküll, J. V. (1909) Umwelt und Innenwelt der Tiere. Springer-Verlag. [J-PE]Google Scholar
Vanegas, H., ed.(1984) Comparative neurology of the optic tectum. Plenum. [J-PE]CrossRefGoogle Scholar
VanLehn, K. (1983) Felicity conditions for human skill acquisition: Validating an Al-based theory (Technical Report CIS-21). Palo Alto: Xerox Pare. [aJRA]Google Scholar
Vinogradova, O. (1975) Hippocampus and the orienting reflex. In: Neuronal mechanisms of the orienting reflex, ed. Sokolov, E. N. & Vinogradova, O.. Erlbaum. [J-PE]Google Scholar
Walker, S. (1983) Animal thought. Routledge & Kegan Paul. [J-PE]Google Scholar
Wertheimer, M. (1959) Productive thinking. Harper & Row. [RG]Google Scholar
Willshaw, D. (1981) Holography, associative memory, and inductive generalization. In: Parallel models of associative memory, ed. Hinton, G. E. & Anderson, J. A.. Erlbaum. [JTT]Google Scholar
Woolf, B. & McDonald, D. D. (1984) Building a computer tutor: Design issues. IEEE Transactions on Computers 17: 6173. [MAA]Google Scholar