Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T03:52:31.233Z Has data issue: false hasContentIssue false

How many light adaptation mechanisms are there?

Published online by Cambridge University Press:  04 February 2010

M. Deric Bownds
Affiliation:
Laboratory of Molecular Biology, University of Wisconsin, Madison WI 53706. [email protected]
Vadim Y. Arshavsky
Affiliation:
Laboratory of Molecular Biology, University of Wisconsin, Madison WI 53706. [email protected].

Abstract

The generally positive response to our target article indicates that most of the commentators accept our contention that light adaptation consists of multiple and possibly redundant mechanisms. The commentaries fall into three general categories. The first deals with putative mechanisms that we chose not to emphasize. The second is a more extended discussion of the role of calcium in adaptation. Finally, additional aspects of cGMP involvement in adaptation are considered. We discuss each of these points in turn.

Type
Reply
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Arshavsky's present address is Howe Laboratories, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114.

References

Abeliovich, A., Chen, C., Goda, Y., Silva, A. J., Stevens, C. F. & Tonegawa, S. (1993a) Modified hippocampal long term potentiation in PKC-gamma mutant mice. Cell 75: 1253–62. [aZX]CrossRefGoogle ScholarPubMed
Abeliovich, A., Paylor, R., Chen, C., Kim, J. J., Wehner, J. M. & Tonegawa, S. (1993b) PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75: 1263–71. [aZX]CrossRefGoogle ScholarPubMed
Abrams, T. W. (1985) Activity-dependent presynaptic facilitation: An associative mechanism in Aplysia. Cellular and Molecular Neurobiology 5: 123–45. [TWA]CrossRefGoogle ScholarPubMed
Abrams, T. W., Bernier, L., Hawkins, R. D. & Kandel, E. R. (1984) Possible roles of Ca2+ and cAMP in activity-dependent facilitation, a mechanism for associative learning in Aplysia. Society for Neuroscience Abstracts 10:269. [TWA]Google Scholar
Abrams, T. W. & Galun, J. (1993) Temporal aspects of activation of a Ca2+/CaM-sensitive adenylyl cyclase: Possible contribution to detection of CS-US pairing during conditioning. Society for Neuroscience Abstracts 19: 1065. [TWA]Google Scholar
Abrams, T. W., Jarrard, H. E. & Yovell, Y. (1994) Calcium accelerates adenylyl cyclase deactivation contributing to CS-US sequence requirement during conditioning in Aplysia. Submitted. [TWA]Google Scholar
Abrams, T. W. & Kandel, E. R. (1988) Is contiguity detection in classical conditioning a system or a cellular property? Learning in Aplysia suggests a possible molecular site. Trends in Neuroscience 11: 128–35. [TWA]CrossRefGoogle ScholarPubMed
Abrams, T. W, Karl, K. A. & Kandel, E. R. (1991a) Biochemical studies of stimulus convergence during classical conditioning in Aplysia: Dual regulation of adenylate cyclase by Ca2+/calmodulin and transmitter. Journal of Neuroscience 11: 2655–65. [aZX, WH]CrossRefGoogle ScholarPubMed
Adamus, G., Ortega, H., Witkowska, D. & Polans, A. (1994) Recovorin: A potent uveitogen for the induction of photoreceptor degeneration in Lewis rats. Experimental Eye Research 59: 447–56. [ASP]CrossRefGoogle Scholar
Adamus, G., Zam, Z. S., Arendt, A., Palczewski, K., McDowell, J. H. & Hargrave, P. A. (1991) Anti-rhodopsin monoclonal antibodies of defined specificity: Characterization and application. Vision Research 31: 1731 [aPAH]CrossRefGoogle ScholarPubMed
Agranoff, B. W., Davis, R. E. & Brink, J. J. (1965) Memory fixation in the goldfish. Proceedings of the National Academy of Sciences USA 54: 788– 93. [EDR]CrossRefGoogle ScholarPubMed
Aguirre, G., Farber, D. Lolley, R., Fletcher, R. T. & Chader, C. (1978) Rodcone dysplasia in Irish setters: A defect in cyclic GMP metabolism in visual cells. Science 201: 1133–34. [MWK]CrossRefGoogle Scholar
Ahlijanian, M. K., Halford, M. K. & Cooper, D. M. F. (1987) Ca2+/ calmodulin distinguishes between guanyl-5'-yl-imidodiphosphate- and opiate-mediated inhibition of rat striatal adenylate cyclase. Journal of Neurochemistry 49: 1308–15. [MMR]CrossRefGoogle ScholarPubMed
Ahmad, I., Korbmacher, C., Segal, A. S., Cheung, P., Boulpaep, E. L. & Barnstable, C. J. (1992) Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated rod photorecoptor channel. Proceedings of the National Academy of Sciences USA 89: 10262–66. [aRSM]CrossRefGoogle Scholar
Ahmad, I., Redmond, L. J. & Barnstable, C. J. (1990) Developmental and tissue-specific expression of rod photoreceptor cGMP-gated ion channel gene. Biochemical and Biophysical Research Communications 173:463–70. [aRSM]CrossRefGoogle ScholarPubMed
Akita, H., Tanis, S. P., Adams, M., Balogh-Nair, V. & Nakanishi, K. (1980) Nonbleachable rhodopsins retaining the full natural chromophore. Journal of the American Chemical Society 102: 6370–72. [aPAH]CrossRefGoogle Scholar
Al-Maghtheh, A., Kim, R. Y., Inglehearn, C. & Bhattacharya, S. S. (1994a) A 150 bp insert in the rhodopsin gene of an autosomal dominant retinitis pigmentosa family. Human Molecular Cenetics 3: 205–6. [aSPD]CrossRefGoogle Scholar
Al-Maghtheh, M., Inglehearn, C. F., Keen, T. J., Evans, K., Moore, A. T., Jay, M., Bird, A. C. & Bhattacharya, S. S. (1994) Identification of a sixth locus for autosomal dominant retinitis pigmentosa on chromosome 19. Human Molecular Genetics 3: 351–54. [aSPD]CrossRefGoogle ScholarPubMed
Al-Maghtheh, M., Inglehearn, C., Lunt, P., Jay, M., Bird, A. & Bhattacharya, S. (1994) Two new rhodopsin transversion mutations (C40R; M216K) in families with autosomal dominant retinitis pigmentosa. Human Mutation 3: 409–10. [aSPD]CrossRefGoogle Scholar
Albert, A. D. & Litman, B. J. (1978) Independent structural domains in the membrane protein bovine rhodopsin. Biochemistry 17: 38933900. [ADA]CrossRefGoogle ScholarPubMed
Alexander, K. A., Cimler, B. M., Meier, K. E. & Storm, D. R. (1987) Regulation of cahmodulin binding to P-57. Journal of Biological Chemistry 262: 6108–13. [aZX]CrossRefGoogle ScholarPubMed
Allen, J. P. & Feher, G. (1991). Crystallization of reaction centers from Rhodobacter sphaervides. In: Crystallization of membrane proteins, ed. Michel, H.. CRC Press. [aPAH]Google Scholar
Altenhnfen, W., Ludwig, J., Eismann, E., Kraus, W., Bönigk, W. & Kaupp, U. B. (1991) Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proceedings of the National Academy of Sciences USA 88: 9868–72. [aRSM]CrossRefGoogle Scholar
Ames, J. B., Porumbo, T., Tanaka, T., Ikura, M. & Stryer, L. (1995) Aminoturminal myristoylation induces cooperative calcium binding to recoverin. Journal of Biological Chemistry 270: 4526–33. [rJBH]CrossRefGoogle ScholarPubMed
Amos, L. A., Henderson, R. & Unwin, P. N. T. (1982) Three-dimensional structure determination by electron microscopy of 2-D crystals. Progress in Biophysics and Molecular Biology 39: 183231. [aPAH]CrossRefGoogle Scholar
Anant, J. S. & Fung, B. K.-K. (1992) In vivo farnesylation of rat rhodopsin kinase. Biochemical and Biophysical Research Communications 183: 468–73. [aMDB]CrossRefGoogle ScholarPubMed
Anant, J. S., Ong, O. C, Xie, H., Clarke, S., O'Brien, P. J. & Fung, B. K.-K. (1992) In vivo differential prenylation of retinal cyclic GMP phosphodiesterase catalytic subunits. Journal of Biological Chemistry 267: 687–90. [aMDB]CrossRefGoogle ScholarPubMed
Andersson, L. & Porath, J. (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Analytical Biochemistry 154: 250– 54. [aPAH]CrossRefGoogle ScholarPubMed
Andrade, R. (1993) Neuron 10: 8388. [MMR]CrossRefGoogle Scholar
Andreasen, T. J., Luetje, C. W., Heideman, W. & Storm, D. R. (1983) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemistry 22: 4615–18. [aZX]CrossRefGoogle ScholarPubMed
Andréasson, S., Ehinger, B., Abrahamson, M. & Fex, G. (1992) A six-generation family with autosomal dominant retinitis pigmentosa and a rhodopsin gene mutation (arginine-135-leucine). Ophthalmic Pediatrics and Genetics 13: 145–53. [aSPD]CrossRefGoogle Scholar
Angleson, J. K. & Wensel, T. G. (1993) A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes. Neuron 11: 939–49. [aMDB]CrossRefGoogle ScholarPubMed
Angleson, J. K. & Wensel, T. G. (1994) Enhancement of rod outer segment GTPase accelerating protein activity by the inhibitory subunit of cGMP phosphodiesterase. Journal of Biological Chemistry 269: 16290–96. [arMDB]CrossRefGoogle ScholarPubMed
Antonny, B., Otto-Bruc, A., Chabre, M. & Minh Vuong, T. (1993) GTP hydrolysis by purified α-subunit of transducin and its complex with the cyclic GMP phosphodiesterase inhibitor. Biochemistry 32: 8646– 53. [arMDB, BMW]CrossRefGoogle ScholarPubMed
Apel, E. D., Byford, M. F., Au, D., Walsh, K. A. & Storm, D. R. (1990) Identification of the protein kinase C phosphorylation site in neuromodulin. Biochemistry 29: 2330–35. [aZX]CrossRefGoogle ScholarPubMed
Apfelstedt-Sylla, E., Kunisch, M., Horn, M., Ruther, K., Gal, A. & Zrenner, E. (1992) Diffuse loss of rod function in autosomal dominant retinitis pigmentosa with pro-347-leu mutation of rhodopsin. German Journal of Ophthalmology 1: 319–27. [aSPD]Google ScholarPubMed
Applebury, M. A. (1991) Molecular determinants of visual pigment function. Current Opinion in Neurobiology 1: 263–69. [aPAH]CrossRefGoogle ScholarPubMed
Applebury, M. L. & Hargrave, P. A. (1986) Molecular biology of the visual pigments. Vision Research 26: 1881–95. [aPAH]CrossRefGoogle ScholarPubMed
Arikawa, K., Molday, L. L., Molday, R. S. & Williams, D. (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: Relationship to disk membrane morphogenesis and retinal degeneration. Journal of Cell Biology 116: 659–67. [aSPD]CrossRefGoogle ScholarPubMed
Arnoux, B., Ducruix, A., Reiss-Husson, F., Lutz, M., Norris, J., Schiffer, M. & Chang, C. G. (1989) Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides . FEBS Letters 258: 4750. [aPAH]CrossRefGoogle ScholarPubMed
Arshavsky, V. Y., Antoch, M. P., Dizhoor, A. M., Rakhilin, S. V. & Philippov, P. P. (1987) Interaction of visual transduction enzymes in a detergent solution. In: Retinal proteins, ed. Ovchinnikov, Y. A.. Utrecht: VNU Science Press. [aMDB]Google Scholar
Arshavsky, V. Y., Antoch, M. P., Lukjanov, K. A. & Philippov, P. P. (1989) Transducin GTPase provides for rapid quenching of the cGMP cascade in rod outer segments. FEBS Letters 250: 353–56. [aMDB]CrossRefGoogle ScholarPubMed
Arshavsky, V. Y. & Bownds, M. D. (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357: 416–17. [aMDB]CrossRefGoogle ScholarPubMed
Arshavsky, V. Y., Dizhoor, A. M., Shestakova, I. K. & Philippov, P. P. (1985) The effect of rhodopsin phosphorylation on the light-dependent activation of phosphodiesterase from bovine rod outer segments. FEBS Letters 181: 264–66. [aMDB]CrossRefGoogle ScholarPubMed
Arshavsky, V. Y., Dumke, C. L. & Bownds, M. D. (1992) Non-catalytic cGMP binding sites of amphibian rod cCMP phosphodiesterase control interaction with its inhibitory gamma-subunits—a putative regulatory mechanism of the rod photoresponse. Journal of Biological Chemistry 267: 24501–7. [aMDB]CrossRefGoogle Scholar
Arshavsky, V. Y., Dumke, C. L. & Bownds, M. D.(1995) Manuscript in preparation. [aMDB]Google Scholar
Arshavsky, V. Y., Dumke, C. L., Zhu, Y., Artemyev, N. O., Skiba, N. P., Hamm, H. E. & Bownds, M. D. (1994) Regulation of transducin GTPase activity in bovine rod outer segments. Journal of Biological Chemistry 269: 19882–87. [arMDB]CrossRefGoogle ScholarPubMed
Arshavsky, V. Y., Gray-Keller, M. P. & Bownds, M. D. (1991) cGMP suppresses GTPase activity of a portion of transducin equimolar to phosphodiesterase in frog rod outer segments. Light-induced cGMP decreases as a putative feedback mechanism of the photoresponse. Journal of Biological Chemistry 266: 18530–37. [aMDB]Google ScholarPubMed
Artlich, A., Horn, M., Lorenz, B., Bhattacharya, S. & Gal, A. (1992) Recurrent 3-bp deletion at codon 255/256 of the rhodopsin gene in a German pedigree with autosomal dominant retinitis pigmentosa. American Journal of Human Genetics 50: 876–78. [aSPD]Google Scholar
Aton, B. R., Litman, B. J. & Jackson, M. L. (1984) Isolation and Identification of the phosphorylated species of rhodopsin. Biochemistry 23: 1737– 41. [aPAH]CrossRefGoogle ScholarPubMed
Bacskai, B. J., Hochner, B., Mahaut-Smith, M., Adams, S. R., Kaang, B. K., Kandel, E. R. & Tsien, R. Y. (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260: 222–26. [aZX]CrossRefGoogle ScholarPubMed
Baehr, W., Gorczyca, W., Subbaraya, I., Ohguro, H., Johnson, R. S., Walsh, K. A., Gray-Keller, M. P., Detwiler, P. B., Crabb, J. & Palezewski, K. (1994) Isolation, cloning, and functional characterization of bovine retina guanylate cyclase activating protein (GCAP). Investigative Ophthalmology and Visual Science 35: 1486. [aMDB]Google Scholar
Baehr, W., Morita, E. A., Swanson, R. J. & Applebury, M. L. (1982) Characterization of bovine rod outer segment G-protein. Journal of Biological Chemistry 257: 6452–60. [aMDB]CrossRefGoogle ScholarPubMed
Bakalyar, H. A. & Reed, R. R. (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–6. [aZX]CrossRefGoogle ScholarPubMed
Baldwin, J. M. (1993) The probable arrangement of the helices in G proteincoupled receptors. EM BO Journal 12: 16931703. [aSPD, SOS]Google Scholar
Baldwin, P. A. & Hubbell, W. L. (1985a) Effects of lipid environment on the light-induced conformational changes of rhodopsin: 1. Absence ofmetarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes. Biochemistry 24: 2624–32. [ADA]CrossRefGoogle ScholarPubMed
Baldwin, P. A. & Hubbell, W. L. (1985b) Effects of lipid environment on the light-induced conformational changes of rhodopsin: 2. Roles of lipid chain length, unsaturation, and phase state. Biochemistry 24: 2633–39. [ADA]CrossRefGoogle ScholarPubMed
Barker, D., Schafer, M. & White, R. (1984) Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell 6: 131– 38. [aSPD]CrossRefGoogle Scholar
Bascom, R. A., Manara, S., Collins, L., Molday, R. S., Kalnins, V. I. & Mclnnes, R. R. (1992) Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8: 1171–84. [aSPD]CrossRefGoogle ScholarPubMed
Baudier, J., Bronner, C., Kligman, D. & Cole, R. D. (1989) Protein kinase C substrates from bovine brain: Purification and characterization of neuromodulin, a neuron-specific calmodulin binding protein. Journal of Biological Chemistry 264: 1824–28. [EDR]CrossRefGoogle ScholarPubMed
Bauer, P. H., Müller, S., Puzicha, M., Pippig, S., Obermaier, B., Helmreich, E. J. M. & Lohse, M. J. (1992) Phosducin is a protein kinase A-regulated G-protein regulator. Nature 358: 7376. [BMW]CrossRefGoogle ScholarPubMed
Baumann, A., Frings, S., Godde, M., Seifert, R. & Kaupp, U. B. (1994) Primary structure and functional expression of a Drosphila cyclic nucleotide-gated channel present in eyes and antennae. EMBO Journal 13: 5040–50. [rRSM]CrossRefGoogle Scholar
Baylor, D. A. (1987) Photoreceptor signals and vision. Investigative Ophthalmology and Visual Science 28: 3449. [aPAH]Google Scholar
Baylor, D. A. & Hodgkin, A. L. (1974) Changes in time scale and sensitivity in turtle photoreceptors. Journal of Physiology (London) 242: 729–58. [aMDB]CrossRefGoogle ScholarPubMed
Baylor, D. A., Lamb, T. D. & Yau, K.-W. (1979a) The membrane current of single rod outer semgments. Journal of Physiology (London) 288: 589611. [aMDB]Google Scholar
Baylor, D. A., Lamb, T. D. & Yau, K.-W. (1979b) Responses of retinal rods to single photons. Journal of Physiology (London) 288: 613–34. [aMDB]Google ScholarPubMed
Baylor, D. A., Matthews, G. & Yau, K.-W. (1980) Two components of electrical dark noise in toad retinal rod outer segments. Journal of Physiology (London) 309: 591621. [aMDB]CrossRefGoogle ScholarPubMed
Beaudet, A. L. & Tsui, L.-C. (1993) A suggested nomenclature for designating mutations. Human Mutation 2: 245–48. [aSPD]CrossRefGoogle ScholarPubMed
Bell, C., Converse, C. A., Collins, M. F., Esakowitz, L., Kelly, K. F. & Haites, N. E. (1992) Autosomal dominant retinitis pigmentosa (ADRP): A rhodopsin mutation in a Scottish family. Journal of Medical Genetics 29: 667–68. [aSPD]CrossRefGoogle Scholar
Bennett, A. E., Ok, J. H., Griffin, R. G. & Vega, S. (1992) Chemical shift correlation specetroscopy in rotating solids: Radio frequency-driven dipolar recoupling and logitudinal exchange. Journal of Chemical Physics 96: 8624–27. [SOS]CrossRefGoogle Scholar
Bennett, N. & Clere, A. (1989) Activation of cGMP phosphodiesterase in retinal rods: Mechanism of interaction with the GTP-binding protein (transducin). Biochemistry 28: 7418–24. [aMDB]CrossRefGoogle Scholar
Bennett, N. & Sitaramayya, A. (1988) Inactivation of photoexcited rhodopsin in retinal rods: The roles of rhodopsin kinase and 48-KDa protein(arrestin). Biochemistry 27: 1710–15. [aMDB]CrossRefGoogle Scholar
Benowitz, L. I. & Routtenberg, A. (1987) A membrane phosphoprotein associated with neural development axonal regeneration, phospholipid metabolism, and synaptic plasticity. Trends in Neuroscience 10: 527– 32. [aZX]CrossRefGoogle Scholar
Berson, E. L. (1993) Retinitis pigmentosa—The Friedenwald Lecture. Investigative Ophthamology and Visual Science 34: 1659–76. [aSPD, aPAH]Google Scholar
Berson, E. L., Rosner, B., Sandberg, M. A. & Dryja, T. P. (1991) Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (Pro-23-His). Archives of Ophthalmology 109: 92101. [aSPD]CrossRefGoogle Scholar
Berson, E. L., Rosner, B., Sandberg, M. A., Weigel-DiFranco, C. & Dryja, T. P. (1991a) Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, Proline-347-Leucine. American Journal of Ophthalmology 111: 614–23. [aSPD]CrossRefGoogle ScholarPubMed
Berson, E. L., Sandberg, M. A. & Dryja, T. P. (1991b) Autosomal dominant retinitis pigmentosa with rhodopsin, valine-345-methionine. Transcripts of the American Ophthalmological Society 89: 117–30. [aSPD]Google ScholarPubMed
Bhattacharya, S. S., Ridge, K. D., Knox, B. E. & Khorana, H. G. (1992) Light-stable rhodopsin: 1. A rhodopsin analog reconstituted with a nonisomerizable ll-cis retinal derivative. Journal of Biological Chemistry 267: 6763–69. [aPAH]CrossRefGoogle ScholarPubMed
Bhattacharya, S. S., Wright, A. F., Clayton, J. F., Price, W. U., Phillips, C. I., McKeown, C. M. E., Jay, M., Bird, A. C, Pearson, P. L., Southern, E. M. & Evans, H. J. (1984) Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe Ll.28. Nature 309: 253–55. [aSPD]CrossRefGoogle Scholar
Biel, M., Altenhofen, W., Hullin, R., Ludwig, J., Freichel, M., Flocherzi, V., Dascal, N., Kaupp, U. B. & Hofmann, F. (1993) Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. FEBS Letters 329: 134–38. [aRSM]CrossRefGoogle ScholarPubMed
Biel, M., Zong, X., Distler, M., Bosse, R., Klugbauer, N., Murakami, M., Flockerzi, V. & Hoffmann, F. (1994) Another member of the cyclic nucleotide-gated channel family expressed in testis, kidney and heart. Proceedings of the National Academy of Sciences USA 91: 3505–9. [rRSM]CrossRefGoogle Scholar
