Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-25T13:18:53.217Z Has data issue: false hasContentIssue false

Meta-learned models as tools to test theories of cognitive development

Published online by Cambridge University Press:  23 September 2024

Kate Nussenbaum*
Affiliation:
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA [email protected] https://www.katenuss.com/
Catherine A. Hartley*
Affiliation:
Department of Psychology, New York University, New York, NY, USA [email protected] https://www.hartleylab.org/
*
*Corresponding authors.
*Corresponding authors.

Abstract

Binz et al. argue that meta-learned models are essential tools for understanding adult cognition. Here, we propose that these models are particularly useful for testing hypotheses about why learning processes change across development. By leveraging their ability to discover optimal algorithms and account for capacity limitations, researchers can use these models to test competing theories of developmental change in learning.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Binz, M., & Schulz, E. (2022). Modeling human exploration through resource-rational reinforcement learning. Advances in Neural Information Processing Systems, 35, 3175531768.Google Scholar
Blanco, N. J., & Sloutsky, V. M. (2021). Systematic exploration and uncertainty dominate young children's choices. Developmental Science, 24(2), e13026.CrossRefGoogle ScholarPubMed
Bolenz, F., Reiter, A. M. F., & Eppinger, B. (2017). Developmental changes in learning: Computational mechanisms and social influences. Frontiers in Psychology, 8, 2048.CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131138.CrossRefGoogle ScholarPubMed
Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C. A. (2016). From creatures of habit to goal-directed learners: Tracking the developmental emergence of model-based reinforcement learning. Psychological Science, 27(6), 848858.CrossRefGoogle ScholarPubMed
Gopnik, A. (2020). Childhood as a solution to explore–exploit tensions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1803), 20190502.CrossRefGoogle ScholarPubMed
Gualtieri, S., & Finn, A. S. (2022). The sweet spot: When children's developing abilities, brains, and knowledge make them better learners than adults. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 17(5), 13221338.CrossRefGoogle ScholarPubMed
Hartley, C. A., Nussenbaum, K., & Cohen, A. O. (2021). Interactive development of adaptive learning and memory. Annual Review of Developmental Psychology, 3, 5985.CrossRefGoogle Scholar
Liquin, E. G., & Gopnik, A. (2022). Children are more exploratory and learn more than adults in an approach-avoid task. Cognition, 218, 104940.CrossRefGoogle Scholar
Nussenbaum, K., & Hartley, C. A. (2019). Reinforcement learning across development: What insights can we draw from a decade of research? Developmental Cognitive Neuroscience, 40, 100733.CrossRefGoogle ScholarPubMed
Nussenbaum, K., & Hartley, C.A. (in press). Understanding the development of reward learning through the lens of meta-learning. Nature Reviews Psychology.Google Scholar
Raab, H. A., & Hartley, C. A. (2018). The development of goal-directed decision-making. In Morris, R., Bornstein, A., & Shenhav, A. (Eds.), Goal-directed decision making: Computations and neural circuits (pp. 279308). Elsevier Academic Press.CrossRefGoogle Scholar
Ruel, A., Devine, S., & Eppinger, B. (2021). Resource-rational approach to meta-control problems across the lifespan. Wiley Interdisciplinary Reviews. Cognitive Science, 12(5), e1556.CrossRefGoogle ScholarPubMed
Somerville, L. H., Sasse, S. F., Garrad, M. C., Drysdale, A. T., Abi Akar, N., Insel, C., & Wilson, R. C. (2017). Charting the expansion of strategic exploratory behavior during adolescence. Journal of Experimental Psychology. General, 146(2), 155164.CrossRefGoogle ScholarPubMed
Sumner, E., Li, A. X., Perfors, A., Hayes, B., Navarro, D., & Sarnecka, B. W. (2019). The exploration advantage: Children's instinct to explore allows them to find information that adults miss. https://doi.org/10.31234/osf.io/h437vCrossRefGoogle Scholar
Wang, J. X. (2021). Meta-learning in natural and artificial intelligence. Current Opinion in Behavioral Sciences, 38, 9095.CrossRefGoogle Scholar
Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11(1), 3763.CrossRefGoogle Scholar