Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T09:07:24.723Z Has data issue: false hasContentIssue false

Imaginary worlds are attractive because they simulate multiple adaptive problems and encode real-world information

Published online by Cambridge University Press:  18 November 2022

Lawrence Sugiyama*
Affiliation:
Anthropology Department, University of Oregon, Eugene, OR 97403, USA [email protected]

Abstract

Organisms don't explore for exploration's sake: exploratory psychology is regulated by inputs from multiple adaptations dedicated to processing information from different domains of ancestral adaptive relevance. As holistic representations of environments, imaginary worlds simulate multiple adaptive problems, solutions, and outcomes, thereby engaging numerous emotional systems and providing potentially useful information. Their popularity is thus best understood in terms of the full spectrum of information domains they comprise.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvard, M. S. (1993). Testing the “ecologically noble savage” hypothesis: Interspecific prey choice by Piro hunters of Amazonian Peru. Human Ecology, 21(4), 355387.CrossRefGoogle Scholar
Beckerman, S. (1983). Carpe diem: An optimal foraging approach to Bari fishing and hunting. Adaptive responses of native Amazonians (pp. 269299). Academic Press.Google Scholar
Blaser, R. E., Chadwick, L., & McGinnis, G. C. (2010). Behavioral measures of anxiety in zebrafish (Danio rerio). Behavioural Brain Research, 208(1), 5662.CrossRefGoogle Scholar
Blaser, R. E., & Rosemberg, D. B. (2012). Measures of anxiety in Zebrafish (Danio rerio): Dissociation of black/white preference and novel tank test. PLoS ONE, 7(5), e36931.CrossRefGoogle ScholarPubMed
Blurton Jones, N., & Konner, M. J. (1976). Kung knowledge of animal behavior (pp. 325348). Kalahari hunter-gatherers.Google Scholar
Cashdan, E., & Gaulin, S. J. (2016). Why go there? Evolution of mobility and spatial cognition in women and men. Human Nature, 27(1), 115.CrossRefGoogle ScholarPubMed
Cashdan, E., Marlowe, F. W., Crittenden, A., Porter, C., & Wood, B. M. (2012). Sex differences in spatial cognition among Hadza foragers. Evolution and Human Behavior, 33(4), 274284.CrossRefGoogle Scholar
Champagne, D. L., Hoefnagels, C. C., De Kloet, R. E., & Richardson, M. K. (2010). Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research. Behavioural Brain Research, 214(2), 332342.CrossRefGoogle ScholarPubMed
Cosmides, L., & Tooby, J. (2000). Evolutionary psychology and the emotions. Handbook of Emotions, 2(2), 91115.Google Scholar
Davis, H. E., & Cashdan, E. (2019). Spatial cognition, navigation, and mobility among children in a forager-horticulturalist population, the Tsimané of Bolivia. Cognitive Development, 52, 100800.CrossRefGoogle Scholar
Deecke, V. B., Slater, P. J., & Ford, J. K. (2002). Selective habituation shapes acoustic predator recognition in harbour seals. Nature, 420(6912), 171173.CrossRefGoogle ScholarPubMed
Drai, D., Benjamini, Y., & Golani, I. (2000). Statistical discrimination of natural modes of motion in rat exploratory behavior. Journal of Neuroscience Methods, 96(2), 119131.CrossRefGoogle ScholarPubMed
Eilam, D., & Golani, I. (1989). Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behavioural Brain Research, 34(3), 199211.CrossRefGoogle ScholarPubMed
Epstein, L. H., Temple, J. L., Roemmich, J. N., & Bouton, M. E. (2009). Habituation as a determinant of human food intake. Psychological Review, 116(2), 384.CrossRefGoogle ScholarPubMed