Biernbaum, M. S., Binder, B. M. & Bownds, M. D. (1991) Dim background light and Cerenkov radiation from 32P block reversal of rhodopsin phosphorylation in intact frog retinal rods. Visual Neuroscience 7: 499503. [aMDB]CrossRefGoogle ScholarPubMed
Biernbaum, M. S. & Bownds, M. D. (1985) Light-induced changes in GTP and ATP in frog rod photoreeeptors: Comparison with recovery of dark current and light sensitivity during dark adaptation. Journal of General Physiology 85: 107–21. [aMDB]CrossRefGoogle ScholarPubMed
Binder, B. M., Biernbaum, M. S. & Bownds, M. D. (1990) Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination. Journal of Biological Chemistry 265: 15333–40. [aMDB]CrossRefGoogle ScholarPubMed
Binder, B. M., Brewer, E. & Bownds, M. D. (1989) Stimulation of protein phosphorylations in frog rod outer segments by protein kinase activators: Suppression of light-induced changes in membrane current and cGMP by protein kinase C activators. Journal of Biological Chemistry 264: 8857– 64. [aMDB]CrossRefGoogle ScholarPubMed
Bitensky, M. W, Wheeler, M. A., Yamazaki, A., Rasenick, M. M. & Stein, P. J. (1981) Cyclic nucleotide matabolism in vertebrate photoreceptors: A remarkable analogy and an unraveling enigma. Current Topics in Membrane Transportation 15: 237–71. [TGW]CrossRefGoogle Scholar
Blanton, S. H., Heckenlively, J. R., Cottingham, A. W, Friedman, J., Sadler, L. A., Wagner, M., Friedman, L. H. & Daiger, S. P. (1991) Linkage mapping of autosomal dominant retinitis pigmentosa (adRP) to the pericentric region of human chromosome 8. Genomics 11: 857–69. [aSPD]CrossRefGoogle Scholar
Blatt, C., Eversole-Cire, P., Colin, V. H., Zollman, S. et al. (1988) Chromosomal localization of genes encoding guanine nuclcotide-binding protein subunits in mouse and human. Proceedings of the National Academy of Sciences USA 85: 7642–46. [aSPD]CrossRefGoogle ScholarPubMed
Bodoia, R. D. & Detwiler, P. B. (1985) Patch-clamp recordings of the lightsensitive dark noise in retinal rods from the lizard and frog. Journal of Physiology 367: 183216. [aRSM]CrossRefGoogle Scholar
Boekema, E. J., Van Heel, M. G. & Van Bruggen, E. F. J. (1986) Preparation of two-dimensional crystals of complex 1 and image analysis. Methods in Enzymology 126: 344–53. [aPAH]CrossRefGoogle Scholar
Boesze-Battaglia, K. & Albert, A. (1990) Cholesterol modulation of photoreceptor function in bovine rod outer segments. Journal of Biological Chemistry 265: 20727–30. [ADA]CrossRefGoogle Scholar
Bönigk, W., Altenhofen, W., Muller, F., Dose, A., Illing, M., Molday, R. S. & Kaupp, U. B. (1993) Rod and cone photoreceptor cells express distinct genes for cyclic GMP-gated channels. Neuron 10: 865–77. [aRSM]CrossRefGoogle Scholar
Bornancin, F., Pfister, C. & Chabre, M. (1989) The transitory complex between photoexcited rhodopsin and transducin: Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin. European Journal of Biochemistry 184: 687–98. [aPAH]CrossRefGoogle ScholarPubMed
Bourne, H. R. & Nicoll, R. (1993a) Molecular machines integrate coincident synaptic signals. Cell 72: 6575. [aZX]CrossRefGoogle ScholarPubMed
Bourne, H. R. & Nicoll, R. (1993b) Molecular machines integrate coincident synaptic signals. Neuron 10(Suppl.):6575. [TWA]Google Scholar
Bourne, H. R., Sanders, D. A. & McCormick, F. (1990) The GTPase superfamily: A conserved switch for diverse cell functions. Nature 348: 125–32. [aMDB]CrossRefGoogle ScholarPubMed
Bourne, H. R., Sanders, D. A. & McCormick, F. (1991) The GTPase superfamily: Conserved structure and molecular mechanism. Nature 349: 117–27. [aMDB]CrossRefGoogle ScholarPubMed
Bowes, C., Li, T., Danciger, M., Baxter, L. C, Applebury, M. L & Farber, D. B. (1990) Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase. Nature 347: 677–80. [aSPD, MWK]CrossRefGoogle ScholarPubMed
Bowes, C., Li, T., Frankel, W. N., Danciger, M., Coffin, J. M., Applebury, M. L. & Farber, D. B. (1993) Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proceedings of the National Academy of Sciences USA 90: 2955–59. [aSPD]CrossRefGoogle ScholarPubMed
Bowie, J. U., Lüthy, R. & Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253: 164–70. [RMC]CrossRefGoogle ScholarPubMed
Bownds, D., Dawes, J., Miller, J. & Stahlman, M. (1972) Phosphorylation of frog photoreceptor membranes induced by light. Nature New Biology 237: 125–27. [aMDB]CrossRefGoogle Scholar
Bownds, M. D., Arshavsky, V. Y., Calvert, P. D. & Dumke, C. I. (1992) Rod outer segment concentration and structure influence the apparent kinetics of cGMP phosphodiesterase. Investigative Ophthalmology and Visual Science 33: 873. [aMDB]Google Scholar
Bownds, M. D. & Thomson, D. (1988) Control of the sensitivity and kinetics of the vertebrate photoresponse during light adaptation—calculations from simple molecular models. In: Molecular physiology of retinal proteins, ed. Hara, T.. Osaka: Japan Scientific Society Press. [aMDB]Google Scholar
Bradley, J., Li, J., Davidson, N., Lester, H. A. & Zinn, K. (1994) Heteromeric olfactory cyclic nucleotide-gated channels: A subunit that confers increased sensitivity to cAMP. Proceedings of the National Academy of Sciences USA 91: 8890–94. [rRSM]CrossRefGoogle Scholar
Brann, M. R. & Cohen, L. V. (1987) Diurnal expression of tranducin mRNA and translocation of transducin in rods of rat retina. Science 235: 585–88. [JFM]CrossRefGoogle Scholar
Breer, H. & Boekhoff, I. (1992) Second messenger signalling in olfaction. Current Opinion in Neurobiology 2: 439–43. [aMDB]CrossRefGoogle ScholarPubMed
Bressler, N. M., Bressler, S. B. & Fine, S. L. (1988) Age-related macular degeneration. Survey of Ophthalmology 32: 375413. [aSPD]CrossRefGoogle ScholarPubMed
Brown, N. G., Fowles, C., Sharma, R. & Akhtar, M. (1993) Quantitative characterization of the structure of rhodopsin in disc membrane by means of Fourier transform infrared spectroscopy. Journal of Biological Chemistry 268: 2403–9. [ADA]Google Scholar
Brown, R. L., Bert, R. J., Evans, F. E. & Karpen, J. W. (1993) Activation of retinal rod cGMP-gated channels: What makes for an effective 8-snbstitutecl derivative of cGMP? Biochemistry 32: 10089–95. [RLB]CrossRefGoogle ScholarPubMed
Brown, R. L., Cerber, W. V. & Karpen, J. W. (1993) Specific labeling and permanent activation of the retinal rod cGMP-activated channel by the photaffinity analog 8-p-azidophcnacylthio-cGMP. Proceedings of the National Academy of Sciences USA 90: 5369–73. [aRSM, RLB]CrossRefGoogle Scholar
Brown, R. L., Cramling, R., Bert, R. J. & Karpen, J. W. (in press) Cyclic GMP contact points within the 63-kDa subunit and a 240-kDa associated protein of retinal rod cGMP-activated channels. Biochemistry. [RLB]Google Scholar
Brown, R. L. & Karpen, J. W. (1994) Dissecting the activation mechanism of retinal rod cGMP-gated channels using covalently tethered ligands. Biophysics Journal 66: A350. [RLB, TGW]Google Scholar
Buczylko, J., Gutmann, C. & Palezewski, K. (1991) Regulation of rhodopsin kinase by autophosphorylation. Proceedings of the National Academy of Sciences USA 88: 2568–72. [aMDB]CrossRefGoogle ScholarPubMed
Bunge, S., Wedemann, H., David, D., Terwilliger, D. J., Van Den Bom, L. I., Aulehla-Scholz, C., Sammons, C., Horn, M., Ott, J., Schwinger, E., Schinzel, A., Denton, M. J. & Gal, A. (1993) Molecular analysis and genetic mapping of the retinitis pigmentosa gene in families with autosomal dominant retinitis pigmentosa. Genomics 17: 230–33. [aSPD]CrossRefGoogle ScholarPubMed
Burks, C., Cinkosky, M. J., Fischer, W. M., Gilna, P., Hayden, J. E.-D., Keen, G. M., Kelly, M., Kristofferson, D. & Lawrence, J. (1992) GenBank. Nucleic Acids Research 20: 2065–69. [aSPD]CrossRefGoogle ScholarPubMed
Byrne, J. H. (1987) Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Physiology Review 67: 329439. [aZX]CrossRefGoogle Scholar
Cali, J. F., Zwaagstra, J. C., Mons, N., Cooper, D. M. F. & Krupinski, J. (1994) Type VIII adenylyl cyclase. Journal of Biological Chemistry 269: 12190–95. [aZX]CrossRefGoogle ScholarPubMed
Campbell, J. W., Duee, E., Hodgson, G., Mercer, W. D., Stammers, D. K., Wendell, P. L., Muirhead, H. & Watson, H. C. (1971) X-ray diffraction studies on enzymes in the glycolytic pathway. Cold Spring Harbor Symposium on Quantitative Biology 36: 165–70. [aPAH]CrossRefGoogle Scholar
Caretta, A. & Cavaggioni, A. (1983) Fast ionic flux activated by cyclic GMP in the membrane of cattle rod outer segments. European Journal of Biochemistry 132: 18. [TGW]CrossRefGoogle ScholarPubMed
Caretta, A., Cavaggioni, A., Grimaldi, R. & Sorbi, R. (1988) Regulation of cyclic GMP binding to retinal rod membranes by calcium. European Journal of Biochemistry 177: 139–46. [aRSM]CrossRefGoogle ScholarPubMed
Caretta, A., Cavaggioni, A. & Sorbi, R. T. (1979) Cyclic GMP and the permeability of the disks of the frog photoreceptors. Journal of Physiology 295: 171–78. [TGW]CrossRefGoogle ScholarPubMed
Castellucci, V. F., Blumenfeld, H., Goelet, P. & Kandel, E. R. (1989) Inhibitor of protein synthesis blocks long-term behavioral sensitization in the isolated gill-withdrawal reflex of Aplysia. Journal of Neurobiology 20: 19. [aZX]CrossRefGoogle ScholarPubMed
Castellucci, V. F. & Kandel, E. R.(1976) Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194: 1176–78. [aZX]CrossRefGoogle ScholarPubMed
Cavaggioni, A. & Sorbi, R. T. (1981) Cyelie GMP releases calcium from disc membranes of vertebrate photoreceptors. Proceedings of the National Academy of Science USA 78: 3964–68. [TGW]CrossRefGoogle ScholarPubMed
Caviness, V. S. Jr, So, D. K. & Sidman, R. L. (1972) The hybrid reeler mouse. Journal of Heredity 63: 341–46. [DW]CrossRefGoogle ScholarPubMed
Cervetto, L., Torre, V., Pasino, E., Marroni, P. & Capovilla, M. (1984) Recovery from light-desensitization in toad rods. In: Photoreceptors, ed. Borcellino, A. & Cervetto, L.. Plenum. [arMDB]Google Scholar
Chabre, M. (1985) Molecular mechanism of visual phototransduction in retinal rod cells. Annual Review of Biophysics and Biophysical Chemistry 14: 331–60. [aPAH]Google Scholar
Chabre, M. & Deterre, P. (1989) Molecular mechanism of visual transduction. European Journal of Biochemistry 179: 255–66. [aMDB, aPAH, aRSM]CrossRefGoogle ScholarPubMed
Chakraborty, R. (1993) Generalized occupancy problem and its applications in population genetics. In: Genetics of cellular, individual, family, and population variability, ed. Sing, C. F. & Hanis, C. L.. Oxford University Press. [aSPD]Google Scholar
Chang, B., Heckenlively, J. R., Hawes, N. L. & Roderick, T. H. (1993) New mouse primary retinal degeneration (rd-3). Genomics 16: 4549. [MWK]CrossRefGoogle Scholar
Chang, G.-Q., Hao, Y. & Wong, F. (1993) Apoptosis: Final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11: 595605. [aSPD, MT]CrossRefGoogle ScholarPubMed
Charbonneau, H., Prusti, R. K., LeTrong, , Sonnenburg, W. K., Mullancy, P. J., Walsh, K. A. & Beavo, J. A. (1990) Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterase. Proceedings of the National Academy of Sciences USA 87: 288–92. [aMDB]CrossRefGoogle Scholar
Chen, C.-K. & Hurley, J. B. (1994) Calcium-dependent recoverin/rhodopsin kinase interaction. Investigative Ophthalmology and Visual Science 35: 1485. [aMDB, aJBH, AY]Google Scholar
Chen, S., Fry, C. H., Illner, H., Kickenweiz, E., McGuigan, J. A. S., Powell, T. & Twist, V. W. (1992) Measurement of intracellular free magnesium in isolated guinea-pig papillary muscles and ventricular myocytes. Journal of Physiology (London) 452: 194 p.[RLH]Google Scholar
Chen, T. -Y, Illing, M., Molday, L. L., Hsu, T.-T, Yau, K.-W. & Molday, R. S. (1994) subunit 2 (or β) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca2+-ealmodulin modulation. Proceedings of the National Academy of Sciences USA 91: 11757–61. [rRSM, RLB, DDO]CrossRefGoogle ScholarPubMed
Chen, T.-Y, Peng, Y.-W, Dhallan, R. S., Ahamed, B., Reed, R. R. & Yau, K.-W. (1993) A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362: 764–67. [arRSM, RLB, LWH, RLH, DDO]CrossRefGoogle ScholarPubMed
Chen, T.-Y. & Yau, K.-W. (1994) Direct modulation by Ca-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368: 545–48. [rRSM]CrossRefGoogle Scholar
Chetkovich, D. M., Gray, R., Johnston, D. & Sweatt, J. D. (1991) N-methyl- D-aspartate receptor activation increases cAMP levels and voltage gated Ca2+ channel activity in area CA1 of hippocampus. Proceedings of the National Academy of Sciences USA 88: 6467–71. [aZX, EDR]CrossRefGoogle ScholarPubMed
Chevkovich, D. M. & Sweatt, J. D. (1993) NMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. Journal of Neurochemistry 61: 1933–42. [aZX, EDR]CrossRefGoogle Scholar
Cheung, W. Y. & Storm, D. R. (1982) Calmodulin regulation of cAMP metabolism. Handbook of Experimental Pharmacology 58: 301–17. [aZX]CrossRefGoogle Scholar
Choi, E. J., Wong, S. T, Dittman, A. H. & Storm, D. R. (1993). Phorbol ester stimulation of the type I & type III adenylyl cyclases in whole cells. Biochemistry 32: 1891–94. [aZX]CrossRefGoogle ScholarPubMed
Choi, E. J., Wong, S. T., Hinds, T. J. & Storm, D. R. (1992a) Calcium and muscarinic agonist stimulation of type I adenylyl cyclase in whole cells. Journal of Biological Chemistry 267: 12440–42. [aZX]CrossRefGoogle ScholarPubMed
Choi, E. J., Xia, Z. & Storm, D. R. (1992b) Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31: 6492–98. [arZX]CrossRefGoogle ScholarPubMed
Cimler, B. M., Andreasen, T. J., Andreasen, K. I. & Storm, D. R. (1985) P–57 is a neural specific calmodulin-binding protein. Journal of Biological Chemistry 260: 10784–88. [aZX]CrossRefGoogle ScholarPubMed
Clack, J. W. & Pepperberg, D. R. (1982) Desensitization of skate photoreceptor by bleaching and background light. Journal of General Physiology 80: 863–83. [aMDB]CrossRefGoogle ScholarPubMed
Clack, J. W. & Stein, P. J. (1988) Opsin exhibits cCMP-activated single channel activity. Proceedings of the National Academy of Sciences USA 85: 9806–10. [aRSM]CrossRefGoogle ScholarPubMed
Clore, G. M. & Gronenborn, A. M. (1994a) Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR: Young investigator award lecture. Protein Science 3: 372–90. [RKC]CrossRefGoogle ScholarPubMed
Clore, G. M. & Gronenborn, A. M. (1994b) Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Protein Science 3: 372–90. [rPAH]CrossRefGoogle ScholarPubMed
Coleman, D. L. (1981) Inherited obesity-diabetes syndromes in the mouse. In: Mammalian genetics and cancer. Liss. [DW]Google Scholar
Coles, J. A. & Yamane, S. (1975) Effects of adapting lights on the time course of the receptor potential of the anuran retinal rod. Journal of Physiology (London) 247: 189207. [arMDB]CrossRefGoogle ScholarPubMed
Collingridge, G. (1987) Synaptic plasticity: The role of NMDA receptors in learning and memory. Nature 330: 604–5. [TWA]CrossRefGoogle ScholarPubMed
Cone, R. A. (1972) Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biology 236: 3943. [aPAH]CrossRefGoogle ScholarPubMed
Connell, G., Bascom, R., Molday, L., Reid, D., Mclnnes, R. R. & Molday, R. S. (1991) Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proceedings of the National Academy of Sciences USA 38: 723–36. [aSPD, MWK]CrossRefGoogle Scholar
Cook, N. J., Hanke, W. & Kaupp, U. B. (1987) Identification, purification and functional reconstitution of the cyclic GMP-dependent channel from rod photoreceptors. Proceedings of the National Academy of Sciences USA 84: 585–89. [aRSM, RLB, RLH, TGW]CrossRefGoogle ScholarPubMed
Cook, N. J., Molday, L. L., Reid, D., Kaupp, U. B. & Molday, R. S. (1989) The cGMP- gated channel of bovine rod phororeceptors is localized exclusively in the plasma membrane. Journal of Biological Chemistry 264: 6996–99. [aRSM, RLH, TGW]CrossRefGoogle Scholar
Corless, J. M., McCaslin, D. R. & Scott, B. L. (1982) Two-dimensional rhodopsin crystals from disk membranes of frog retinal rod outer segments. Proceedings of the National Academy of Sciences USA 79:1116–20. [aPAH EAD]CrossRefGoogle ScholarPubMed
Cornwall, M. C. & Fain, G. L. (1992) Bleaching of rhodopsin in isolated rods causes a sustained activation of PDE and cyclase which is reversed by pigment regeneration. Investigative Ophthalmology and Visual Science 33: 1103. [aMDB]Google Scholar
Cornwall, M. C. & Fain, G. L. (1994) Bleached pigment activates transduction in isolated rods of the salamander retina. Journal of Physiology (London) 480: 261279. [rMDB]CrossRefGoogle ScholarPubMed
Cornwall, M. C. & Fain, G. L. (1994) Bleached pigment activates transduction in isolated rods of the salamander retina. Journal of Physiology 480: 261–79. [RKC]CrossRefGoogle ScholarPubMed
Cornwall, M. C. & Pan, W.-Z. (1985). Spatial resolution of bleaching and background adaptation in rod photoreceptors of Ambystoma tigrinum. In: The visual system, ed. Fein, A. & Levine, J.. Liss, Alan R.. [RKC]Google Scholar
Cornwall, M. C, Fein, A. & MacNichol, E. F. (1990) Cellular mechanisms that underlie bleaching and background adaptation. Journal of General Physiology 96: 345–72. [RKC]CrossRefGoogle ScholarPubMed
Cornwall, M. C, Fein, A. & MacNichol, E. F. (1983) Spatial localization of bleaching adaptation in isolated vertebrate rod photoreceptors. Proceedings of the National Academy of Sciences USA 80: 2785–88. [RKC]CrossRefGoogle ScholarPubMed
Corson, D. W., Cornwall, M. C, MaeNichol, E. F., Jin, J., Johnson, R., Derguini, F., Crouch, R. K. & Nakanishi, K. (1990) Sensitization of bleached rod photoreceptors by 11-cis-locked analogues of retinal. Proceedings of the National Academy of Sciences USA 87: 6823–27. [RKC]CrossRefGoogle ScholarPubMed
Corson, D. W., Cornwall, M. C, MaeNichol, E. F., Tsang, S., Derguini, F., Crouch, R. K. & Nakanishi, K. (1994a) Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethyl retinal. Proceedings of the National Academy of Sciences USA 91: 6952–58. [RKC]CrossRefGoogle Scholar
Corson, D. W., Cornwall, M. C. & Pepperberg, D. R. (1994b) Evidence for the prolonged photoactivated lifetime of an analogue visual pigment containing 11-cis 9-desmethylretinal. Visual Neuroscience 11: 9198. [RKC]CrossRefGoogle ScholarPubMed
Cote, R. H. & Brunnock, M. A. (1993) Intracellular cGMP concentration in rod photoreceptors is regulated by binding to high and moderate affinity cGMP binding sites. Journal of Biological Chemistry 268: 17190– 98. [aMDB]CrossRefGoogle ScholarPubMed
Cote, R. H., Bownds, M. D. & Arshavsky, V. Y. (1994) cGMP binding sites on photoreceptor phosphodiesterase: Role in feedback regulation of visual transduction. Proceedings of the National Academy of Sciences USA 91: 4845–49. [arMDB, BMW]CrossRefGoogle ScholarPubMed
Creuzet, F., McDermott, A., Gebhard, R., van der Hoef, K., Spijker-Assink, M., Herzfeld, J., Lugtenburg, J., Levitt, M. H. & Griffin, R. G. (1991) Determination of membrane protein structure by rotational resonance NMR: Bacteriorhodopsin. Science 251: 783–86. [SOS]CrossRefGoogle ScholarPubMed
Davis, S., Butcher, S. P. & Morris, R. G. (1992) The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatiallearning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. Journal of Neuroscience 12: 2134. [aZX, TWA]CrossRefGoogle Scholar
Dawis, S. M. (1991) A molecular basis for Weber's law. Visual Neuroscience 7: 285320. [aMDB]CrossRefGoogle ScholarPubMed
Dawis, S. M., Graeff, R. M., Heyman, R. A., Walseth, T. F. & Goldberg, N. D. (1988) Regulation of cyclic GMP metabolism in toad photoreceptors. Journal of Biological Chemistry 263: 8771–85. [arMDB]CrossRefGoogle ScholarPubMed
de Crip, W. J. (1982a) Purification of bovine rhodopsin over concanavalin A-sepharose. Methods in Enzymology 81: 197207. [aPAH]CrossRefGoogle Scholar
de Crip, W. J. (1982b) Thermal stability of rhodopsin and opsin in some novel detergents. Methods in Enzymology 81: 256–65. [aPAH]CrossRefGoogle Scholar
de Grip, W. J., Olive, J. & Bovee-Geurts, P. H. M. (1983) Reversible modulation of rhodopsin photolysis in pure phosphatidylserine membranes. Biochimica et Biophysica Ada 734: 168–79. [aPAH]CrossRefGoogle Scholar
de Grip, W. J., van Oostrum, J., Bovee-Geurts, P. H. M., van der Steen, R., van Amsterdam, L. J. P., Groesbeek, M. & Lugtenburg, J. (1990) 10,20-methanorhodopsins: (7E.9E, 13E)- 10,20, methanorhodopsin and (7E.9Z, 13Z)-10,20-methanorhodopsin: 11-cis-locked rhodopsin analog pigments with unusual thermal and photo-stability. European Journal of Biochemistry 191: 211–20. [aPAH]CrossRefGoogle Scholar
de Grip, W. J., van Oostrum, J. & De Caluw, C. L. J. (1992) Studies towards the crystallization of the rod visual pigment rhodopsin. Journal of Crystal Growth 122: 375–84. [aPAH]CrossRefGoogle Scholar
Deese, A. J., Dratz, E. A., Dahlquist, F. W. & Paddy, M. R. (1981) Interaction of rhodopsin with two unsaturated phosphatidylcholines: A deuterium nuclear magnetic resonance study. Biochemistry 20: 6420–27. [aPAH]CrossRefGoogle ScholarPubMed
Deisenhofer, J. & Michel, H. (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis . Science 245: 1463–73. [aPAH]CrossRefGoogle ScholarPubMed
Demin, V. V., Yurkova, E. V., Kuzin, A. P., Barnakov, A. N. & Abdulaev, N. G. (1987). Crystallization of bovine retinal rhodopsin. In: Retinal proteins. VNU Science Press. [aPAH]Google Scholar
Dencher, N. A., Dresselhaus, D., Zaccai, G. & Boldt, G. (1989) Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Proceedings of the National Academy of Sciences USA 86: 7876–79. [aPAH]CrossRefGoogle ScholarPubMed
Derguini, F. & Nakanishi, K. (1986) Synthetic rhodopsin analogs. Photobiochemistry & Photobiophysics 13: 259–83. [aPAH]Google Scholar
Deterre, P., Bigay, J., Forguet, F., Robert, M. & Chabre, M. (1988) cGMP of phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proceedings of the National Academy of Sciences USA 85: 2424–28. [aMDB]CrossRefGoogle ScholarPubMed
Detwiler, P. B. & Gray-Keller, M. P. (1992) Some unresolved issues in the physiology and biochemistry of phototransduction. Current Opinion in Neurobiology 2: 433–38. [aMDB]CrossRefGoogle ScholarPubMed
Dhallan, R. S., Macke, J. P., Eddy, R. L., Shows, T. B., Reed, R. R., Yau, K. W. & Nathans, J. (1992) Human rod photoreceptor cGMP-gated channel: Amino acid sequence, gene structure, and functional expression. Journal of Neuroscience 12: 3248–56. [aRSM]CrossRefGoogle ScholarPubMed
Dhallan, R. S., Yau, K. W, Schrader, K. A. & Reed, R. R. (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347: 184–87. [aRSM]CrossRefGoogle ScholarPubMed
Dittman, A. H., Weber, J. P., Hinds, T. R., Choi, E. J., Migeon, J. C., Nathanson, N. M. & Storm, D. R. (1994) A novel mechanism for coupling of m4 muscarinic acetylcholine receptors to calmodulin-sensitive adenylyl cyclases: Cross-over from G protein coupled inhibition to stimulation. Biochemistry 33: 943–51. [aZX]CrossRefGoogle Scholar
Dizhoor, A. M., Chen, C.-K., Olshevskaya, E., Sinelnikova, V. V., Philipov, P. & Hurley, J. B. (1993) Role of the acylated amino terminus of recoverin in Ca+2-dcpendcnt membrane iuteraction. Science 259: 829–32. [aJBH, SK]CrossRefGoogle Scholar
Dizhnor, A. M., Ericsson, L. H., Johnson, R. S., Kumar, S., Olshevakaya, E., Zozulya, S., Neubert, T. A., Stryer, L., Hurley, J. B. & Walsh, K. A. (1992) The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. Journal of Biological Chemistry 267: 16033–36. [aJBH, KS]CrossRefGoogle Scholar
Dizhoor, A. M., Lowe, D. C, Olshevskaya, E. V., Laura, R. P. & Hurley, J. B. (1994) The human photorcceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12: 1345–52. [aMDB]CrossRefGoogle Scholar
Dizhoor, A. M., Ray, S., Kumar, S., Niemi, C., Spencer, M., Brolley, D., Walsh, K. A., Philipov, P. P., Hurley, J. B. & Stryer, L. (1991) Recoverin: A calcium sensitive activator of retinal rod guanylate cyclase. Science 251: 915–18. [aMDB, aJBH, SK, JFM, ASP]CrossRefGoogle ScholarPubMed
Dorset, D. L., Engel, A., Honor, M., Massalski, A. & Rosenbusch, J. P. (1983) Two-dimensional crystal packing of matrix porin. Journal of Molecular Biology 165: 701–10. [aPAH]CrossRefGoogle ScholarPubMed
Downer, N. W. (1985) Cross-linking of dark-adapted frog photoreceptor disk membranes: Evidence for monomeric rhodopsin. Biophysical Journal 47: 285–93. [aPAH]CrossRefGoogle ScholarPubMed
Dratz, E. A., Furstenau, J., Hamm, H. E. & Hargrave, P. A. (1990) Probing the molecular mechanism of visual excitation using bioactive peptide sequences. Investigative Ophthalmology and Visual Science 31: 79. [EAD]Google Scholar
Dratz, E. A., Furstenau, J., Lambert, C. G., Thireault, D. L., Rarick, H., Schepers, T., Pakhlevaniants, S. & Hamm, H. E. (1993) NMR structure of a receptor-bound G-protein peptide. Nature 363: 276–81. [EAD]CrossRefGoogle ScholarPubMed
Dratz, E. A., Hamm, H. E., Zwolinski, R., Furstenau, J. & Lambert, C. (1991) The 3D structure of the active interface between rhodopsin and G-protein determined using 2D NMR. Biophysical Journal 59:189a. [EAD]Google Scholar
Dratz, E. A. & Hargrave, P. A. (1983) The structure of rhodopsin and the rod outer segment disk membrane. Trends in Biochemical Sciences 8: 128–31. [aPAH, EAD]CrossRefGoogle Scholar
Dratz, E. A., Lewis, J. W., Schaechter, L. E., Parker, K. R. & Kliger, D. S. (1987) Retinal rod GTPase turnover rate increases with concentration: A key to the control of visual excitation? Biochemical and Biophysical Research Communications 146: 379–86. [aMDB]CrossRefGoogle Scholar
Dratz, E. A., VanBreeinen, J. F. L., Kamps, K. M. P., Keegstra, W. & VanBruggon, E. F. J. (1985) Two-dimensional crystallization of bovine rhodopsin. Biochimica ct Biophysica Acta 832:337–42. [aPAH, EAD]CrossRefGoogle ScholarPubMed
Dryer, S. E. & Henderson, D. (1991) A cyclic GMP-activated channel in dissociated cells of the chick pineal gland. Nature 353: 756–58. [aRSM]CrossRefGoogle ScholarPubMed
Dryja, T. P. (1992) Doyne lecture: Rhodopsin and autosomal dominant retinitis pigmentosa. Eye 6: 110. [aPAH, aSPD]CrossRefGoogle ScholarPubMed
Dryja, T. P., Berson, E. L., Rao, V. & Oprian, D. D. (1993) Heterozygous missense mutation in the rhodopsin gene as the cause of congenital stationary night blindness. Nature Genetics 4:280–83. [aSPD]CrossRefGoogle ScholarPubMed
Dryja, T. P., Hahn, L. B., McGee, T. L., Cowley, G. S. & Berson, E. L.(1991) Mutation spectrum of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. Proceedings of the National Academy of Sciences USA 88: 9370–74. [aSPD]CrossRefGoogle ScholarPubMed
Dryja, T. P., McGee, T. I., Hahn, L. B., Cowley, G. S., Olsson, J. E., Keichel, E., Sandberg, M. A. & Berson, E. L. (1990) Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. New England Journal of Medicine 323: 1302–7. [aSPD]CrossRefGoogle ScholarPubMed
Dryja, T. P., McGee, T. I., Reichel, E., Hahn, L. B., Cowley, G. S., Yandell, D. W., Sandberg, M. A. & Berson, E. L. (1990a) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343(6256):364–66. [aSPD]CrossRefGoogle ScholarPubMed
Duclai, V. (1988) Neurogenetic dissection of learning and short-term memory in Drosophila. Annual Review of Neuroscience 11: 537–63. [aZX]Google Scholar
Dudai, Y. & Zvi, S. (1984) Adenylate cyclase in the Drosophila memory mutant rutabaga displays an altered Ca2+ sensitivity. Neuroscience Letters 47: 1924. [aZX, TWA]CrossRefGoogle ScholarPubMed
Dudai, Y. & Zvi, S. (1985) Multiple defects in the activity of adenylyl cyclase from the Drosophila memory mutant rutabaga. Journal of Neurochemistry 45: 355–64. [aZX]CrossRefGoogle ScholarPubMed
Dumke, C. L., Arshavsky, V. Y., Calvert, P. D., Pugh, E. N. & Bownds, M. D. (1994) Rod outer segment structure influences the apparent kinetic parameters of cGMP phosphodiesterase. Journal of General Physiology 103: 1071–98. [aMDB]CrossRefGoogle Scholar
Durell, S. R. & Guy, R. (1992) Atomic scale structure and functional models of voltage-gated potassium channels. Biophysics Journal 62: 238–50. [aRSM]CrossRefGoogle ScholarPubMed
Eisman, E., Bönigk, W. & Kaupp, U. B. (1993) Structural features of cyclic nucleotide-gated channels. In: Cellular physiology and biochemistry, ed. Lang, F.. Karger, S. AC. [rRSM]Google Scholar
Eismann, E., Müller, F., Heinemann, S. H. & Kaupp, U. B. (1994) A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage and ionic selectivity. Proceedings of the National Academy of Sciences USA 91: 1109–13. [rRSM]CrossRefGoogle ScholarPubMed
Erickson, M. A., Robinson, P. & Lisman, J. (1992) Deactivation of visual transduction without guanosine triphosphate hydrolysis by G protein. Science 257: 1255–58. [aMDB, AY]CrossRefGoogle ScholarPubMed
Fahmy, K. & Sakmar, T. P. (1993) Regulation of rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry 32: 7229–36. [aSPD]CrossRefGoogle ScholarPubMed
Fain, G. L. (1976) Sensitivity of toad rods: Dependence on wavelength and background illumination. Journal of Physiology (London) 261:71101. [aMDB]CrossRefGoogle Scholar
Fain, G. L. & Cornwall, M. C. (1993) Light and dark adaptation in vertebrate photoreceptors. In: Contrast Sensitivity from receptors to clinic, ed. Shapley, R. & Lam, D.-K.. MIT Press. [RKC]Google Scholar
Fain, G. L., Lamb, T. D., Matthews, H. R. & Murphy, R. L. W. (1989) Cytoplasmic calcium concentration as the messenger for light adaptation in salamander rods. Journal of Physiology 416: 215–43. [HRM]CrossRefGoogle ScholarPubMed
Fain, G. L. & Lisman, J. E. (1993) Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: The equivalent light hypothesis. Experimental Eye Research 57: 335–40. [aMDB]CrossRefGoogle ScholarPubMed
Fain, G. L. & Matthews, H. R. (1990) Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Trends in Neuroscience 13: 378– 84. [HRM]CrossRefGoogle ScholarPubMed
Farber, D. B., Seager, , Danciger, J. & Aguirre, G. (1992) The β subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rod-cone dysplasia l. Neuron 9: 349–56. [MWK]CrossRefGoogle Scholar
Famsworth, C. & Dratz, E. A. (1976) Oxidative damage of retinal rod outer segment membranes and the role of vitamin E. Biochimica et Biophysica Acta 443: 556–70. [aPAH]Google Scholar
Farrar, G. J., Findlay, J. B. C, Kumar-Singh, R., Kenna, P., Humphries, M. M., Sharpe, E. & Humphries, P. (1992) Autosomal dominant retinitis pigmentosa: A novel mutation in the rhodopsin gene in the original 3q linked family. Human Molecular Cenetics 1: 769–71. [aSPD]CrossRefGoogle ScholarPubMed
Farrar, G. J., Jordan, S. A., Kenna, P., Humphries, N. M., Kumar-Singh, R., McWilliams, P., Allamand, V., Sharp, E. & Humphries, P. (1991) Autosomal dominant retinitis pigmentosa: Localization of a disease gene (RP6) to the short arm of chromosome 6. Cenomics 11: 870–4. [aSPD]Google Scholar
Farrar, G. J., Kenna, P., Redmond, R., McWilliams, P., Bradley, D. G., Humphries, M. M., Sharp, E. M., Inglehearn, C. F., Bashir, R., Jay, M., Waytty, A., Ludwig, M., Schinzel, A., Samanns, C., Gal, A., Bhattacharya, S. & Humphries, P. (1990) Autosomal dominant retinitis pigmentosa: Absence of the rhodopsin proline—histidine substitution (codon 23) in pedigrees from Europe. American Journal of Human Genetics 47: 941–45. [aSPD]Google ScholarPubMed
Farrar, G. J., Kenna, P., Redmond, R., Shiels, D., McWilliams, P., Humphries, M. M., Sharp, E. M., Jordan, S., Kumar-Singh, R. & Humphries, P. (1991a) Autosomal dominant retinitis pigmentosa: A mutation in codon 178 of the rhodopsin gene in two families of Celtic origin. Cenomics 11: 1170–71. [aSPD]Google ScholarPubMed
Farrar, G. J., McWilliams, P., Bradley, D. G., Kenna, P., Lawler, M., Sharp, E. M., Humphries, N. M., Eiberg, H., Conneally, P. M., Trofatter, J. A. & Humphries, P.(1990) Autosomal dominant retinitis pigmentosa: Linkage to rhodopsin and evidence for genetic heterogeneity. Genomics 8:3540. [aSPD]CrossRefGoogle ScholarPubMed
Feany, M. B. (1990) Rescue of the learning defect in dunce, a Drosophila learning mutant, by an allele of rutabaga, a second learning mutant. Proceedings of the National Academy of Sciences USA 87: 2795–99. [aZX]CrossRefGoogle ScholarPubMed
Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase through G,-protein beta gamma subunits. Nature 356: 159–61.CrossRefGoogle ScholarPubMed
Feher, G., Atten, J. P., Okamura, M. Y. & Rees, D. C. (1989) Structure and function of bacterial photosynthetic reaction centers. Nature 339: 111– 16. [aPAH]CrossRefGoogle Scholar
Feinstein, P. G., Schrader, A., Bakalyar, H. A., Tang, W. J., Krupinski, J., Oilman, A. G. & Reed, R. R. (1991) Molecular cloning and characterization of a calcium calmodulin insensitive adenylyl cyclase (typell) from rat brain. Proceedings of the National Academy of Sciences USA 88: 10173– 77. [aZX]CrossRefGoogle Scholar
Ferrell, R. E., Hittner, H. M. & Antoszyk, J. H. (1983) Linkage of atypical vitelliform macular dystrophy (GPT1) locus. American Journal of Human Genetics 35: 7884. [aSPD]Google ScholarPubMed
Fesenko, E. E., Kolensnikov, S. S. & Lyubarsky, A. L. (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segments. Nature 313: 310–13. [aRSM, DDO, TGW]CrossRefGoogle Scholar
Findlay, J. B. C. (1986). The biosynthetic, functional, and evolutionary implications of the structure of rhodopsin. In: The molecular mechanismof photoreception. Springor-Verlag. [aPAH]Google Scholar
Firestein, S. (1991) A noseful of odor receptors. Trends in Neuroscience 14:270–72. [aMDB]CrossRefGoogle ScholarPubMed
Fishman, G. A. (1990) Inherited macular dystrophies: A clinical overview. Australia and New Zealand Journal of Ophthalmology 18:123–28. [aSPD]Google ScholarPubMed
Fishman, G. A. (1978) Retinitis pigmentosa: Genetic percentages. Archives of Ophthalmology 96:822–26. [aSPD]CrossRefGoogle ScholarPubMed
Fishman, G. A., Alexander, K. R. & Anderson, R. J. (1985) Autosomal dominant retinitis pigmentosa: A method of classification. Archives of Ophthalmology 103:366–74. [aSPD]CrossRefGoogle ScholarPubMed
Fishman, G. A., Stone, E. M., Gilbert, L. D., Kenna, P. & Sheffield, V. C. (1991) Ocular findings associated with a rhodopsin gene codon 58 transversion mutation in autosomal dominant retinitis pigmentosa. Archives of Ophthalmology 109:1387–93. [aSPD]CrossRefGoogle ScholarPubMed
Fishman, G. A., Stone, E. M., Gilbert, L. D. & Sheffield, V. C. (1992) Ocular findings associated with a rhodopsin gene codon 106 mutation glycine-to-arginine change in autosomal dominant retinitis pigmentosa. Archives of Ophthalmology 110:646–53. [aSPD]CrossRefGoogle ScholarPubMed
Fishman, G. A., Stone, E. M., Sheffield, V. C., Gilbert, L. D. & Kimura, A. E. (1992a) Ocular findings associated with rhodopsin gene eodon 17 and codon 182 transition mutation in dominant retinitis pigmentosa. Archives of Ophthalmology 110:5462. [aSPD]CrossRefGoogle ScholarPubMed
Fishman, G. A., Vandenburgh, K., Stone, E. M., Gilbert, L. D., Alexander, K. R. & Sheffield, V. C. (1992b) Ocular findings associated with rhodopsin gene codon 267 and codon 190 mutations in dominant retinitispigmentosa. Archives of Ophthalmology 110:1582–88. [aSPD]CrossRefGoogle Scholar
Flaherty, K. M., Zozulya, S., Stryer, L. & McKay, D. B. (1993) Three dimensional structure of recoverin, a calcium sensor in vision. Cell 75:709–16 [aMDB, aJBH, KWK]CrossRefGoogle ScholarPubMed
Flieslcr, S. J. & Anderson, R. E. (1983) Chemistry and metabolism of lipids in the vertebrate retina. Progress in Lipid Research 22:79131. [aMDB]CrossRefGoogle Scholar
Fong, S.-L., Tsin, A. T. C., Bridges, C. D. B. & Lion, G. I. (1982) Detergents for extraction of visual pigments: Types, solubilization, and stability. Methods in Enzymology 81:133–40. [aPAH]CrossRefGoogle ScholarPubMed
Forti, S., Menini, A., Rispoli, G. & Torre, V. (1989) Kinetics of phototransduction in retinal rods of the newt Triturus cristatus . Journal of Physiology (London) 419:265–95. [aMDB]CrossRefGoogle ScholarPubMed
Fowles, C., Charma, R. & Akhtar, M. (1988) Mechanistic studies on the phosphorylation of photoexcited rhodopsin. FEBS Letters 238:5660. [aMDB]CrossRefGoogle ScholarPubMed
Franke, R. R., Konig, B., Sakmar, T. P., Khorana, H. G. & Hofmann, K. P. (1990) Rhodopsin mutants that bind but fail to activate transducin. Science 250:123–25. [aPAH, EAD]CrossRefGoogle ScholarPubMed
Franke, R. R., Sakmar, T. P., Graham, R. M. & Khorana, H. G. (1992) Structure and function in rhodopsin: Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. Journal of Biological Chemistry 267:14767–74. [aPAH]CrossRefGoogle ScholarPubMed
Franke, R. R., Sakmar, T. P., Oprian, D. D. & Khorana, H. G. (1988) A single amino acid substitution in rhodopsin (Lysine 248 Leucine) prevents activation of transducin. Journal of Biological Chemistry 263:2119–22. [aSPD]CrossRefGoogle ScholarPubMed
Frey, U., Huang, Y. Y. & Kandel, E. R. (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–64. [aZX, EDR]CrossRefGoogle ScholarPubMed
Frey, U., Krug, M., Reynumn, K. G. & Matthies, H. (1988) Anisomyein, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Research 45:257–65. [EDR, aZX]Google Scholar
Frey, U., Matthies, H., Reymann, K. G. & Matthies, H. (1991). The effect of dopaminergic D1 receptor blockade during totalization on the expression of long-term potentiation in the rat CA1 region in vitro. Neuroscience Letters 29:111–14. [aZX]CrossRefGoogle Scholar
Frost, W. N., Castellucei, V. F., Hawkins, R. D. & Kandel, E. R. (1985) Monosynaptic connections from the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization. Proceedings of the National Academy of Sciences USA 82:8266–69. [aZX]CrossRefGoogle Scholar
Fryxell, K. J. & Meyerowitz, E. M. (1991) The evolution of rhodopsins and neurotransmitter receptors. Journal of Molecular Evolution 33:367–68. [aSPD]CrossRefGoogle ScholarPubMed