Gagnon, K. T., Cashdan, E. A., Stefanucci, J. K., & Creem-Regehr, S. H. (2016). Sex differences in exploration behavior and the relationship to harm avoidance. Human Nature, 27(1), 8297.CrossRefGoogle ScholarPubMed
Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108117.CrossRefGoogle ScholarPubMed
Hawkes, K., Hill, K., & O'Connell, J. F. (1982). Why hunters gather: Optimal foraging and the Ache of eastern Paraguay. American Ethnologist, 9(2), 379398.CrossRefGoogle Scholar
Hill, K., Kaplan, H., Hawkes, K., & Hurtado, A. M. (1987). Foraging decisions among Ache hunter-gatherers: New data and implications for optimal foraging models. Ethology and Sociobiology, 8(1), 136.CrossRefGoogle Scholar
Huang, P., Kerman, K., Sieving, K. E., & Mary, C. M. S. (2016). Evaluating the novel-environment test for measurement of exploration by bird species. Journal of Ethology, 34(1), 4551.CrossRefGoogle Scholar
Janssen, M. A., & Hill, K. (2014). Benefits of grouping and cooperative hunting among Ache hunter–gatherers: Insights from an agent-based foraging model. Human Ecology, 42(6), 823835.CrossRefGoogle Scholar
Kalueff, A. V., Keisala, T., Minasyan, A., Kuuslahti, M., & Tuohimaa, P. (2006). Temporal stability of novelty exploration in mice exposed to different open field tests. Behavioural Processes, 72(1), 104112.CrossRefGoogle ScholarPubMed
New, J., Krasnow, M. M., Truxaw, D., & Gaulin, S. J. (2007). Spatial adaptations for plant foraging: Women excel and calories count. Proceedings of the Royal Society B: Biological Sciences, 274(1626), 26792684.CrossRefGoogle ScholarPubMed
Orians, G. H., & Heerwagen, J. H. (1992). Evolved responses to landscapes. In Barkow, J. H., Cosmides, L., & Tooby, J. (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 555579). Oxford University Press.Google Scholar
Ross, C. T., & Winterhalder, B. (2018). Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters. PLoS ONE, 13(12), e0207633.CrossRefGoogle Scholar
Scalise Sugiyama, M. (2004). Predation, narration, and adaptation: “Little Red Riding Hood” revisited. Interdisciplinary Literary Studies, 5(2), 110129.Google Scholar
Scalise Sugiyama, M. (2008a). Narrative as social mapping. Case study: The trickster genre and the free rider problem. Ometeca, 12, 2443.Google Scholar
Scalise Sugiyama, M. (2008b). Information is the stuff of narrative. Style, 42(2–3), 254260.Google Scholar
Scalise Sugiyama, M. (2009). The plot thickens: What children's stories tell us about mindreading.Google Scholar
Scalise Sugiyama, M. (2011). The forager oral tradition and the evolution of prolonged juvenility. Frontiers in Psychology, 2, 133CrossRefGoogle ScholarPubMed
Scalise Sugiyama, M. (2017a). Distant time: A possible typological literary universal. In Hogan, P. (Ed.), The literary universals project. University of Connecticut. http://literary-universals.uconn.edu/2017/01/31/distant-time-a-possible-typological-literary-universal/.Google Scholar
Scalise Sugiyama, M. (2017b). Narrative. In Weekes-Shackelford, V. & Shackelford, T. (Eds.), Encyclopedia of evolutionary psychological science. Springer. https://doi.org/10.1007/978-3-319-16999-6_3316-1.Google Scholar
Scalise Sugiyama, M. (2019). The relevance of popularity: Ecological factors at play in story pervasiveness. In Vanderbeke, D., & Cooke, B. (Eds.), Evolution and popular narrative (pp. 245263). Brill Rodopi.Google Scholar
Scalise Sugiyama, M. (2021). The fiction that fiction is fiction. ASEBL Journal, 15, 812. https://resources.finalsite.net/images/v1610065663/sfc/pj4pmi0aeaffqpvyasgb/ASEBLJournalvol15January2021.pdf.Google Scholar
Scalise Sugiyama, M., & Sugiyama, L. (2009). A frugal (re) past: Use of oral tradition to buffer foraging risk. Studies in the Literary Imagination, 42(2), 1541.Google Scholar