Fujiki, K., Hotta, Y., Hayakawa, M., Sakuma, H., Shiono, T., Noro, M., Shakuma, T., Tamai, M., Hikiji, K., Kawaguchi, R. & Hoshi, A. (1992) Point mutations of rhodopsin gene found among Japanese families with antosomal dominant retinitis pigmentosa (ADRP). Japanese Journal of Human Genetics 37:125–32. [aSPD]Google Scholar
Fukuda, M. N., Papermaster, D. S. & Hargrave, P. A. (1979) Rhodopsin carbohydrate: Structure of small oligosaecharides attached at two sites near the NH2 terminus. Journal of Biological Chemistry 254:8201–7. [aPAH]CrossRefGoogle ScholarPubMed
Fukada, Y., Schichida, Y., Yoshizawa, T., Ito, M., Kodama, A. & Tsukida, K. (1984) Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin. Biochemistry 23:5826–32. [aPAH]CrossRefGoogle ScholarPubMed
Fukada, Y., Takao, T., Ohguor, H., Yoshizawa, T., Akino, T. & Shimonishi, Y. (1990) Farnesylated gamma subunit of photoreceptor G protein indispensable for GTP-binding. Nature 346:658–60. [aMDB]CrossRefGoogle ScholarPubMed
Fung, B. K.-K. (1993) Characterization of transducin from bovine retinal rod outer segments: 1. Separation and reconstitution of the subunits. Journal of Biological Chemistry 258:10495–502. [rM DB]CrossRefGoogle Scholar
Fung, B. K.-K. & Griswold-Prenner, I. (1989) G-protein-effector coupling: Binding of rod phosphodiesterase inhibitory subunit to transducin. Biochemistry 28:3133–37. [AY]CrossRefGoogle Scholar
Fung, B. B.-K., Hurley, J. B. & Stryer, L. (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proceedings of the National Academy of Sciences USA 78:152–56. [aM DB, AY]CrossRefGoogle Scholar
Fung, B. K.-K., Young, J. H., Yamane, H. K. & Griswold-Prenner, I. (1990) Subunit stoichiometry of retinal rod cGMP phosphodiesterase. Biochemistry 29:2657–64. [aMDB]CrossRefGoogle ScholarPubMed
Furman, R. E. & Tanaka, J. C. (1990) Monovalent selectivity of the cyclic guanosine monophosphatu-activated ion channel. Journal of General Physiology 96:5782. [aRSM]CrossRefGoogle ScholarPubMed
Gal, A., Artlich, A., Ludwig, M., Niemeyer, C., Olek, K., Schwinger, E. & Schinzel, A. (1991) Pro-347-Arg mutation of the rhodopsin gene in autosomal dominant retinitis pigmentosa. Genomics 11:468–70. [aSPD]CrossRefGoogle ScholarPubMed
Gal, A., Orth, U., Baehr, W., Schwinger, E., & Rosenberg, T. (1994) Heterozygous missense mutation in the rod cGMP phosphodiesterase G-subunit gene in autosomal dominant stationary night blindness. Nature Genetics 7, 551:6467. [aSPD]CrossRefGoogle Scholar
Gannon, A. M., Rodriguez, J. A., Humphries, P., Birch, D. G., Heckenlively, J. R. & Daiger, S. P. (1993) Mutations in peripherin/RDS in patients with retinitis pigmentosa: A 12 base-pair deletion in exon 2. American Journal of Human Genetics 53:1160. [aSPD]Google Scholar
Gao, B. & Gilman, A. (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proceedings of the National Academy of Sciences USA 88:10178–82. [aZX]CrossRefGoogle ScholarPubMed
Garavito, R. M. (1991). Crystallizing membrane proteins: Experiments on different systems. In: Crystallization of membrane proteins, ed. Michel, H.. CRC Press. [aPAH]Google Scholar
Garavito, R. M. (in press) Strategies for crystallizing membrane proteins. Journal of Bioenergetics and Biomembranes. [RMG]Google Scholar
Garavito, R. M. & Picot, D. (1990) The art of membrance protein crystallization. Methods: A Companion to methods in Enzymology 1:5769. [RMG]CrossRefGoogle Scholar
Gery, I., Chanaud, N. P. III & Anglade, E. (1994) Recover in is highly uveitogenic in Lewis rats. Investigative Ophthalmology and Visual Science 35:3342–45. [ASP]Google Scholar
Ghirardi, M., Braha, O., Hochner, B., Montarolo, P. G., Kandel, E. R. & Dale, N. (1992) Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapsesin Aplysia sensory neurons. Neuron 9:479–89. [aZX, TWA]CrossRefGoogle Scholar
Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K. A., Antonio, M., Belsel, K. W., Steel, K. P. & Brown, S. D. M. (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:6264. [rSPD]CrossRefGoogle ScholarPubMed
Gillespie, P. G. & Beavo, J. A. (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. Journal of Biological Chemistry 263:8133–41. [aMDB]CrossRefGoogle ScholarPubMed
Gillespie, P. G. & Beavo, J. A. (1989) cGMP is tightly bound to bovine retinal rod phosphodiesterase. Proceedings of the National Acadenuj of Sciences USA 86:4311–15. [aMDB]CrossRefGoogle ScholarPubMed
Glatt, C. E. & Snyder, S. H. (1993) Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature 363:679–80. [aZX]CrossRefGoogle Scholar
Gnegy, M., Muirhead, N., Roberts-Lewis, J. M. & Treisman, G. (1984) Calmodulin stimulates adenylyl cyclase activity and increases dopamine activation in bovine retina. Journal of Neuroscience 4:2712–17. [aZX]CrossRefGoogle ScholarPubMed
Gnegy, M. & Treisman, G. (1981) Effect of calmodulin on dopamine-sensitive adenylate cyclase activity in rat striatal membranes. Molecular Pharmacology 19:256–63. [aZX]Google ScholarPubMed
Gold, G. H. & Korenbrot, J. J. (1980) Light-induced calcium release by intact retinal rods. Proceedings of the National Academy of Sciences USA 77:5557–61. [TGW]CrossRefGoogle ScholarPubMed
Goldberg, M. F. (1994) Molecular heterogeneity in retinitis pigmentosa. Ophthalmic Genetics 15(2):4750 [AB]CrossRefGoogle ScholarPubMed
Goldsmith, B. A. & Abrams, T. W. (1991) Reversal of synoptic depression by serotonin ut Aplysia sensory neuron synapses involves activation of adenylate cyclase. Proceedings of the National Academy of Sciences USA 88:9021–25. [TWA]CrossRefGoogle Scholar
Gorczyca, W. A., Gray-Keller, M. P., Detwiler, P. B. & Palczewski, K. (1994) Purification and physiological evaluation of a guanylate eyclase activating protein from retinal rods. Proceedings of the National Academy of Sciences USA 91:4014–18. [aMDB]CrossRefGoogle ScholarPubMed
Gordon, J. I., Duronio, R. J., Rudnick, D. A., Adams, S. P. & Gokel, G. W. (1991) Protein N-myristoylation. Journal of Biological Chemistry 266:8647–50. [KS]CrossRefGoogle ScholarPubMed
Gordon, S. E., Brautigan, D. L. & Zimmerman, A. L. (1992) Protein phosphatases modulate the apparent agonist affinity of the ligand regulated ion channel of retinal rods. Neuron 8:739–48. [aMDB, aRSM, RLB. LWH, TGW]CrossRefGoogle Scholar
Gordon, S. E., Downing-Park, J. & Zimmerman, A. L. (in press) Modulation of the cGMP-gated ion channel in frog rods by calmodulin and an endogenous inhibitory factor. Journal of Physiology. [MPG-K, rRSM]Google Scholar
Gordon, S. E. & Zimmerman, A. L. (1994) Modulation of the rod cCMP-gated ion channel by calmodulin and an endogenous factor distinct from calmodulin. Biophysics Journal 66:A355. [MSS, TCW]Google Scholar
Gorodovikova, E. N. & Philippov, P. P. (1993) The presence of a calcium sensitive p26-containing complex in bovine retinal rod cells. FEBS Letters 335:277–79. [SK]CrossRefGoogle Scholar
Goslin, K., Schreyer, D. J., Skene, J. H. P. & Banker, G. (1988) Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 336:672–74. [EDR]CrossRefGoogle ScholarPubMed
Golliding, E. H., Ngai, J., Kramer, R. H., Colicos, S., Axel, R., Siegelbaum, S. A. & Chess, A. (1992) Molecular cloning and single channel properties of the cyclic nuclco tide-gated channel from catfish olfactory neurons. Neuron 8:4558. [aRSM]CrossRefGoogle Scholar
Golliding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. (1993) Role of the H5 domain in determining pore diameter and ion permeation through cyclic nuclcotide-gated channels. Nature 364:6164. [aRSM]CrossRefGoogle Scholar
Golliding, E. H., Tibbs, G. R. & Siegelbaum, S. A. (1994) Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature 372:369–74. [rRSM]CrossRefGoogle Scholar
Grant, S. G. N., O'Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P. & Kandel, E. R. (1992) Impaired long-term potentiation, spatial learning and hippocampal development in fyn mutant mice. Science 258:1903–92. [aZX]CrossRefGoogle ScholarPubMed
Gray-Keller, M. P., Bienibaiim, M. S. & Bownds, M. D. (1990) Transducin activation in electropermeabilized frog rod outer segments is highly amplified, and a portion equivalent to phosphodiesterase remains membrane-bound. Journal of Biological Chemistry 265:15323–32. [aMDB]CrossRefGoogle Scholar
Gray-Keller, M. P. & Detwiler, P. B. (1994a) Intracellular calcium measurements in isolated rod photoreceptors. Investigative Ophthalmology and Visual Science 35:1486. [aMDB]Google Scholar
Gray-Keller, M. P. & Detwiler, P. B. (1994b) Tlie calcium feedback signal in the phototransduction cascade of vertebrate rods. Neuron 13(4):849–61. [MPC-K, MSS, TCW, rMDB]CrossRefGoogle Scholar
Gray-Keller, M. P., Polans, A. S. Palczewski, K. & Derwiler, P. B. (1993) The effect of recoverin-like calcium-binding proteins on the photoresponse of retinal rods. Neuron 10:523–31. [aMDB, aJBH, MPC-K, LWH]CrossRefGoogle ScholarPubMed
Grecksch, G. & Matthies, H. (1980) Two sensitive periods for the amnesic effect of anisomycin. Pharmacology and Biochemistry of Behavior 12:663–65. [aZX]CrossRefGoogle ScholarPubMed
Greenberg, J., Goliath, R., Brighton, P., & Raniesar, R. (1994) A new locus for autosomal dominant retinitis pitmentosa on the short arm of chromosome 17. Human Molecular Genetics 6:915–18. [aSPD]CrossRefGoogle Scholar
Greenberg, S. M., Castellueci, V. F., Bayley, H. & Schwartz, J. H. (1987) A molecular mechanism for long-term sensitization in Aplysia. Neuron 329:6265. [aZX]Google ScholarPubMed
Greengard, P. (1979) Cyclic nucleotides, phosphorylated proteins, and the nervous system. Federation Proceedings 38:2208–17. [TWA]Google ScholarPubMed
Groskoph, S. L., Hammett, D. J. & Cote, R. H. (1992) Nucleotide energy metabolism in electropormeabilizcd rod photoreceptors. Investigative Ophthalmology and Visual Science 33:1008. [aM DB]Google Scholar
Gullion, T. & Schaefer, J. (1989) Detection of weak heteronuclear dipolar coupling by rotational echo double resonance nuclear magnetic resonance. In: Advances in magnetic resonance, vol. 13., ed. Warren, W. S.. Academic Press. [SOS]Google Scholar
Gustafsson, B., Wigstrom, H., Abraham, W. C. & Huang, Y. Y. (1987) Longterm potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. Journal of Neuroscience 7:774–80. [TWA]CrossRefGoogle Scholar
Hagiwara, M., Brindle, P., Harootunian, A., Armstrong, R., Rivier, J., Vale, J., Tsien, R. & Montminy, M. R. (1993) Coupling of hormonal stimulation and transcription via the cAMP responsive factor CREB is rate limited by nuclear entry of protein kinase A. Molecular and Cellular Biology 13:4852–59. [aZX]Google ScholarPubMed
Hakki, S. & Sitaramayya, A. (1990) Guanylate cyclase from bovine rod outer segments: Solubilization, partial purification, and regulation by inorganic pyrophosphate. Biochemistry 29:1088–94. [KWK]CrossRefGoogle ScholarPubMed
Hall, M. D., Hoon, M. A., Ryba, N. J. P., Pottinger, J. D. D., Keen, J. N., Sabil, H. R. & Findlay, J. B. C. (1991) Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed C-protein-linked receptor. Biochemistry Journal 274:3540. [aPAH]CrossRefGoogle ScholarPubMed
Halloran, S. L. (1985) A multidisciplinary analysis of retinitis pigmentosa: Genetic, cpidemiological and clinical parameters. Doctoral thesis, Virginia Commonwealth University. [aSPD]Google Scholar
Hamm, H. (1990) Regulation by light of cyclic nucleotide-dependent protein kinases and their substrates in frog rod outer segments. Journal of General Physiology 95:545–67. [aMDB]CrossRefGoogle ScholarPubMed
Hamm, H. E. & Bownds, M. D. (1986) Protein complement of rod outer segments of frog retina. Biochemistry 25:4512–23. [aMDB]CrossRefGoogle ScholarPubMed
Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B. & Hofmann, K. P. (1988) Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science 241:832–35. [EAD]CrossRefGoogle ScholarPubMed
Hamm, H. E. & Rarick, H. M. (1994) Use of synthetic peptides for mapping G protein interaction sites with receptors. Methods in Enzymology 237:423–36. [RKC]CrossRefGoogle Scholar
Han, M., DeDecker, B. & Smith, S. O. (1993) Localization of the retinal protonated schiff base counterion in rhodopsin. Biophysics Journal 65:899926. [SOS]CrossRefGoogle ScholarPubMed
Han, M. & Smith, S. O. (in press) NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. Biochemistry. [SOS]Google Scholar
Harbison, G. S., Smith, S. O., Pardoen, J. A., Winkel, D. C., Lugtenburg, J., Herzfeld, J., Mathies, R. & Griffln, R. G. (1984) Dark-adapted Bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal schiff bases. Proceedings of the National Academy of Sciences USA 81:1706–9. [SOS]CrossRefGoogle ScholarPubMed
Hardie, R. C. & Minke, B. (1992) The trp gene is essential for a light activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–51. [aRSM]CrossRefGoogle ScholarPubMed
Hargrave, P. A. & Fong, S.-L. (1977) The amino-and carboxyl-terminal sequence of bovine rhodopsin. Journal of Supramolecular Structure 6:559–70. [rPAH]CrossRefGoogle ScholarPubMed
Hargrave, P. A., Hamm, H. E. & Hofmann, K. P. (1993) Interaction of rhodopsin with the G-protein, transducin. BioEssays 15:4350. [aPAH]CrossRefGoogle ScholarPubMed
Hargrave, P. A. & McDowell, J. H. (1992a) Rhodopsin and phototransduction: A model system for G protein-linked receptors. FASEB Journal 6:2323–31. [aMDB, aSPD, aPAH]CrossRefGoogle Scholar
Hargrave, P. A. & McDowell, J. H. (1992b) Rhodopsin and phototransduction. International Review of Cytology 137B:4997. [aSPD]Google ScholarPubMed
Hargrave, P. A. & McDowell, J. H. (1993) Rhodopsin and phototransduction. International Review of Cytology 137B:4997. [aPAH]CrossRefGoogle Scholar
Hargrave, P. A., McDowell, J. H., Feldmann, R. J., Atkinson, P. H., Rao, J. K. M. & Argos, P. (1984) Rhodopsin's protein and carbohydrate structure: Selected aspects. Vision Research 24:1487–99. [aPAH]CrossRefGoogle ScholarPubMed
Hargrave, P. A. & O'Brien, P. J. (1991) Speculations of the molecular basis of retinal degeneration in retinitis pigmentosa. In: Retinal degeneration, ed. Hollyfield, J. G., Anderson, R. E. & LaVail, M. M.. CRC Press. [aSPD]Google Scholar
Hayakawa, M., Hotta, Y., Imai, Y., Fujiki, K., Nakamura, A., Yanashima, K. & Kanai, A. (1993) Clinical features of autosomal dominant retinitis pigmentosa with rhodopsin gene codon 17 mutation and retinal neovascularization. American Journal of Ophthalmology 115:168–73. [aSPD]CrossRefGoogle ScholarPubMed
Hayashi, F. (1994) Light-dependent in vivo phosphorylation of an inhibitory subunit of cGMP-phosphodiesterase in frog rod photoreceptor outer segments. FEBS Letters 338:203–6. [aMDB]CrossRefGoogle ScholarPubMed
Hayashi, F., Lin, G. Y., Matsumoto, H. & Yamazaki, A. (1991) Phosphatidylinositol-stimulated phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in vertebrate rod photoreceptors. Proceedings of the National Academy of Sciences USA 88:4333–37. [aMDB]CrossRefGoogle ScholarPubMed
Haynes, L. W. (1992) Block of the cyclic CMP-gated channel of vertebrate rod and cone photoreeeptors by L-cis-diltiazem. Journal of General Physiology 100:783801. [LWH]CrossRefGoogle ScholarPubMed
Haynes, L. W. & Yau, K.-W. (1985) Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317:6164. [aRSM]CrossRefGoogle ScholarPubMed
Hearst, E. (1988) Fundamentals of learning and conditioning. In: Steven's handbook of experimental psychology, ed. Atkinson, R. C., Herrnstein, R. J., Lindzey, G. & Luce, R. D.. Wiley Interscience. [TWA]Google Scholar
Hebert, H., Xian, Y., Hacksell, I. & Mårdh, S. (1992) Two-dimensional crystals of membrane-bound gastric H, K-ATPase. FEBS Letters 299:159–62. [aPAH]CrossRefGoogle ScholarPubMed
Heck, M. & Hofmann, K. P. (1993) G-protein-effector coupling: A real-time light-scattering assay for transducin-phosphodiesterase interaction. Biochemistry 32:8220–27. [aMDB]CrossRefGoogle ScholarPubMed
Heckenlively, J. R. (1988) Retinitis pigmentosa. Lippincott. [aSPD]Google ScholarPubMed
Heckenlively, J. R., Rodriguez, J. A. & Daiger, S. P. (1990) Autosomal dominant sectoral retinitis pigmentosa: Two families with transversion mutation in codon 23 of rhodopsin. Archives of Ophthalmology 109:8491. [aSPD]CrossRefGoogle Scholar
Heginbotham, L., Abramson, T. & MacKinnon, R. (1992) A functional connection between the pores of distantly-related ion channels as revealed by mutant K+ channels. Science 258:1152–55. [aRSM]CrossRefGoogle ScholarPubMed
Heinonen, E. & Akerman, K. E. (1987) Intracellular free magnesium in synaptosomes measured with entrapped eriochrome blue. Biochimica et Biophysica Acta 898:331–37. [RLH]CrossRefGoogle ScholarPubMed
Hekman, M., Bauer, P. H., Sohlemann, P. & Lohse, M. J. (1994) Phosducin inhibits receptor phosphorylation by the β-adrenergic receptor kinase in a PKA-regulated manner. FEBS Letters 343:120–24. [BMW]CrossRefGoogle Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990) Model for the structure of baeteriorhodopsin based on high-resolution electron cryomicroscopy. Journal of Molecular Biology 213:899929. [aPAH, EAD. RMG]CrossRefGoogle Scholar
Henderson, R. & Unwin, P. N. T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London) 275:2832. [RMG]Google Scholar
Hermolin, J., Karell, M. A., Hamm, H. E. & Bownds, M. D. (1982) Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes. Journal of General Physiology 79:633–55. [aMDB]CrossRefGoogle ScholarPubMed
Hidaka, H. & Okazaki, K. (1993) Neurocalcin family: A novel calcium-binding protein abundant in bovine central nervous system. Neuroscience Research 16:7377. [KT]CrossRefGoogle ScholarPubMed
Hille, B. (1992) Ionic channels of excitable membranes, 2d ed. Sinauer. [TWA]Google Scholar
Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. (1985) The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. Journal of Physiology 358:447–68. [aRSM]CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Nunn, B. J. (1988) Control of light-sensitive current in salamander rods. Journal of Physiology (London) 403:439–71. [aMDB]CrossRefGoogle ScholarPubMed
Hofmann, K. P. (1986) Photoproducts of rhodopsin in the disc membrane. Photochemistry & Photobiophysics 13:309–27. [aPAH]Google Scholar
Hofmann, K. P., Pulvermuller, A., Buczylko, J., Van Hooser, P. & Palczewski, K. (1992) The role of arrestin and retinoids in the regeneration pathway of rhodopsin. Journal of Biological Chemistry 267:15701–6. [aMDB, RKC]CrossRefGoogle ScholarPubMed
Hong, K. & Hubbell, W. L. (1973) Lipid requirements for rhodopsin regenerability. Biochemistry 12:4517–23. [aPAH]CrossRefGoogle ScholarPubMed
Hopkins, W. F. & Johnston, D. (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. Journal of Neurophysiology 59:667–87. [aZX]CrossRefGoogle ScholarPubMed
Horn, M., Humphries, P., Kunisch, M., Marchese, C., Apfelstedt-Sylla, E., Fugi, L., Zrenner, E., Kenna, P., Gal, A. & Farrar, J. (1992) Deletions in exon 5 of the human rhodopsin gene causing a shift in reading frame and autosomal dominant retinitis pigmentosa. Human Genetics 90:255–57. [aSPD]CrossRefGoogle ScholarPubMed
Hotta, Y., Shiono, T., Hakawa, M., Hashimoto, T., Kanai, A., Nakajima, A., Noro, M., Sakuma, T. & Fujiki, K. (1992) Molecular biological study of the rhodopsin gene in Japanese patients with autosomal dominant retinitis pigmentosa. Nippon Canka Gakkai Zasshi 96:237–42. [aSPD]Google ScholarPubMed
Hovmuller, S., Slaughter, M., Berriman, J., Karlsson, B., Weiss, H. & Leonard, K. (1983) Structural studies of cytochrome reductase: Improved membrane crystals of the enzyme complex and crystallization of a subcomplex. Journal of Molecular Biology 165:401–6. [aPAH]CrossRefGoogle Scholar
Hsu, Y.-T. & Molday, R. S. (1993) Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361:7679. [aMDB, aJBH, aZX, MPG-K, LWH, DDO]CrossRefGoogle ScholarPubMed
Hsu, Y.-T. & Molday, R. S. (1994) Interaction of calmodulin with the cyclic GMP-gated channel of rod photoreceptor cells. Journal of Biological Chemistry 269:29765–70. [rRSM]CrossRefGoogle ScholarPubMed
Hu, S., Franklin, P. J., Wang, J., Ruiz Silva, B. E., Derguini, F. & Nakanishi, K. (1994) Unbleachable rhodopsin with an 11-cis-locked eightmembered ring retinal: The visual transduction process. Biochemistry 33:408–16. [aPAH]CrossRefGoogle Scholar
Huang, P. C., Gaitan, A. E., Hao, Y., Petters, R. M. & Wong, F. (1993) Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proceedings of the National Academy of Sciences USA 90:8484–88. [MWK]CrossRefGoogle ScholarPubMed
Humphries, P., Farrar, G. J. & Kenna, P. (1993) Autosomal dominant retinitis pigmentosa: Molecular, genetic and clinical aspects. Progress in Retinal Research 12:231–45. [aSPD]CrossRefGoogle Scholar
Humphries, P., Kenna, P. & Farrar, G. J. (1992) On the molecular genetics of retinitis pigmentosa. Science 256:804–8. [aSPD]CrossRefGoogle ScholarPubMed
Hundal, S. P., Difrancesco, D., Mangoni, M., Grammar, W. J. & Conley, E. C. (1993) An iso form of the cGMP-gated retinal photoreceptor channel gene expressed in the sinoa trial node (pacemaker) region of rabbit heart. Biochemical Society Transcripts 21:119S. [aRSM]CrossRefGoogle Scholar
Hurley, J. B. (1992) Signal transduction enzymes of vertebrate photoreceptors. Journal of Bioenergetics and Biomembranes 24:219–26. [aMDB]CrossRefGoogle ScholarPubMed
Hurley, J. B., Dizhoor, A. M., Ray, S. & Stryer, L. (1993) Recovering role: Conclusion withdrawn. Science 260:740. [aMDB, aJBH]CrossRefGoogle Scholar
Hurley, J. B. & Stryer, L. (1982) Purification and characterization of the gamma regulatory subunit of the cGMP phosphodiesterase from retinal rod outer segments. Journal of Biological Chemistry 257:11094–99. [aMDB]CrossRefGoogle Scholar
Hurwitz, R. & Holcombe, V. (1991) Affinity purification of the photoreceptor cGMP- gated cation channel. Journal of Biological Chemistry 266:7975–77. [aRSM, RLH, TGW]CrossRefGoogle ScholarPubMed
Illing, M., Colville, D. A., Williams, A. J. & Molday, R. S. (1994) Sequencing, cloning and characterization of the cyclic nucleotide-gated channel complex of rod outer segments. Investigative Ophthalmology and Visual Science [Abstract 1022] 35:1474. [rRSM]Google Scholar
Impey, S., Wayman, G., Wu, Z. & Storm, D. R. (in press) The type I adenylyl cyclase functions as a coincidence detector for control of CRE-mediated transcription by Ca2+ and isoproterenol. Molecular and Cellular Biology.Google Scholar
Inglehearn, C. F., Bashir, R., Lester, D. H., Jay, M., Bird, A. C. & Bhattacharya, S. S. (1991) A 3-bp deletion in the rhodopsin gene in a family with autosomal dominant retinitis pigmentosa. American Journal of Human Genetics 48:2630. [aSPD]Google Scholar
Inglehearn, C. F., Carter, S. A., Keen, T. J., Lindsey, J., Stephenson, A. M., Bashir, R., Al-Maghtheh, M., Moore, A. T., Jay, M., Bird, A. C. & Bhattacharya, S. S. (1993) A new locus for autosomal dominant retinitis pigmentosa (adRP) on chromosome 7p. Nature Genetics 4:5153. [aSPD]CrossRefGoogle ScholarPubMed
Inglehearn, C. F., Keen, T. J., Bashir, R., Jay, M., Fitzke, F., Bird, A. C., Crombie, A. & Bhattacharya, S. S. (1992) A complete screen for mutations of the rhodopsin gene in a panel of patients with autosomal dominant retinitis pigmentosa. Human Molecular Genetics 1:4145. [aSPD]CrossRefGoogle Scholar
Inglese, J., Freedman, N. J., Koch, W. J. & Lefkowitz, R. J. (1993) Structure and mechanism of the G protein-coupled receptor kinases. Journal of Biological Chemistry 268:23735–38. [KT]CrossRefGoogle ScholarPubMed
Ishikawa, Y., Katsushika, S., Chen, L., Halnon, N. J., Kawabe, J. & Homey, C. J. (1992) Isolation and characterization of a novel cardiac adenylyl cyclase cDNA. Journal of Biological Chemistry 267:13553–57. [aZX]CrossRefGoogle Scholar
Ito, M., Kodama, A., Tsukida, K., Fukada, Y., Shichida, Y. & Yoshizawa, T. (1982) A novel rhodopsin analogue possessing the cyclopentatrienylidene structure as the 11-cis-locked and the full planar chromophore. Chemical & Pharmaceutical Bulletin 30:1913–16. [aPAH]CrossRefGoogle Scholar
Itoh, S., Takshima, A. & Macda, Y. (1992) Protective effect of cerulein on memory impairment induced by protein synthesis inhibitors in rats. Peptides 13:1007–12. [EDR]CrossRefGoogle ScholarPubMed
Jacobowitz, O., Chen, J., Premont, R. T. & Iyengar, R. (1993) Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. Journal of Biological Chemistry 268:3829–32. [aZX]CrossRefGoogle ScholarPubMed
Jacobson, F. A. S. & Baseom, G. I. (1993) Phosducin as a candidate gene for retinitis pigmentosa and Usher syndrome type H. InvestigativeOphthalmology and Visual Science 34:1458. [aSPD]Google Scholar
Jacobson, S. G., Kemp, C. M., Cideciyan, A. V., Macke, J. P., Sung, C.-H. & Nathans, J. (1994) Phenotypes of stop codon and splice site rhodopsin mutations causing retinitis pigmentosa. Investigative Ophthalmology and Visual Science 35:2521–34. [aSPD, AB]Google ScholarPubMed
Jacobson, S. G., Kemp, C. M., Sung, C.-H. & Nathans, J. (1991) Retinal function and rhodopsin levels in autosomal dominant retinitis pigmentosa with rhodopsin mutations. American Journal of Ophthalmology 112:256–71. [aSPD]CrossRefGoogle ScholarPubMed
Jan, L. Y. & Jan, Y. N. (1989) Voltage-sensitive ion channels. Cell 56:1325. [aRSM]CrossRefGoogle ScholarPubMed
Jan, L. Y. & Jan, Y. N. (1990) A superfamily of ion channels. Nature 345:672. [aRSM]CrossRefGoogle ScholarPubMed
Jansen, J. J. M., Mulder, W. R., De Caluw, G. L. J., Vlak, J. M. & DeGrip, W. J. (1991) In vitro expression of bovine opsin using recombinant baculovirus: The role of glutamic acid (134) in opsin biosynthesis and glycosylation. Biochimica et Biophysica Acta 1089:6876. [aPAH]CrossRefGoogle ScholarPubMed
Jin, J., Crouch, R. K., Corson, D. W., Katz, B. M., MacNichol, E. F. & Cornwall, M. C. (1993) Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron 11:513–22. [aMDB, RKC]CrossRefGoogle ScholarPubMed
Johnson, R. S., Ohguro, H., Palczewski, K., Hurley, J. B., Walsh, K. A. & Neubert, T. A. (1994) Heterogeneous N-acylation is a tissue- and speciesspecific posttranshitional modification. Journal of Biological Chemistry 269:21067–71. [KS]CrossRefGoogle Scholar
Jones, G. J., Crouch, R. K., Wiggcrt, B., Cornwall, M. C. & Ghader, G. J. (1989) Retinoid requirements for recovery of sensitivity after visual pigment bleaching in isolated photoreccptors. Proceedings of the National Academy of Sciences USA 86:9606–10. [RKC]CrossRefGoogle Scholar
Jordan, S. A., Farrar, C. J., Kenna, P., Humphries, N. M., Shells, D. M., Kumar-Singh, R., Sharp, E. M., Ayuso, C., Benitez, J. & Humphries, P. (1993) Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nature Cenctics 4:5458. [aSPD]CrossRefGoogle ScholarPubMed
Jordan, S. A., Farrar, G. J., Kumar-Singh, R., Kenna, P., Humphries, M. M., Allamand, V., Sharp, E. M. & Humphries, P. (1992) Autosomal dominant retinitis pigmentosa (adRP; RP6): Cosegregation of RP6 and the peripherin-RDS locus in a late-onset family of Irish origin. American Journal of Human Genetics 50:634–39. [aSPD]Google Scholar
Kanng, B. K., Kandel, E. R. & Grant, S. G. (1993) Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron 10:427–35. [aZX]CrossRefGoogle Scholar
Kahlert, M. & Hofmann, K.-P. (1991) Reaction rate and collisioal efficiency of the rhodopsin-transducin system in intact retinal rods. Biophysical Journal 59:375–86. [KWK]CrossRefGoogle ScholarPubMed
Kahlert, M., Pepperberg, D. R. & Hofmann, K. P. (1990) Effect of bleached rhodopsin on signal amplification in rod visual receptors. Nature 345:537–39. [aMDB]CrossRefGoogle ScholarPubMed
Kajimoto, Y., Shirai, Y., Mukai, H., Kuno, T. & Tanaka, C. (1993) Molecular cloning of two additional members of the neural visinin-like Ca2+- binding protein gene family. Journal of Neurochemistry 61:1091–96. [KT]CrossRefGoogle Scholar
Kajiwara, K., Berson, E. L. & Dryja, T. P. (1994) Digenic retinitis pigmentosa due to mutations at the unlinked pheripherin/RDS and ROM-1 loci. Science 264:1604–8. [aSPD, AB]CrossRefGoogle Scholar
Kajiwara, K., Huhn, L. B., Mukai, S., Travis, G. H., Berson, E. L. & Dryja, T. P. (1991) Mutations in the human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa. Nature 354:480–3. [aSPD]CrossRefGoogle ScholarPubMed
Kajiwara, K., Sandberg, M. A., Berson, E. L. & Dryja, T. P. (1993) A null mutation in the human periphcrin/RDS gene in a family with autosomal dominant retinitis punctata albescens. Nature Genetics 3:208–12. [aSPD]CrossRefGoogle Scholar
Kandel, E. R., Abrams, T., Bernier, L., Caruw, T. J., Hawkins, R. D. & Schwartz, J. H. (1983) Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia. Cold Spring Harbor Symposium on Quantitative Biology 2:821–30. [TWA]CrossRefGoogle Scholar
Kandel, E. R. & Schwartz, J. H. (1982) Molecular biology of learning: Modulation of transmitter release. Science 218:433–43. [aZX, TWA]CrossRefGoogle ScholarPubMed
Kaplan, J., Gerber, S., Bonneau, D., Rozet, J., Briard, M., Dufler, J., Munnich, A. & Frezal, J. (1991) Probable location of Usher type I gene on chromosome 14q by linkage with D14S13 (MLJ14 probe). Cytogenetics and Cell Genetics 58:1988. [aSPD]Google Scholar
Karnik, S. S. & Khorana, H. C. (1990) Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. Journal of Biological Chemistry 265:17520–24. [aSPD]CrossRefGoogle ScholarPubMed
Kauer, J. A., Malenka, R. C. & Nicoll, R. A. (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334:250–52. [aZX]CrossRefGoogle ScholarPubMed
Kaupp, U. B. (1991) The cyclic nucleotide-gated channels of vertebrate photoreccptors and olfactory epithelium. Trends in Neuroscience 14:150–57. [aRSM, DDO]CrossRefGoogle ScholarPubMed
Kaupp, U. B. & Koch, K.-W. (1992) Role of cCMP and Ca2+ in vertebrate photoreceptor excitation and adaptation. Annual Review of Physiology 54:153–75. [aMDB, aRSM]CrossRefGoogle Scholar
Kaupp, U. B., Niidoine, T., Tanabe, T., Terada, S., Bönigk, W., Stuhmer, W., Cook, N. J., Kangawa, K., Matsuo, H., Hirose, T., Miyata, T. & Numa, S. (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–66. [aRSM, LWH, TGW]CrossRefGoogle ScholarPubMed
Kawaniura, S. (1983) Involvement of ATP in activation and inactivation sequence of phosphodicsterase in frog rod outer segments. Biochimica Biophysica Acta 732:276–81. [SK]CrossRefGoogle Scholar
Kawaniura, S. (1992) Light-sensitivity modulating protein in frog rods. Photochemistry and Photohiology. 56:1173–80. [SK]CrossRefGoogle Scholar
Kawaniura, S. (1993) Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362:855–57. [aMDB, aJBH, aRSM, SK, KT, AY]CrossRefGoogle Scholar
Kawaniura, S. (1994) Photoreceptor light-adaptation mediated by S-modulin, a member of a possible regulatory protein family of protein phosphorylation in signal transduction. Neuroscience Research 20:293–98. [SK, KT]CrossRefGoogle Scholar
Kawamura, S. & Bownds, M. D. (1981) Light adaptation of the cyclic GMP phosphodiesterase of frog photoreceptor membranes mediated by ATP and calcium ions. Journal of General Physiology 77:571–91. [aMDB]CrossRefGoogle Scholar
Kawamura, S., Cox, J. A. & Nef, P. (1994) Inhibition of rhodopsin phosphorylation by non-myristoylated recombinated recoverin. Biochemical and Biophysical Research Communications 203:121–27. [SK]CrossRefGoogle Scholar
Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F. & Kuo, C. H. (1993) Recoverin has S-modulin activity in frog rods. Journal of Biological Chemistry 268:14579–82. [aJBH, KT, AY]CrossRefGoogle ScholarPubMed
Kawamura, S. & Murakami, M. (1991) Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature 349:420–23. [aMDB, aJBH, JFM, SK, ASP, KT, AY]CrossRefGoogle ScholarPubMed
Kawamura, S., Takamatsu, K. & Kitamura, K. (1992) Purification and characterization of S-modulin, a calcium-dependent regulator on cGMP phosphodiesterase in frog rod photoreceptors. Biochemical and Biophysical Research Communications 186:411–17. [aMDB, SK]CrossRefGoogle ScholarPubMed
Keen, T. J., Inglehearn, C. F., Lester, D. H., Bashir, R., Jay, M., Bird, A. C., Jay, B. & Bhattacharya, S. S. (1994) Autosomal dominant retinitis pigmentosa: Four new mutations in rhodopsin, one of them in the retinal attachment site. Genomics 11:199205. [aSPD]CrossRefGoogle Scholar
Khan, S. M. A., Bolen, W., Hargrave, P. A., Santoro, M. M. & McDowell, J. H. (1991) Differential scanning calorimetry of bovine rhodópsin in rod outer segment disk membranes. European Journal of Biochemisty 200:5359. [aPAH]CrossRefGoogle ScholarPubMed
Khorana, H. G. (1992) Rhodopsin, photoreceptor of the rod cell: An emerging pattern for structure and function. Journal of Biological Chemistry 267:14. [aMDB, aPAH]CrossRefGoogle ScholarPubMed
Kim, R. Y., Al-Maghtheh, M., Fitzke, F. W., Arden, G. B., Jay, M., Bhattacharya, S. S. & Bird, A. C. (1993) Dominant retinitis pigmentosa associated with two rhodopsin gene mutations. Leu-40-Arg and an insertion disrupting the 5'-splice junction of exon 5. Archives of Ophthalmology 111:1518–24. [aSPD]CrossRefGoogle Scholar
Kimberling, W. J., Moller, C. G., Davenport, S., Priluck, A., Beighton, P. H., Greenberg, J., Reardon, W., Weston, M. D., Kenyon, J. B., Grunkemeyer, J. A., Dahl, S. P., Overbeck, L. D., Blackwood, D. J., Brower, A. M., Hoover, D. M., Rowland, P. & Smith, R. J. H. (1992) Linkage of Usher syndrome type I gene (USH1B) to the long arm of chromosome 11. Genomics 14:988–94. [aSPD]CrossRefGoogle Scholar
Kimberling, W. J., Weston, M. D., Moller, C., Davenport, S. L. H., Shugart, Y. Y., Priluck, I. A., Martini, A., Milani, M. & Smith, R. J. (1990) Localization of Usher syndrome type II to chromosome lq. Genomics 7:245–49. [aSPD]CrossRefGoogle Scholar
Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G. & Lelkowitz, R. J. (1992) Constitutive activation of the alpha-lB-adrenergic receptor by all amino acid substitutions at a single site: Evidence for a region which constrains receptor activation. Journal of Biological Chemistry 267:1430–33. [aPAH]CrossRefGoogle Scholar
Klann, E., Chen, S.-J. & Sweatt, J. D. (1991) Persistent protein kinase activation in the maintenance phase of long-term potentiation. Journal of Biological Chemistry 266:24253–56. [EDR]CrossRefGoogle ScholarPubMed
Klann, E., Chen, S.-J. & Sweatt, J. D. (1992) Increased phosphorylation of a 17-kDa protein kinase C substrate in long-term potentiation. Journal of Neurochemistry 58:1576–79. [EDR]CrossRefGoogle ScholarPubMed
Klann, E., Chen, S.-J. & Sweatt, J. D. (1993) Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probe using a selective peptide substrate. Proceedings of the National Academy of Sciences USA 90:8337–41. [EDR]CrossRefGoogle Scholar
Klausner, R. D. & Sitia, R. (1990) Protein degradation in the endoplasmic reticulum. Cell 62:611–14. [aSPD]CrossRefGoogle ScholarPubMed
Knowles, J. A., Shugart, Y., Banerjee, P., Gilliam, T. C., Lewis, C. A., Jacobson, S. G. & Ott, J. (1994) Identification of a locus, distinct from RDS-peripherin, for autosomal recessive retinitis pigmeutosa on chromosome 6p. Human Molecular Genetics 3:1401–3. [rSPD]CrossRefGoogle ScholarPubMed
Kobayashi, M., Takamatsu, K., Saitoh, S. & Noguchi, T. (1993) Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. Journal of Biological Chemistry 268:18898–904. [KT]CrossRefGoogle ScholarPubMed
Kobayashi, M., Takamatsu, K., Saitoh, S., Miura, M. & Noguchi, T. (1992) Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochemical and Biophysical Research Communications 189:511–17. [aJBH, KT]CrossRefGoogle ScholarPubMed
Koch, K.-W. (1991) Purification and identification of photoreeeptor guanylate cyclase. Journal of Biological Chemistry 266:8634–37. [KWK]CrossRefGoogle ScholarPubMed
Koch, K.-W. (1992) Biochemical mechanism of light adaptation in vertebrate photoreceptors. Trends in Biochemical Science 17:307–11. [aMDB]CrossRefGoogle ScholarPubMed
Koch, K.-W. (1994) Calcium as modulator of phototransduction in vertebrate photoreceptor cells. Reviews of Physiology, Biochemistry and Pharmacology 125:149–92. [KWK]Google ScholarPubMed
Koch, K.-W., Eckstein, F. & Stryer, L. (1990) Stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments. Journal of Biological Chemistry 265:9659–63. [KWK]CrossRefGoogle ScholarPubMed
Koch, K.-W. & Kaupp, U. B. (1985) Cyclic GMP directly regulates a cationic conductance in membranes of bovine rods by a cooperative mechanism. Journal of Biological Chemistry 260:67886800. [aRSM, TGW]CrossRefGoogle ScholarPubMed
Koch, K.-W. & Stryer, L. (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:6466. [arMDB, aJBH, aRSM]CrossRefGoogle ScholarPubMed
Kohn, H. (1980) Light-and GTP-regulated interaction of CTPase and other proteins with bovine photoreceptor membranes. Nature 283:587–89. [aPAH]CrossRefGoogle Scholar
Kohn, H. & McDowell, J. H. (1977) Isoelectric focusing of phosphorylated cattle rhodopsin. Biophysics of Structure and Mechanism 3:199203. [aPAH]CrossRefGoogle Scholar
Kohnken, R. E., Chafouleas, J. G., Eadie, D. M., Means, A. R. & McConnell, D. G. (1981) Calmodulin in bovine rod outer segments. Journal of Biological Chemistry 256:12517–22. [aRSM]CrossRefGoogle ScholarPubMed
Kokame, K., Fukada, Y., Yoshizawa, T., Takao, T. & Shimonishi, Y. (1992) Lipid modification at the N terminus of photoreceptor G-protein α-subunit. Nature 359:749–52. [KS]CrossRefGoogle Scholar
Konig, B., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A. & Hofmann, K. P. (1989) Three cytoplasmic loops of rhodopsin interact with transducin. Proceedings of the National Academy of Sciences USA 86:6878–82. [aSPD, aPAH, EAD]CrossRefGoogle ScholarPubMed
Korenbrot, J. I., Brown, D. T. & Cone, R. A. (1973) Membrane characteristics and osmotic behavior of isolated rod outer segments. Journal of Cell Biology 56:389–98. [aMDB]CrossRefGoogle ScholarPubMed
Koutalos, Y., Nakatani, L. & Yau, K.-W. (1994) Modulation of the cGMP-gated channel of retinal rods by Ca2+. Investigative Ophthalmology and Visual Science [Abstract 1023] 35:1474. [HRM, rRSM]Google Scholar