Scalise Sugiyama, M. & Sugiyama, L. S, ., (2011). Once the child is lost he dies': Monster stories vis-à-vis the problem of errant children. In Slingerland, E., & Collard, M. Creating consilience: Integrating the sciences and the humanities, 351371Google Scholar
Schaffer, A., Caicoya, A. L., Colell, M., Holland, R., Ensenyat, C., & Amici, F. (2020). Gaze following in ungulates: Domesticated and non-domesticated species follow the gaze of both humans and conspecifics in an experimental context. Frontiers in Psychology, 11, 3087.CrossRefGoogle Scholar
Schloegl, C., Kotrschal, K., & Bugnyar, T. (2007). Gaze following in common ravens, Corvus corax: Ontogeny and habituation. Animal Behaviour, 74(4), 769778.CrossRefGoogle Scholar
Seimon, T. A., Seimon, A., Daszak, P., Halloy, S. R., Schloegel, L. M., Aguilar, C. A., … Simmons, J. E. (2007). Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biology, 13(1), 288299.CrossRefGoogle Scholar
Shepherd, S. V. (2010). Following gaze: Gaze-following behavior as a window into social cognition. Frontiers in Integrative Neuroscience, 4, 5.Google ScholarPubMed
Stewart, A., Cachat, J., Wong, K., Gaikwad, S., Gilder, T., DiLeo, J., … Kalueff, A. V. (2010). Homebase behavior of zebrafish in novelty-based paradigms. Behavioural processes, 85(2), 198203.CrossRefGoogle ScholarPubMed
Stewart, A. M., Gaikwad, S., Kyzar, E., & Kalueff, A. V. (2012). Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Research, 1451, 4452.CrossRefGoogle ScholarPubMed
Sugiyama, L. S. (2015). Physical attractiveness in adaptationist prspective. In Buss, D. (Ed.), The handbook of evolutionary psychology (pp. 292–343). Wiley.Google Scholar
Sugiyama, M. S., & Sugiyama, L. S. (2011). Once the child is lost he dies’: Monster stories vis-a-vis the problem of errant children. In Creating consilience: Integrating the sciences and the humanities (pp. 351371).Google Scholar
Thompson, S. M., Berkowitz, L. E., & Clark, B. J. (2018). Behavioral and neural subsystems of rodent exploration. Learning and Motivation, 61, 315.CrossRefGoogle ScholarPubMed
Tooby, J., & Cosmides, L. (1990). The past explains the present: Emotional adaptations and the structure of ancestral environments. Ethology and Sociobiology, 11(4–5), 375424.CrossRefGoogle Scholar
Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J. H., Cosmides, L., & Tooby, J. (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19136). Oxford University Press.Google Scholar
Tooby, J., Cosmides, L., Sell, A., Lieberman, D., & Sznycer, D. (2008). Internal regulatory variables and the design of human motivation: A computational and evolutionary approach. Handbook of Approach and Avoidance Motivation, 15, 251.Google Scholar
Trumble, B. C., Gaulin, S. J., Dunbar, M. D., Kaplan, H., & Gurven, M. (2016). No sex or age difference in dead-reckoning ability among Tsimane forager-horticulturalists. Human Nature, 27(1), 5167.CrossRefGoogle ScholarPubMed
Vashro, L., & Cashdan, E. (2015). Spatial cognition, mobility, and reproductive success in northwestern Namibia. Evolution and Human Behavior, 36(2), 123129.CrossRefGoogle Scholar
Wiessner, P. W. (2014). Embers of society: Firelight talk among the Ju/’hoansi Bushmen. Proceedings of the National Academy of Sciences, 111(39), 1402714035.CrossRefGoogle ScholarPubMed
Wood, B. M., Harris, J. A., Raichlen, D. A., Pontzer, H., Sayre, K., Sancilio, A., … Cashdan, E. (2021). Gendered movement ecology and landscape use in Hadza hunter-gatherers. Nature Human Behaviour, 5(4), 436446.CrossRefGoogle ScholarPubMed