Koutalos, Y. & Yau, K.-W. (1993) A rich complexity emerges in phototransduction. Current Opinion in Neurobiology 3:513–19. [aMDB]CrossRefGoogle ScholarPubMed
Kramer, R. H. & Siegelbaum, S. A. (1992) Intracellular Ca2+ regulates the sensitivity of cyclic nucleotide-gated channels in olfactory receptor neurons. Neuron 9:897906. [aRSM, MSS]CrossRefGoogle ScholarPubMed
Kranich, H., Bartkowski, S., Denton, M. J., Krey, S., Dickinson, P., Duvigneau, C. & Gal, A. (1993) Autosotnal dominant “sector” retinitis pigmentosa due to a point mutation predicting an Asn-15-Ser substitution of rhodopsin. Human Molecular Genetics 2:813–14. [aSPD]CrossRefGoogle ScholarPubMed
Krebs, E. G. & Beavo, J. A (1979) Phosphorylation-dephosphorylation of enzymes. Annual Review of Biochemistry 48:923–59. [aZX]CrossRefGoogle ScholarPubMed
Kremer, H., Pinckers, A., van den Helm, B., Deutman, A. F., Ropers, H. H. & Mariman, E. C. M. (1994) Localization of the gene for dominant cystoid macular dystrophy on chromosome 7p. Human Molecular Genetics 3:299302. [aSPD]CrossRefGoogle ScholarPubMed
Krug, M., Lossner, B. & Ott, T. (1984) Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Research Bulletin 13:3942. [aZX]CrossRefGoogle ScholarPubMed
Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W. J., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R. & Gilman, A. G. (1989) Adenylyl cyclase amino acid sequence: Possible channel- or transporter-like structure. Science 244:1558–64. [aZX]CrossRefGoogle ScholarPubMed
Krupnick, J. G., Gurevich, V. V., Schepers, T., Hamm, H. E. & Benovic, J. L. (1994) Arrestin-rhodopsin interaction: Multi-site binding delineated by peptide inhibition. Journal of Biological Chemistry 269:3226–32. [ADA]CrossRefGoogle ScholarPubMed
Kühlbrandt, W. (1984) Three-dimensional structure of the light-harvesting chlorophyl a/b-protein complex. Nature 307:478–80. [aPAH]CrossRefGoogle Scholar
Kühlbrandt, W. (1988) Three-dimensional crystallization of membrane proteins. Quarterly Reviews of Biophysics 21:429–77. [aPAH, RMG]CrossRefGoogle ScholarPubMed
Kühlbrandt, W. (1992) Two-dimensional crystallization of membrane proteins. Quarterly Reviews of Biophysics 25:149. [aPAH, RMG]CrossRefGoogle ScholarPubMed
Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–21. [aPAH, RMG]CrossRefGoogle ScholarPubMed
Kuhn, H. (1980) Light- and CTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature 283:587–89. [AY]CrossRefGoogle Scholar
Kumar, V. D. & Weber, I. T. (1992) Molecular model of the cyclic GMP-binding domain of the cyclic GMP-gated ion channel. Biochemistry 31:4643–49. [RLB]CrossRefGoogle ScholarPubMed
Kumar-Singh, R., Farrar, G. J., Mansergh, F., Kenna, P., Bhattacharya, S., Gal, S. & Humphries, P. (1993) Exclusion of the involvement of all known retinitis pigmentosa loci in the disease present in a family of Irish origin provides evidence for a sixth autosomal dominant locus (RP8). Human Molecular Genetics 2:875–78. [aSPD]CrossRefGoogle Scholar
Kure, S., Tominago, T., Yoshimoto, T., Tada, K. & Narisawa, K. (1991) Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochemical and Biophysical Research Communications 179:3945. [MT]CrossRefGoogle ScholarPubMed
Kutuzov, M. & Pfister, C. (1994) Activation of the retinal cGMP-specific phosphodiesterase by the GDP-loaded α-subunit of transducin. European Journal of Biochemistry 220:963–71. [rMDB]CrossRefGoogle ScholarPubMed
Lagnado, L. & Baylor, D. (1992) Signal flow in visual transduction. Neuron 8:9951002. [aMDB, aJBH]CrossRefGoogle ScholarPubMed
Lagnado, L. & Baylor, D. (1994) Calcium controls light-triggered formation of catalytically active rhodopsin. Nature 367:273–77. [aMDB, RKC, MPG-K, SK, MSS, KT]CrossRefGoogle ScholarPubMed
Lagnado, L., Cervetto, L. & McNaughton, P. (1992) Calcium homeostasis in the outer segment of retinal rods from the tiger salamander. Journal of Physiology (London) 455:111–42. [aMDB, KWK]CrossRefGoogle ScholarPubMed
Lagnado, L. & McNaughton, P. A. (1990) Electrogenic properties of the Na:Ca exchange. Journal of Membrane Biology 113:177–91. [PPMS]CrossRefGoogle ScholarPubMed
Lakshmi, K. V., Auger, M., Raap, J., Lugtenburg, J., Griffin, R. G., & Herzfeld, J. (1993) Solid-state 13C NMR rotational resonance distance measurement in the M photointermediate of bacteriorhodopsin: Determination of the configuration about the Schiff base. Biophysics Journal 64:A212. [SOS]Google Scholar
Lamb, T. D. (1984) Effects of temperature changes on toad rod photocurrents. Journal of Physiology (London) 346:557–78. [aMDB]CrossRefGoogle ScholarPubMed
Lamb, T. D. (1990) Dark adaptation: A re-examination. In: Night vision: Basic, clinical and applied aspects, ed. Hess, R. F., Sharp, L. T. & Nordby, K.. Cambridge University Press. [RKC]Google Scholar
Lamb, T. D., Matthews, H. R. & Torre, V. (1986) Incorporation of calcium buffers into salamander retinal rods: A rejection of the calcium hypothesis of phototransduction. Journal of Physiology (London) 372:315–49. [aMDB]CrossRefGoogle ScholarPubMed
Lamb, T. D., McNaughton, P. A. & Yau, K.-W. (1981) Spatial spread of activation and background desensitization in toad rod outer segments. Journal of Physiology (London) 319:463–96. [aMDB]CrossRefGoogle ScholarPubMed
Lamb, T. D. & Pugh, E. N. Jr (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. Journal of Physiology (London) 449:719–58. [aMDB]CrossRefGoogle ScholarPubMed
Lamba, O. P., Borchman, D. & O'Brien, P. J. (1994) Fourier transform infrared study of the rod outer segment disk and plasma membranes of vertebrate retina. Biochemistry 33:1704–12. [ADA]CrossRefGoogle ScholarPubMed
Lambrecht, H. G. & Koch, K.-W. (1991) A 26 kd calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO Journal 10:793–98. [aMDB, aJBH, ASP]CrossRefGoogle ScholarPubMed
Lambrecht, H. G. & Koch, K.-W. (1992) Recoverin, a novel calcium-binding protein from vertebrate photoreceptors. Biochimica et Biophysica Acta 1160:6366. [aJBH]CrossRefGoogle ScholarPubMed
Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. (1994) Structural determinants for activation of the alpha subunit of a heterotrimeric G protein. Nature 369:621–28. [aMDB, EAD]CrossRefGoogle ScholarPubMed
Lee, R. H., Brown, B. M. & Lolley, R. N. (1984) Light-induced dephosphorylation of a 33K protein in rod outer segments of rat retina. Biochemistry 23:1972–77. [BMW]CrossRefGoogle ScholarPubMed
Lee, R. H., Brown, B. M. & Lolley, R. N. (1990) Protein kinase A phosphorylates retinal phosducin on serine 73 in situ. Journal of Biological Chemistry 265:15860–66. [BMW]CrossRefGoogle ScholarPubMed
Lee, R. H., Fowler, A., McCinnis, J. F., Lolley, R. N. & Craft, C. M. (1990a) Amino acid and cDNA sequence of bovine phosducin, a soluble phosphoprotein from photoreceptor cells. Journal of Biological Chemistry 265:15867–73. [aMDB]CrossRefGoogle ScholarPubMed
Lee, R. H., Lieberman, B. S. & Lolley, R. N. (1987) A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta and gamma transducin: Purification and subunit structure. Biochemistry 28:3983–90. [aMDB]CrossRefGoogle Scholar
Lee, R. H., Lieberman, B. S. & Lolley, R. N. (1990b) Retinal accumulation of the phosducin/Tgamma and transducin complexes in developing normal mice and in mice and dogs with inherited retinal degeneration. Experimental Eye Research 51:325–33. [aMDB]CrossRefGoogle Scholar
Lee, R. H., Ting, T. D., Lieberman, B. S., Tobias, D. E., Lolley, R. N. & Ho, Y.-K. (1992) Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Journal of Biological Chemistry 267:25104–12. [BMW]CrossRefGoogle ScholarPubMed
Lee, R. H., Whelan, J. P., Lolley, R. N. & McGinnis, J. F. (1988) The photoreceptor-specific 33 kDa phosphoprotein of mammalian retina: Generation of monospecific antibodies and localization by immunocytochemistry. Experimental Eye Research 46:829–40. ]aMDB]CrossRefGoogle ScholarPubMed
Lee, S. M. & Bressler, R. (1981) Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes 30:106–11. [DW]CrossRefGoogle ScholarPubMed
Leibrock, C. S., Reuter, T. & Lamb, T. D. (1994) Dark adaptation of toad rod photorcceptors following small bleaches. Vision Research 34:27872800. [rMDB]CrossRefGoogle ScholarPubMed
Lenz, S. E., Henschel, Y., Zopf, D., Voss, B. & Gundelfinger, E. D. (1992) VILIP, a cognate protein of the retinal calcium binding proteins visinin and recoverin, is expressed in the developing chicken brain. Brain Research 15:133–40. [aJBH]Google ScholarPubMed
Levin, L. R., Han, P. L., Hwang, P. M., Feinstein, P. C., Davis, R. L. & Reed, R. R. (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68:479–89. [aZX, TWA]CrossRefGoogle ScholarPubMed
Levine, M. A., Modi, W. S. & O'Brien, S. J. (1990) Chromosomal localization of the genes encoding two forms of the G protein β polypeptide, β1 and β3, in man. Genomics 8:380–86. [aSPD]CrossRefGoogle Scholar
Lewis, R. A., Otterud, B., Stauffer, D., Lalouel, J.-M. & Leppert, M. (1990) Mapping recessive ophthalmic diseases: Linkage of the locus for Usher syndrome type III to a DNA marker on chromosome lq. Genomics 7:250–56. [aSPD]CrossRefGoogle Scholar
Li, H., Volpp, K. & Applebury, M. L. (1990) Bovine cone photoreceptor cGMP phosphodiesterase structure deduced from a cDNA clone. Proceedings of the National Academy of Sciences USA 87:293–97. [aMDB]CrossRefGoogle ScholarPubMed
Liang, C.-J., Yamashita, K., Muellenberg, C. G., Shichi, H. & Kobata, A. (1979) Structure of the carbohydrate moieties of bovine rhodopsin. Journal of Biological Chemistry 254:6414–18. [aPAH]CrossRefGoogle ScholarPubMed
Liebman, P. A. & Entine, G. (1968) Visual pigments of frog and tadpole. Vision Research 8:761–75. [aMDB]CrossRefGoogle ScholarPubMed
Liebman, P. A., Parker, K. R. & Dratz, E. A. (1987) The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annual Review of Physiology 491:765–91. [aMDB, aPAH]CrossRefGoogle Scholar
Liebman, P. A. & Pugh, E. N. (1979) The control of phosphodiesterase in rod disk membranes: Kinetics, possible mechanisms and significance for vision. Vision Research 19:375–80. [aMDB]CrossRefGoogle ScholarPubMed
Liebman, P. A. & Pugh, E. N. (1980) ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature 287:734–37. [aMDB]CrossRefGoogle ScholarPubMed
Light, D. B., Corbin, J. D. & Stanton, B. A. (1990) Dualion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344:336–39. [aRSM]CrossRefGoogle ScholarPubMed
Liman, E. R. & Buck, L. B. (1994) A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron 13:611–21. [rRSM]CrossRefGoogle Scholar
Linden, D. J. & Routtceberg, A. (1989) The role of protein kinase C in longterm potentiation: A testable model. Brain Research Reviews 14:279–96. [aZX]CrossRefGoogle Scholar
Litman, B. J. (1982) Purification of rhodopsin by concanavalin A affinity chromatography. Methods in Enzymology 81:150–53. [aPAH]CrossRefGoogle ScholarPubMed
Litman, B. J., Aton, B. & Hartley, J. B. (1982) Functional domains of rhodopsin. Vision Research 22:1439–42. [ADA]CrossRefGoogle ScholarPubMed
Liu, M., Chen, T.-Y., Ahamed, B., Li, J. & Yau, K.-W. (1994) Calciumcalmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266:1348–54. [rRSM]CrossRefGoogle Scholar
Liu, Y. L. & Storm, D. R. (1989) Dephosphorylation of neuromodulin by calcineurin. Journal of Biological Chemistry 264:12800–4. [aZX]CrossRefGoogle ScholarPubMed
Liu, Y. L. & Storm, D. R. (1990) Regulation of free calmodulin levels in neurons by neuromodulin: Relationship to neuron growth and regeneration. Trends in Pharmacological Sciences 11:107–11. [aZX]Google Scholar
Livingston, M. S. (1985) Genetic dissection of Drosophila adenylyl cyclase. Proceedings of the National Academy of Sciences USA 82:5992–96. [aZX]CrossRefGoogle Scholar
Livingston, M. S., Sziber, P. P. & Quinn, W. G. (1984). Loss of calcium/calmodulin responsiveness in adenylyl cyclase of rutabaga, a Drosophila learning mutant. Cell 37:205–15. [aZX, TWA]CrossRefGoogle Scholar
Lolley, R. N., Farber, D. B., Rayborn, M. E. & Hollyfield, J. G. (1977) Cyclic GMP accumulation causes degeneration of photoreceptor cells: Simulation of an inherited disease. Science 196:664–66. [aSPD]CrossRefGoogle ScholarPubMed
Lolley, R. N., Rong, H. & Craft, C. M. (1994) Linkage of photoreceptor degeneration by apoptosis with inherited defect in phototransduction. Investigative Ophthalmology and Visual Science 35:358–62. [aSPD]Google ScholarPubMed
Ludwig, J., Marglit, T., Eismann, E., Lancet, D. & Kaupp, U. B. (1990) Primary structure of a cAMP-gated channel from bovine olfactory epithelium. FEBS Letters 270:2429. [aRSM]CrossRefGoogle ScholarPubMed
Lyness, A. L., Ernst, W., Quinlan, M. P., Clover, G. M., Arden, G. B., Carter, R. M., Bird, A. C. & Parker, J. A. (1985) A clinical, psychophysical and electroretinographic survey of patients with autosomal dominant retinitis pigmentosa. British Journal of Ophthalmology 69:326–39. [aSPD]CrossRefGoogle ScholarPubMed
Macke, J. P., Davenport, C. M., Jacobson, S. G., Hennessey, J. C., Gonzales-Fernandez, F., Conway, B. P., Heckenlively, J., Palmer, R., Maumenee, I. H., Sieving, P., Gouras, P., Good, W. & Nathans, J. (1993) Identification of novel rhodopsin mutations responsible for retinitis pigmentosa: Implications for the structure and function of rhodopsin. American Journal of Human Genetics 53:8089. [aSPD]Google ScholarPubMed
Mackler, S. A., Brooks, B. P. & Eberwine, J. H. (1992) Stimulus-induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CA1 neurons. Neuron 9:539–48. [EDR]CrossRefGoogle ScholarPubMed
MacNicol, M. & Schulman, H. (1992) Cross-talk between protein kinase C and multifunctional Ca2+/calmodulin-dependent protein kinase. Journal of Biological Chemistry 267:12197–201. [aZX]CrossRefGoogle ScholarPubMed
Madison, D. V., Malenka, R. C. & Nicoll, R. A. (1991) Mechanisms underlying long-term potentiation of synaptic transmission. Annual Review of Neuroscience 14:379–97. [TWA]CrossRefGoogle ScholarPubMed
Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A. & Waxham, M. N. (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340:554–57. [TWA]CrossRefGoogle ScholarPubMed
Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:8184. [aZX]CrossRefGoogle ScholarPubMed
Malinow, R., Schulman, H. & Tsien, R. W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–66. [TWA]CrossRefGoogle Scholar
Mangels, L. A. & Gnegy, M. E. (1990) Muscarinic receptor mediated transolocation of calmodulin in SK-N-SH human neuroblastoma cells. Molecular Pharmacology 37:820–26. [aZX]Google Scholar
Mangini, N. J., Gamer, G. L., Okajima, T.-L. L., Donoso, L. A. & Pepperberg, D. R. (1994) Effect of hydroxylamine on the subcellular distribution of arrestin (S-antigen) in rod photoreceptors. Visual Neuroscience 11:561–68. [rMDB]CrossRefGoogle Scholar
Mangini, N. J. & Pepperberg, D. R. (1988) Immunolocalization of 48K in rod photoreceptors: Light and ATP increase OS labeling. Investigative Ophthamology and Visual Science 29:1221–34. [JFM]Google ScholarPubMed
Mariuzza, R. A., Phillips, S. E. V. & Poljak, R. J. (1987) The structural basis of antigen-antibody recognition. Annual Review of Biophysics and Biophysical Chemistry 16:139–59. [aPAH]CrossRefGoogle ScholarPubMed
Massof, R. W. & Finkelstein, D. (1981) Two forms of autosomal dominant primary retinitis pigmentosa. Documenta Ophthalmologica 51:289346. [aSPD]CrossRefGoogle ScholarPubMed
Matesic, D. & Liebman, P. A. (1987) cGMP-dependent cation channel of retinal rod outer segments. Nature 326:600–3. [uRSM]CrossRefGoogle ScholarPubMed
Matsuoka, S., Nicoll, D. A., Reilly, R. F., Hilgemann, D. W. & Philipson, K. D. (1993) Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proceedings of the National Academy of Sciences USA 90:3870–74. [PPMS]CrossRefGoogle ScholarPubMed
Matthews, G. (1986) Spread of the light response along the rod outer segment: An estimate from patch-clamp recordings. Vision Research 26:535–41. [aMDB]CrossRefGoogle ScholarPubMed
Matthews, H. R. (1992a) Effects of lowered cytoplasmic calcium concentration and light on the responses of rod photoreceptors isolated from the retina of the tiger salamander. Journal of Physiology 446:109 p.[HRM]Google Scholar
Matthews, H. R. (1992b) Inability of light to accelerate the dim flash response without lowered calcium concentration in rod photoreceptors isolated from the retina of the tiger salamander. Journal of Physiology 44:559 p.[HRM]Google Scholar
Matthews, H. R. (in press) Effects of lowered cytoplasmic calcium concentration and light on the responses of salamander rod photoreceptors. Journal of Physiology. [HRM]Google Scholar
Matthews, H. R., Murphy, R. L. W., Fain, G. L. & Lamb, T. D. (1988) Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334:6769. [aMDB, aRSM, KWK, HRM]CrossRefGoogle ScholarPubMed
Matthies, H., Frey, U., Reymann, K., Krug, M., Jork, R. & Schroeder, H. (1990) Different mechanisms and multiple stages of LTP. Advances in Experimental Medical Biology 268:359–68. [aZX]CrossRefGoogle ScholarPubMed
May, D., Ross, E., Gilman, A. & Smigel, M. (1985). Reconstitution of catecholamine-stimulatcd adenylate cyclase activity using three purified proteins. Journal of Biological Chemistry 260:15829–33. [aZX]CrossRefGoogle ScholarPubMed
McCarthy, S. T., Younger, J. P. & Owen, W. G. (1993) Disc structure, buffering and kinetics of cytosolic free calcium in bullfrog rod outer segments. Investigative Ophthalmology and Visual Science 34:1327. [aMDB]Google Scholar
McCarthy, S. T., Younger, J. P. & Owen, W. G. (1994) Free calcium concentrations in bulfrog rods determined in the presence of multiple forms of Fura-2. Biophysics Journal 67:2076–89. [rMDB]CrossRefGoogle Scholar
McDowell, J. H. (1993) Preparing rod outer segment membranes, regenerating, and determining rhodopsin concentration. In: Photoreceptor cells, ed. Hargrave, P. A.. Academic Press. [aPAH]Google Scholar
McDowell, J. H., Khan, S. M. A., Bolen, D. W., Santoro, M. M. & Hargrave, P. A. (1992) Structural stability of rhodopsin and opsin studied by differential scanning calorimetry. In: Signal transduction in photoreceptor cells, ed. Hargrave, P. A., Hofmann, K. P. & Kaupp, U. B.. Springer-Verlag. [aPAH]Google Scholar
McDowell, J. H., Nawrocki, J. P. & Hargrave, P. A. (1993) Phosphorylation sites in bovine rhodopsin. Biochemistry 32:4968–74. [aMDB]CrossRefGoogle ScholarPubMed
McFall-Ngai, M. J. & Horwitz, J. (1990) A comparative study of the thermal stability of the vertebrate eye lens: Antarctic ice fish to the desert iguana. Experimental Eye Research 50:703–9. [aPAH]CrossRefGoogle Scholar
McGee, T. L., Berson, E. L. & Dryja, T. P. (1992) Search for point mutations in the interstitial retinoid binding protein gene in patients with hereditary retinal degenerations. Investigative Ophthalmology and Visual Science 33:1396. [aSPD]Google Scholar
McCee, T. L., Lin, D., Berson, E. L. & Dryja, T. P. (1994) Defects in the rod cGMP-gated gene in patients with retinits pigmentosa. Investigative Ophthalmology and Visual Science 35:1716. [aSPD]Google Scholar
McGinnis, J. F., Austin, B. J., Klisak, I., Heinzmann, C., Kojis, J., Sparkes, R. S., Bateman, B. J. & Lerious, V. (1995) Chromosomal assignment of the human gene for the cancer associated retinopathy protein (recoverin). Journal of Neuroscience Research 40:165168. [JFM]CrossRefGoogle Scholar
McGinnis, J. F., Lerious, V., Pazik, J. & Elliott, R. W. (1993) Chromosomal assignment of the recoverin gene and cancer-associated retinopathy. Mammalian. Genome 4:4345. [JFM]CrossRefGoogle ScholarPubMed
McGinnis, J. F. & Leveille, P. J. (1985) Soluble proteins associated with photoreceptor cell death in the rd mouse. Current Eye Research 4:1127–35. [JFM]CrossRefGoogle ScholarPubMed
McGinnis, J. F., Stepanik, P. L., Baehr, W., Subbaraya, I. & Lerious, V. (1992a) Cloning and sequencing of the 23 kDa mouse photoreceptor cellspecific protein. FEBS Letters 302:172–76. [JFM]CrossRefGoogle Scholar
McGinnis, J. F., Whelan, J. P. & Donoso, L. A. (1992b) Transient, cyclic changes in mouse visual cell gene products during the light-dark cycle. Journal of Neuroscience Research 31:584–90. [JFM]CrossRefGoogle ScholarPubMed
McGuire, R. E., Sullivan, L. S., Blanton, S. H., Church, M., Heckenlively, J. R. & Daiger, S. P. (in press) X-linked dominant cone-rod dystrophy: Linkage mapping of a new locus (CORD3) to Xp22.13—p22.11. American Journal of Human Genetics. [rSPD]Google Scholar
McKusick, V. A. (1994) Mendelian inheritance in man, 11th ed. The Johns Hopkins University Press. [arSPD]Google Scholar
McLaughlin, M. E., Sandberg, M. A., Berson, E. L. & Dryja, T. P. (1993) Recessive mutations in the gene encoding the β-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genetics 4:130–34. [aSPD]CrossRefGoogle ScholarPubMed
McNaughton, P. A. (1990) Light response of vertebrate photoreceptors. Physiological Reviews 70:847–84. [aMDB]CrossRefGoogle ScholarPubMed
McWilliams, P., Farrar, G. J., Kenna, P., Bradley, D. G., Humphries, M. M., Sharp, E. M., McConnell, D. J., Lawler, M., Shiels, D., Ryan, C., Stephens, K., Daiger, S. P. & Humphries, P. (1989) Autosomal dominant retinitis pigmentosa (ADRP): Localization of an ADRP gene to the long arm of chromosome 3. Genomics 5:619–22. [aSPD]CrossRefGoogle Scholar
Michel, H. (1982) Characterization and crystal packing of three-dimension bacteriorhodopsin crystals. EMBO Journal 1:1267–71. [RMG]CrossRefGoogle Scholar
Michel, H. (1991) General and practical aspects of membrane protein crystallization. In: Crystallization of membrane proteins, ed. Michel, H.. CRC Press. [aPAH]Google Scholar
Michel, H. & Oesterhelt, D. (1980) Three-dimensional srystals of membrane proteins: Bacteriorhodopsin. Proceedings of the National Academy of Sciences USA 77:1283–85. [RMG]CrossRefGoogle Scholar
Milam, A. H., Dacey, D. M. & Dizhoor, A. M. (1992) Recoverin immunoreactivity in mammalian cone bipolar cells. Visual Neuroscience 10:112. [aJBH]CrossRefGoogle Scholar
Miljanich, G. P., Brown, M. F., Mabry-Gaud, S., Dratz, E. A. & Sturtevant, J. M. (1985) Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids. Journal of Membrane Biology 85:7986. [aPAH]CrossRefGoogle ScholarPubMed
Miller, C. (1989) Genetic manipulation of ion channels: A new approach to structure and mechanism. Neuron 2:11951205. [aRSM]CrossRefGoogle ScholarPubMed
Miller, C. (1991) Annus mirabilis of potassium channels. Science 252:1092–96. [aRSM]CrossRefGoogle ScholarPubMed
Miller, J. L., Fox, D. A. & Litman, B. J. (1986) Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Journal of Biological Chemistry 25:4983–88. [aMDB]Google ScholarPubMed
Miller, J. L. & Korenbrot, J. I. (1993) In retinal cones, membrane depolarization in darkness activates the cGMP-dependent conductance. Journal of General Physiology 101:933–61. [KWK]CrossRefGoogle ScholarPubMed
Miller, K. R. & Jacobs, J. S. (1983) Two-dimensional crystals formed from photosynthetic reaction centers. Journal of Cell Biology 97:1266–70. [aPAH]CrossRefGoogle ScholarPubMed
Min, K. C., Zvyaga, T. A., Cypess, A. M. & Sakmar, T. P. (1993) Characterization of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa: Mutations on the cytoplasmic surface affect transducin activation. Journal of Biological Chemistry 268:9400–4. [aSPD]CrossRefGoogle ScholarPubMed
Minocherhomjee, A. M., Selfe, S., Flowers, N. W. & Storm, D. R. (1987) Interaction between the catalytic subunit of the calmodulin sensitive adenylate cyclase with [125I] and [125I] calcodulin. Biochemistry 26:4444–48. [aZX]CrossRefGoogle Scholar
Mitchell, D. C., Straume, M. & Litman, B. J. (1992) Role of sn-1-saturated, sn-2-polyunsaaturated phospholipids in control of membrane receptor conformational equilibrium: Effects of cholesterol and acyl chain unsaturation on the metarhodopsin I—Metarhodopsin II equilibrium. Biochemistry 31:662–70. [aPAH]CrossRefGoogle Scholar
Mitchell, D. C., Straume, M., Miller, J. L. & Litman, B. J. (1990) Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29:9143. [ADA]CrossRefGoogle ScholarPubMed
Mitchell, P. J. & Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence specific DNA binding proteins. Science 245:371–78. [aZX]CrossRefGoogle ScholarPubMed
Moench, S. J., Terry, C. E. & Dewey, T. G. (1994) Fluorescence labeling of the palmitoylation sites of rhodopsin. Biochemistry 33:5783–89. [ADA]CrossRefGoogle ScholarPubMed
Molday, L. L., Cook, N. J., Kaupp, U. B. & Molday, R. S. (1990) The cGMP gated cation channel of bovine rod photoreceptor cells is associated with a 240 kDa protein exhibiting immunochemical cross-reactivity with spectrin. Journal of Biological Chemistry 265:18690–95. [aRSM, TGW]CrossRefGoogle ScholarPubMed
Molday, R. S. (1989) Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. Progress in Retinal Research 8:173209. [aPAH]CrossRefGoogle Scholar
Molday, R. S. & Molday, L. L. (1987) Differences in the protein composition of bovine retinal rod outer segment disk and plasma membranes isolated by a ricin-gold-dextran density perturbation method. Journal of Cell Biology 105:25892601. [TGW]CrossRefGoogle ScholarPubMed
Molday, R. S., Molday, L. L., Dose, A., Clark-Lewis, I., Illing, M., Cook, N. J., Eismann, E. & Kaupp, U. B. (1991) The cGMP-gated channel of the rod photoreceptor cell: Characterization and orientation of the amino terminus. Journal of Biological Chemistry 266:21917–22. [aRSM, RLH]CrossRefGoogle ScholarPubMed
Molday, R. S., Reid, D. M., Connell, G. & Molday, L. L. (1992) Molecular properties of the cGMP-gated channel of rod photoreceptor cells as probed with monoclonal antibodies. In: Signal transduction in photoreceptor cells, ed. Hargrave, P. A., Hofmann, K. P. & Kaupp, U. B.. Springer-Verlag. [aRSM]Google Scholar
Mollner, S. & Pfeuffer, T. (1988) Two different adenylyl cyclases in brain distinguished by monoclonal antibodies. European Journal of Biochemistry 171:265–71. [aZX]CrossRefGoogle ScholarPubMed
Mollner, S., Simmoteit, R., Palm, D. & Pfeuffer, T. (1991) Monoclonal antibodies against various forms of the adenylyl cyclase catalytic subunit and associated proteins. European Journal of Biochemistry 195:281–86. [aZX]CrossRefGoogle ScholarPubMed
Montarolo, P. G., Goelet, P., Castellucci, V. F., Morgan, J., Kandel, E. R. & Schacher, S. (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234:1249–54. [aZX]CrossRefGoogle ScholarPubMed
Moore, A. T., Fitzke, F. W., Kemp, C. M., Arden, C. B., Keen, T. J., Inglehearn, C. F., Bhattacharya, S. S. & Bird, A. C. (1992) Abnormal dark adaptation kinetics in autosomal dominant sector retinitis pigmentosa due to rhodopsin mutation. British Journal of Ophthalmology 76:465–69. [aSPD]CrossRefGoogle Scholar
Morris, R. G. (1990) Toward a representational hypothesis of the role of hippocampal synaptic plasticity in spatial and other forms of learning. Cold Spring Harbor Symposium on Quantative Biology 50:161–73. [aZX]CrossRefGoogle Scholar
Morris, R. G., Anderson, E., Lynch, C. S. & Baudry, M. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–76. [aZX]CrossRefGoogle ScholarPubMed
Morris, R. G., Garrud, P., Rawlins, J. N. & O'Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83. [aZX]CrossRefGoogle ScholarPubMed
Mullen, R. J., Eicher, E. M. & Sidman, R. L. (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proceedings of the National Academy of Sciences USA 73:208–12. [MWK]CrossRefGoogle ScholarPubMed
Musarella, M. A. (1992) Gene mapping of ocular diseases. Survey of Ophthalmology 36:285312. [aSPD]CrossRefGoogle ScholarPubMed
Musarella, M. A., Anson-Cartwright, L., Leal, S. M., Gilbert, L. D., Worton, R. G., Fishman, G. A. & Ott, J. (1990) Multipoint linkage analysis and heterogeneity testing in 20 X-linked retinitis pigmentosa families. Genomics 8:286–96. [aSPD]CrossRefGoogle ScholarPubMed
Naash, M. I., Hollyfield, J. G., Al-Ubaidi, M. R. & Baehr, W. (1993) Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proceedings of the national Academy of Sciences USA 90:54995503. [MWK]CrossRefGoogle ScholarPubMed
Nairn, A. C., Hemmings, H. C. & Greengard, P. (1985) Protein kinases in the brain. Animal Review of Biochemistry 54:931–76. [aZX]CrossRefGoogle Scholar
Nakamura, T. & Gold, G. H. (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:342–44. [aRSM]CrossRefGoogle ScholarPubMed
Nakano, A., Terasawa, M., Watanabe, M., Usuda, N., Morita, T. & Hidaka, H. (1992) Neurocalcin, a novel calcium binding protein with three EF-hand domains, expressed in retinal amacrine cells and ganglion cells. Biochem, Biophys, Res.Commun. 186:1207–11. [aJBH]CrossRefGoogle ScholarPubMed
Nakatani, K., Koutalos, Y. & Yau, K.-W. (1995) Ca+2 modultion of the cGMP-dated channel of bullfrog retinal rod photoreceptors. Journal of Physiology 484:1:6976. [MPC-K]CrossRefGoogle Scholar
Nakatani, K., Tamura, T. & Yau, K.-W. (1991) Light adaptation in retinal rods of the rabbit and two other nonprimate mammals. Journal of General Physiology 97:413–35. [aMDB, KWK]CrossRefGoogle ScholarPubMed
Nakatani, K. & Yau, K.-W. (1988a) Calcium and light adaptation in retinal rods and cones. Nature 334:6971. [aMDB, KWK, HRM]CrossRefGoogle ScholarPubMed
Nakatani, K. & Yau, K.-W. (1988b) Guanosine 3'-5'-cyclic monophosphate-activatcd conductance studied in a truncated rod outer segment of the toad. Journal of Physiology (London) 395:731–53. [aMDB]CrossRefGoogle Scholar
Nakazawa, M., Kikawa-Araki, E., Shiono, T. & Tamai, M. (1991) Analysis of rhodopsin gene in patients with retinitis pigmentosa using allele-specific polymerase chain reaction. Japanese Journal of Ophthalmology 35:386–93. [aSPD]Google ScholarPubMed
Näirfström, K. (1983) Hereditary progressive retinal atrophy in the Abyssinian cat. The Journal of Heredity 74:273–76. [MWK]CrossRefGoogle Scholar
Nathans, J. (1990) Determinants of visual pigment absorbance: Role of charged amino acids in the putative transmembrane segment. Biochemistry 29:937–42. [aPAH]CrossRefGoogle Scholar
Nathans, J. (1992) Rhodopsin: Structure, function, and genetics. Biochemistry 31:4923–31. [aMDB, aSPD, aPAH]CrossRefGoogle Scholar
Nathans, J., Maumenee, I. H., Zrenner, E., Sadowski, B., Sharpe, L. T., Lewis, R. A., Hansen, E., Rosenberg, T. et al. (1993) Genetic heterogeneity among blue-cone monochromats. American Journal of Human Genetics 53:9871000. [aSPD]Google ScholarPubMed
Nathans, J., Merbs, S. L., Sung, C.-H., Weitz, C. J. & Wang, Y. (1992a) Molecular genetics of human visual pigments. Annual Review of Genetics 26:403–24. [aSPD]CrossRefGoogle ScholarPubMed
Nathans, J., Weitz, C. J., Agarwal, N., Nir, I. & Papermaster, D. S. (1989) Production of bovine rhodopsin by mammalian cell lines expressing cluned cDNA: Spectrophotometry and subcellular localization. Vision Research 29:907–14. [aPAH]CrossRefGoogle ScholarPubMed
Natsukari, N., Hanai, H., Matsunaga, T. & Fujita, M. (1990) Synergistic activation of brain adenylate cyclase by calmodulin, and either GTP or catecholamines including dopamine. Brain Research 534:170–76. [aZX]CrossRefGoogle ScholarPubMed
Nawy, S. & Jahr, C. E. (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346:269–71. [aRSM]CrossRefGoogle ScholarPubMed
Nef, S., De Castro, E., Martone, M. E., Edelman, V. M., Ellisman, M. H., Fiumelli, H., Comte, M., Cox, J. A., Lenz, S. E., Kawamura, S. & Nef, P. (in press) Relgulation of receptor phosphorylation by a novel family of neuronal calcium sensors (NCS) and distribution of NCS-1 in the avian and rodent nervous systen. Neuron. [SK]Google Scholar
Nef, S., Fiumelli, H., De Castro, E., Raes, M. B. & Nef, P. (in press) Identification of a neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. Journal of Receptor Research [KT]Google Scholar
Nei, M. (1987) Molecular evolutionary genetics. Columbia University Press. [aSPD]CrossRefGoogle Scholar
Nelson, R. B. & Routtenberg, A. (1985) Characterization of protein Fl: A kinase C substrate directly related to neural plasticity. Experimental Neurology 89:213–24. [aZX]CrossRefGoogle Scholar
Nestler, E. J. & Greengard, P. (1983) Protein phosphorylation in the brain. Nature 305:583–88. [aZX]CrossRefGoogle Scholar
Neubert, T. A., Johnson, R. S., Hurley, J. B. & Walsh, K. A. (1992) The rod transducin a subunit amino terminus is heterogeneously fatty acylated. Journal of Biological Chemistry 267:18274–77. [aMDB, aJBH, KS]CrossRefGoogle ScholarPubMed
Newton, A. C. & Williams, D. S. (1991) Involvement of protein kinase C in the phosphorylation of rhodopsin. Journal of Biological Chemistry 266:17725–28. [aMDB]CrossRefGoogle ScholarPubMed
Newton, A. C. & Williams, D. S. (1993) Rhodopsin is the major in situ substrate of protein kinase C in rod outer segments of photoreceptors. Journal of Biological Chemistry 268:18181–86. [aMDB]CrossRefGoogle ScholarPubMed
Nicol, G. D. & Bownds, M. D. (1989) Calcium regulates some, but not all, aspects of light adaptation in rod photoreceptors. Journal of General Physiology 94:233–59. [aMDB]CrossRefGoogle Scholar
Nicol, G. D., Kaupp, U. B. & Bownds, M. D. (1987) Transduction persists in rod photoreceptors after depletion of intracellular calcium. Journal of General Physiology 89:297319. [aMDB]CrossRefGoogle ScholarPubMed
Nicoll, R. A., Kauer, J. A. & Malenka, R. C. (1988) The current excitement in long-term potentiation. Neuron 1:97103. [aZX]CrossRefGoogle ScholarPubMed
Nichols, B. E., Sheffield, V. C., Vandenburgh, K., Drack, A. V., Kimura, A. E. & Stone, E. M. (1993) Butterfly-shaped pigment dystrophy of the fovea caused by a point mutation in codon 167 of the RDS gene. Nature Genetics 3:202–6. [aSPD]CrossRefGoogle ScholarPubMed
Niemeyer, G., Trub, P., Schinzel, A. & Gal, A. (1992) Clinical and ERG data in a family with autosomal dominant RP and Pro-347-Arg mutation in the rhodopsin gene. Documenta Ophthalmologica 79:303–11. [aSPD]CrossRefGoogle Scholar
Nigg, E. A., Hilz, H., Eppenberger, H. M. & Dutly, F. (1985) Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO Journal 4:2801–6. [aZX]CrossRefGoogle ScholarPubMed
Noel, J. P., Hamm, H. E. & Sigler, P. B. (1993) The 2.2 Å crystal structure of transducin- complexed with GTPgammaS. Nature 366:654–63. [aMDB, RKC, EAD]CrossRefGoogle Scholar
Noro, Y., Ishiguro, S.-I. & Tamal, M. (1994) Accumulation of glutamate-like reactivity in the rds/rds mouse retina. Investigative Ophthalmology and Visual Science 35:1362. [MT]Google Scholar
Nussberger, S., Dörr, K., Wang, D. N. & Kühlbrandt, W. (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. Journal of Molecular Biology 234:347–56. [RMG]CrossRefGoogle ScholarPubMed
O'Brien, P. J., StJules, R. S., Reddy, T. S., Bazan, N. G. & Zatz, M. (1987) Acylation of disc membrane rhodopsin may be nonenzymatic. Journal of Biological Chemistry 262:5210–15. [aPAH]CrossRefGoogle ScholarPubMed
O'Brien, P. J. & Zatz, M. (1984) Acylation of bovine rhodopsin by [3H]palmitic acid. Journal of Biological Chemistry 259:5054–57. [aPAH]CrossRefGoogle Scholar
Ocorr, K. A., Walters, E. T. & Byrne, J. H. (1985) Associative conditioning analog selectively increases cAMP levels of tail sensory neurons in Aplysia. Proceedings of the National Academy of Sciences USA 82:2548–52. [TWA]CrossRefGoogle ScholarPubMed
Ohguro, H., Fukada, Y., Takao, T., Shimonishi, Y., Yoshizawa, T. & Akino, T. (1991) Carboxyl methylation and farnesylation of transducin gammasubunit synergistically enhance its coupling with metarhodopsin II. EMBO Journal 10:3669–74. [aMDB]CrossRefGoogle Scholar
Ohguro, H., Palczewski, K., Ericsson, L. H., Walsh, K. A. & Johnson, R. S. (1993) Sequential phosphorylation of rhodopsin at multiple sites. Biochemistry 32:5718–24. [aMDB]CrossRefGoogle ScholarPubMed
Okazaki, K., Watanabe, M., Ando, Y., Hagiwara, M., Terasawa, M. & Hidaka, H. (1992) Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochemical and Biophysical Research Communications 185:147–53. [aJBH]CrossRefGoogle ScholarPubMed
Oprian, D. D. (1992) The ligand-binding domain of rhodopsin and other G protein-linked receptors. Journal of Bioenergetics & Biomembranes 24:211–17. [aPAH]CrossRefGoogle ScholarPubMed
Oprian, D. D., Molday, R. S., Kaufman, R. J. & Khorana, H. G. (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proceedings of the National Academy of Sciences USA 84:8874–78. [aPAH]CrossRefGoogle ScholarPubMed
Orth, U., Samanns, C., Gusseck, H., Niemeyer, G., Ludwig, M., Meitinger, T., Schinzel, A., Schwinger, E. & Gal, A. (1991) Autosomal dominant hereditary retinopathia pigmentosa with genetic heterogeneity. Fortschritte der Opththalmologie. 88:455–59. [aSPD]Google ScholarPubMed
Ott, J., Bhattacharya, S. S., Chen, J. D., Denton, M. J., Donald, J., DuBay, C., Farrar, G. J., Fishman, G. A. et al. (1990) Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests. Proceedings of the National Academy of Sciences USA 87:701–4. [aSPD]CrossRefGoogle ScholarPubMed
Ovchinnikov, Y. A., Abdulaev, N. G. & Bogachuk, A. S. (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Letters 230:15. [aPAH]CrossRefGoogle ScholarPubMed
Ovchinnikov, Y. A., Abdulaev, N. G., Zolotarev, A. S., Artamonov, I. D., Bespalov, I. A., Dergachev, A. E & Tsuda, M. (1988) Octopus rhodopsin: Amino acid sequence deduced from cDNA. FEBS Letters 232:6972. [aPAH]CrossRefGoogle ScholarPubMed
Pagés, F., Deterre, P. & Pfister, C. (1992) Enhanced GTPase activity of transducin when bound to cGMP phosphodiesterase in bovine retinal rods. Journal of Biological Chemistry 267:22018–21. [aMDB]CrossRefGoogle ScholarPubMed
Pagés, F., Deterre, P. & Pfister, C. (1993) Enhancement by phosphodiesterase subunits of the rate of GTP hydrolysis by transducin in bovine retinal rods. Essential role of the phosphodiesterase catalytic core. Journal of Biological Chemistry 268:26358–64. [arMDB, BMW]CrossRefGoogle ScholarPubMed
Palczewski, K., Buczylko, J., Kaplan, M. W., Polans, A. S. & Crabb, J. W. (1991) Mechanism of rhodopsin kinase activation. Journal of Biological Chemistry 266:12949–55. [aMDB]CrossRefGoogle ScholarPubMed
Palczewski, K., Jager, S., Buczylko, J., Crouch, R. K., Bredberg, D. L., Hofmann, K. P., Asson-Batres, M. A. & Saari, J. C. (1994) Rod outer segment retinol dehydrogenase: Substrate specificity and role in phototransduction. Biochemistry 38:13741–50. [RKC]CrossRefGoogle Scholar
Palczewski, K., McDowell, J. H. & Hargrave, P.A. (1988a) Purification and characterization of rhodopsin kinase. Journal of Biological Chemistry 263:14067–73. [aMDB]CrossRefGoogle ScholarPubMed
Palczewski, K., McDowell, J. H. & Hargrave, P.A. (1988b) Rhodopsin kinase: Substrate specificity and factors that influence activity. Biochemistry 27:2306–12. [aMDB]CrossRefGoogle ScholarPubMed
Palczewski, K., Rispoli, G. & Detwiler, P. B. (1992) The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction. Neuron 8:117–26. [aMDB]CrossRefGoogle ScholarPubMed
Palczewski, K., Subbaraya, I., Gorczyca, W. A., Helekar, B. S., Ruiz, C. C., Ohguro, H., Huang, J., Zhao, X., Crabb, J. W., Johnson, R. S., Walsh, K. A., Gray-Keller, M. P., Detwiler, P. B. & Baehr, W. (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclaseactivating protein. Neuron 13:395404. [KS]CrossRefGoogle Scholar
Papac, D. I., Oatis, J. E. Jr, Crouch, R. K. & Knapp, D. R. (1993) Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. Biochemistry 32:5930–34. [aMDB]CrossRefGoogle ScholarPubMed
Papac, D. I., Thornburg, K. R., Bullesbach, E. E., Crouch, R. K. & Knapp, D. R. (1992) Palmitylation of a G-protein coupled receptor: Direct analysis by tandem mass spectrometry. Journal of Biological Chemistry 267:16889–94. [aPAH]CrossRefGoogle ScholarPubMed
Papermaster, D. S. & Dreyer, W. J. (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–44. [aPAH]CrossRefGoogle ScholarPubMed
Pearson, P. L., Matheson, N. W., Flescher, D. C., Robbins, F. J. (1992) The GDB[TM] human genome data base anno 1992. Nucleic Acids Research 20:2201–6. [aSPD]CrossRefGoogle ScholarPubMed
Peng, Y.-W., Robishaw, J. D., Levine, M. A. & Yau, K.-W. (1992) Retinal rods and cones have distinct G protein β and γ subunits. Proceedings of the National Academy of Sciences USA 89:10882–86. [aSPD]CrossRefGoogle ScholarPubMed
Pepperberg, D. R., Cornwall, M. C., Kahlert, M., Hofmann, K. P., Jin, J., Jones, G. J. & Ripps, H. (1992) Light-dependent delay in the falling phase of the retinal rod photoresponse. Visual Neuroscience 8:918. [aMDB, RKC]CrossRefGoogle ScholarPubMed
Pepperberg, D. R., Jin, J. & Jones, G. J. (1994) Modulation of transduction gain in light adaptation of retinal rods. Visual Neuroscience 11:5362. [aMDB, RKC]CrossRefGoogle ScholarPubMed
Perez-Sala, D., Tan, E. W., Canada, F. J. & Rando, R. R. (1991) Methylation and demethylation reactions of guanine nucleotide-binding proteins of retinal rod outer segments. Proceedings of the National Academy of Sciences USA 88:3043–46. [aMDB]CrossRefGoogle ScholarPubMed
Perlman, J. I., Nodes, B. R. & Pepperberg, D. R. (1982) Utilization of retinoids in the bullfrog retina. Journal of General Physiology 80:885913. [RKC]CrossRefGoogle ScholarPubMed
Pfenninger, K. H., Ellis, L., Johnson, M. P., Friedman, L. B. & Somlo, S. (1983) Nerve growth cones isolated from fetal rat brain: Subcellular fractionation and characterization. Cell 35:573–84. [aZX]CrossRefGoogle ScholarPubMed
Pfister, C., Bennett, N., Bruckert, F., Catty, P., Clerc, A., Pagès, F. & Deterre, P. (1993) Interactions of a G-protein with its effector: Transducin and cGMP phosphodiesterase in retinal rods. Cellular Signalling 5:235–51. [aMDB]CrossRefGoogle ScholarPubMed
Philip, N. J., Chang, W. & Long, K. (1987) Light-stimulated movement in rod photoreceptor cells of the rat retina. FEBS Letters 225:127–31. [JFM]CrossRefGoogle Scholar
Phillips, W. J. & Cerione, R. A. (1994) A C-terminal peptide of bovine rhodopsin binds to the transducin alpha-subunit and facilitates its activation. Biochemical Journal 299(Pt 2):351–57. [ADA]CrossRefGoogle Scholar
Piascik, M. T., Piascik, M. F., Hitzemann, R. J. & Potter, J. D. (1981) Ca2+ -dependent regulation of rat caudate nucleus adenylate cyclase and effects on the response to dopamine. Mol Pharmacol. 20, 2: 319–25. [aZX]Google Scholar
Picones, A. & Korenbrot, J. I. (1992) Permeation and interaction of monovalent cations with the cGMP-gated channel of cone photoreceptors. Journal of Ceneral Physiology 100:647–73. [aRSM]CrossRefGoogle ScholarPubMed
Pistorius, A. M. & deGrip, W. J. (1994) Rhodopsin's secondary structure revisited: Assignment of structural elements. Biochemical and Biophysical Research Communications 3:1040–45. [ADA]CrossRefGoogle Scholar
Pittler, S. J. & Baehr, W. (1991) Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase β-subunit gene of the rd mouse. Proceedings of the National Academy of Sciences USA 88:8322–26. [aSPD, MWK]CrossRefGoogle ScholarPubMed
Pittler, S. J., Keeler, C. E., Sidman, R. L. & Baehr, W. (1993) PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proceedings of the National Academy of Sciences USA 90:9616–19. [aSPD]CrossRefGoogle ScholarPubMed
Pittler, S. J., Lee, A. K., Altherr, M. R., Howard, T. A., Seldin, M. F., Hurwitz, R. L., Wasmuth, J. J. & Baehr, W. (1992) Primary structure and chromosomal localization of human and mouse rod photoreceptor cGMP-gated cation channel. Journal of Biological Chemistry 267:6257–62. [aRSM]CrossRefGoogle ScholarPubMed
Plantner, J. J., Le, M.-L. & Kean, E. L. (1991) Enzymatic deglycosylation of bovine rhodopsin. Experimental Eye Research 53:269–74. [aPAH]CrossRefGoogle ScholarPubMed
Pober, J. S. & Stryer, L. (1975) Light dissociates enzymatically-cleaved rhodopsin into two different fragments. Journal of Molecular Biology 95:477–81. [rPAH]CrossRefGoogle ScholarPubMed
Polans, A. S., Buczylko, J., Crabb, J. & Palczewski, K. (1991) A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. Journal of Cell Biology 112:981–89. [aJBH, JFM, ASP]CrossRefGoogle ScholarPubMed
Polans, A. S., Burton, M. D., Haley, T. L., Crabb, J. W. & Palczewski, K. (1993) Recoverin, but not visinin, is an autoantigen in the human retina identified with a cancer-associated retinopathy. Investigative Ophthalmology and Visual Science 34:8190. [aJBH, ASP]Google Scholar
Polans, A. S., Hermolin, J. & Bownds, M. D. (1979) Light-induced phosphorylation of two proteins in frog rod outer segments. Journal of General Physiology 74:595613. [aMDB]CrossRefGoogle ScholarPubMed
Pongs, O., Lindemeier, J., Zhu, X. R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambrecht, H. G., Koch, K. W., Schwemer, J., Rivosecchi, R., Mallart, A., Galceran, J., Canal, I., Barbas, J. A. & Ferrus, A. (1993) Frequenin: A novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11:1528. [KT]CrossRefGoogle ScholarPubMed
Popova, J. S., Johnson, G. L. & Rasenick, M. M. (1994) Journal of Biological Chemistry 269:21748–54. [MMR]CrossRefGoogle Scholar
Poulain, C., Ferrus, A. & Mallart, A. (1994) Modulation of type A K+ current in Drosophila larval muscle by internal Ca2+; effects of the overexpression of frequenin. European Journal of Physiology 427:7179. [KT]CrossRefGoogle Scholar
Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J. & Sealfon, S. C. (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA and Cell Biology 11:120. [aPAH]CrossRefGoogle ScholarPubMed
Pugh, E. N. Jr & Lamb, T. D. (1990) Cyclic GMP and calcium: The internal messengers of excitation and adaptation in vertebrate photoreceptors. Vision Research 30:1923–48. [aMDB]CrossRefGoogle ScholarPubMed
Pugh, E. N. Jr & Lamb, T. D. (1993) Amplification and kinetics of the activation steps in phototransduction. Biochimica et Biophysica Acta 1141:111–49. [aMDB, KWK]CrossRefGoogle ScholarPubMed
Pullen, N., Brown, N. C., Sharma, R. P. & Akhtar, M. (1993) Cooperativity during multiple phosphorylations chatlyzed by rhodopsin kinase: Supporting evidence using synthetic phosphopeptides. Biochemistry 32:3958–64. [ADA]CrossRefGoogle ScholarPubMed
Pulvermuller, A., Palczewski, K. & Hofmann, K. P. (1993) Interaction between photoaetivated rhodopsin and its kinase: Stability and kinetics of complex formation. Biochemistry 32:14082–88. [aMDB]CrossRefGoogle ScholarPubMed
Quamme, G. A. & Rabkin, S. W. (1990) Cytosolic free magnesium in cardiac myocytes: Identification of a Mg2+ influx pathway. Biochemical and Biophysical Research Communications 167:1406–12. [RLH]CrossRefGoogle ScholarPubMed
Radmacher, M., Fritz, M., Hansma, H. C. & Hansma, P. K. (1994) Direct observation of enzyme activity with the atomic force microscope. Science 265:1577–79. [ADA]CrossRefGoogle ScholarPubMed
Raju, B., Murphy, E., Levy, L. A., Hall, R. D. & London, R. E. (1989) A fluorescent indicator for measuring cytosolic free magnesium. American Journal of Physiology 256:C54048. [RLH]CrossRefGoogle ScholarPubMed
Raleigh, D. P., Levitt, M. H. & Griffin, R. G. (1988) Rotational resonance in solid state NMR. Chemistry & Physics Letters 146:7176. [SOS]CrossRefGoogle Scholar
Rao, V. R., Cohen, G. B. & Oprian, D. D. (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367:639–42. [aSPD]CrossRefGoogle Scholar
Ratan, R. R., Murphy, T. H. & Baraban, J. M. (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. Journal of Neurochemistry 62:376–79. [MT]CrossRefGoogle ScholarPubMed
Ratto, G. M., Payne, R., Owen, W. G. & Tsien, R. Y. (1988) The concentration of cytosolic free calcium in vertebrate rod outer segments measured with Fura-2. Journal of Neuroscience 8:3240–46. [aMDB]CrossRefGoogle ScholarPubMed
Ray, S., Zozulya, S., Niemi, G. A. et al. (1992) Cloning, expression and crystallization of recoverin, a calcium sensor in vision. Proceedings of the National Academy of Sciences USA 89:5705–9. [aJBH]CrossRefGoogle ScholarPubMed
Reig, C., Llecha, N., Antich, J., Gaen, E., Tejada, I., Molina, M., Revents, J. & Carballa, M. (1994) A missense mutation (211HisArg) and a silent (160Thr) mutation within the rhodopsin gene in a Spanish autosomal dominant retinitis pigmentosa family. Human Molecular Genetics 3:195–96. [aSPD]CrossRefGoogle Scholar
Represa, A., Deloulme, J. C., Sensenbrenner, M., Ben-Ari, Y. & Baudier, J. (1990) Neurogranin: Immunocytochemical localization of a brain specific protein kinase C substrate. Journal of Neuroscience 10:3782–92. [EDR]CrossRefGoogle ScholarPubMed
Rescorla, R. A. (1988) Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience 11:329–52. [TWA]CrossRefGoogle ScholarPubMed
Restagno, C., Maghtheh, M., Ghattacharya, S., Ferrone, M., Garnersoe, S., Samuelly, R. & Carbonara, A. (1992) A large deletion at the 3' end of the rhodopsin gene in an Italian family with a diffuse form of autosomal dominant retinitis pigmentosa. Human Molecular Genetics 2:207–8. [aSPD]CrossRefGoogle Scholar
Richards, J. E., Kuo, C. Y., Boehnke, M. & Sieving, P. A. (1991) Rhodopsin Thr58Arg mutation in a family with autosomal dominant retinitis pigmentosa. Ophthalmology 98:17971805. [aSPD]CrossRefGoogle Scholar
Ridge, K. D., Bhattacharya, S., Nakayama, T. A. & Khorana, H. G. (1992) Light-stable rhodopsin: 2. An opsin mutant (Trp-265 → Phe) and a retinal analog with a nonisomerizable 11-Cis configuration form a photostable chromophore. Journal of Biological Chemistry 267:6770–75. [aPAH]CrossRefGoogle Scholar
Ridge, K. D., Lee, S. S. J. & Yao, L. L. (in press) In vivo assembly of rhodopsin from expressed polypeptide fragments. Proceedings of the National Academy of Sciences USA. [rPAH]Google Scholar
Ricke, F. & Schwartz, E. A. (1994) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13:863–73. [TGW]CrossRefGoogle Scholar
Ringens, P. J., Fang, M., Shinohara, T., Bridges, C. D., Lerea, C. L., Berson, E. L. & Dryja, T. P. (1990) Analysis of genes coding for S-antigen, interstitial retinol binding protein, and the alpha-subunit of cone transducin in patients with retinitis pigmentosa. Investigative Ophthalmology and Visual Science 31:1421–26. [aSPD]Google ScholarPubMed
Rispoli, C. & Detwiler, P. B. (1989) Light adaptation in Gecko rods may involve changes in both the initial and terminal stage of the transduction cascade. Biophysical Journal 55:380. [aMDB]Google Scholar
Rispoli, C. & Detwiler, P. B. (1991) Interactions between calcium and cGMP in dialyzed detached retinal rod outer segments. In: Signal transduction in photoreceptor cells, ed. Hargrave, P. A. & Hofmann, K. P.. Springer-Verlag. [aMDB]Google Scholar
Rispoli, G., Sather, W. A. & Detwiler, P. B. (1993) Visual transduction in dialysed detached rod outer segments from lizard retina. Journal of Physiology (London) 465:513–37. [aMDB]CrossRefGoogle ScholarPubMed
Robinson, P. R., Cohen, G. B., Zhukovsky, E. A. & Oprian, D. D. (1992) Constitutively active mutants of rhodopsin. Neuron 9:719–25. [aMDB, aSPD, aPAH]CrossRefGoogle ScholarPubMed
Robinson, P. R., Kawamura, S., Abramson, B. & Bownds, M. D. (1980) Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes. Journal of General Physiology 76:631–45. [aMDB]CrossRefGoogle ScholarPubMed
Rodriquez, J. A., Herrera, C. A., Birch, D. C. & Daiger, S. P. (1993) A leucine to arginine amino acid substitution at codon 46 of rhodopsin is responsible for a severe form of autosomal dominant retinitis pigmentosa. Human Mutation 2:205–13. [aSPD]CrossRefGoogle Scholar
Rodriguez, J. A., Herrera, C. A., Birch, D. G., Heckenlively, J. R. & Daiger, S. P. (1993a) Rhodopsin mutations in patients with retinitis pigmentosa. American Journal of Human Genetics 53:1224. [aSPD]Google Scholar
Ronnett, G. V. & Snyder, S. H. (1992) Molecular messengers of olfaction. Trends in Neuroscience 15:508–13. [aMDB]CrossRefGoogle ScholarPubMed
Roof, D. J., Adamian, M. & Hayes, A. (1994) Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Investigative Ophthalmology and Visual Science 35:4049–62. [MWK]Google ScholarPubMed
Root, M. J. & MacKinnon, R. (1993) Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron 11:459–66. [arRSM]CrossRefGoogle ScholarPubMed
Rosenberg, C.B., Minocherhomjee, A. & Storm, D. R. (1987b) Reconstitution of calmodulin-sensitive adenylate cyclase. Methods in Enzymology 139:776–79. [aZX]CrossRefGoogle ScholarPubMed
Rosenberg, G. B. & Storm, D. R. (1987a) Immunological distinction between calmodulin-sensitive and calmodulin-insensitive adenylyl cyclases. Journal of Biological Chemistry 262:7623–28. [oZX]CrossRefGoogle Scholar
Rosenfeld, P. J., Cowley, G. S., McGee, T. L., Sandberg, M. A., Berson, E. L. & Dryja, T. P. (1992) A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nature Genetics 1:209–13. [aSPD]CrossRefGoogle Scholar
Ross, E. M. & Gilman, A. G. (1980) Biochemical properties of hormonesensitive adenylyl cyclase. Annual Review of Biochemistry 49:533–64. [aZX]CrossRefGoogle Scholar
Roth, N. S., Campbell, P. T., Caron, M. G., Lefkowitz, R. J. & Lohse, M. J. (1991) Comparative rates of desensitization of β-adrenergic receptors by the β-adrenergic receptor kinase and the cyclic AMP-dependent protein kinase. Proceedings of the National Academy of Sciences USA 88:6201–4. [aMDB]CrossRefGoogle ScholarPubMed
Routtenberg, A. (1995) Phosphoprotein regulation of memory formation: enhancement and control of synaptic plasticity by protein kinase C and F1 . Annual of the New York Academy of Sciences 444:203–11.CrossRefGoogle Scholar
Roychowdhury, S. & Rasenick, M. M. (1994) Tubulin-G protein associations stabilizes GTP binding and activates GTPase. Biochemistry 33:9800–5. [MMR]CrossRefGoogle ScholarPubMed
Roychowdhury, S., Wang, N. & Rasenick, M. M. (1993) Biochemistry 32:4955–61. [MMR]CrossRefGoogle Scholar
Ryba, N. J. P. & Marsh, D. (1992) Protein rotational diffusion and lipid/protein interactions in recombinants of bovine rhodopsin with saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron spin resonance. Biochemistry 31:7511–18. [aPAH]CrossRefGoogle ScholarPubMed
Saga, M., Mashima, Y., Kawashima, S., Akeo, K., Oguchi, Y., Kudoh, J. & Shimizu, N. (1993) Rhodopsin gene analysis for Japanese autosomal dominant retinitis pigmentosa patients. Investigative Ophthalmology and Visual Science 34:1459. [aSPD]Google Scholar
Saitoh, S., Takamatsu, K., Kobayashi, M. & Noguchi, T. (1993) Distribution of hippocalcin mRNA and immunoreactivity in rat brain. Neuroscience Letters 157:107–10. [KT]CrossRefGoogle ScholarPubMed
Saitoh, S., Takamatsu, K., Kobayashi, M. & Noguchi, T. (1994) Immunohistochemical localization of neural visinin-like Ca2+-binding protein 2 in adult rat brain. Neuroscience Letters 171:155–58. [KT]CrossRefGoogle Scholar
Sakmar, T. P., Franke, R. R. & Khorana, H. G. (1989) Glutamic acid-113 serves as the retinylidine schiff base counterion in bovine rhodopsin. Proceedings of the National Academy of Sciences USA 86:8309–13. [aPAH]CrossRefGoogle Scholar
Salter, R. S., Krinks, M. H., Klee, C. B. & Neer, E. J. (1981) Calmodulin activates the isolated catalytic unit of brain adenylate cyclase. Journal of Biological Chemistry 256:9830–33. [aZX]CrossRefGoogle ScholarPubMed
Sanada, K., Kokame, K., Yoshizawa, T., Takao, T. & Fukada, Y. (1995) Role of heterogeneneous N-terminal acylation of recoverin in rhodopsin phosphorylation. Journal of Biological Chemistry 267:1827418277 Google Scholar
Sankila, E.-M., Pakarinen, L., Kääriäinen, H., Aittomäki, K., Karjalainen, S., Sistonen, P. & de la Chapelle, A. (1995) Assignment of an Usher syndrome type III (USH3) gene to chromosome 3q. Human Molecular Genetics 4:9398. [rSPD]CrossRefGoogle ScholarPubMed
Sano, M. (1985) Calmodulin-dependent adenylate cyclase in rat retina and the response to dopamine. Brain Research 345:337–40. [aZX]CrossRefGoogle Scholar
Sather, W. A. & Detwiler, P. B. (1987) Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proceedings of the National Academy of Sciences USA 84:9290–94. [aM DB]CrossRefGoogle ScholarPubMed
Schacher, S., Castellucci, V. F. & Kandel, E. R. (1988) cAMP evokes longterm facilitation in Aplysia sensory neurons that requires new protein synthesis. Science 240:1667–69. [aZX]CrossRefGoogle Scholar
Schafmeister, C. E., Miercke, L. J. W. & Stroud, R. M. (1993) Structure at 2.5 Å of a designed peptide that maintains solubility of membrane proteins. Science 262:734–39. [RKC]CrossRefGoogle ScholarPubMed
Schertler, G. F. X. (1992) Overproduction of membrane proteins. Current Opinion in Structural Biology 2:53444. [aPAH]CrossRefGoogle Scholar
Schertler, G. F. X., Bartunik, H. D., Michel, H. & Oesterhelt, D. (1993) Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 Å resolution. Journal of Molecular Biology 234:156–64. [RMG]CrossRefGoogle ScholarPubMed
Schertler, G. F. X. & Hargrave, P. A. (in press) Projection structures of frog rhodopsin in two crystal forms. Proceedings of the National Academy of Sciences USA. [raPAH]Google Scholar
Schertler, G. F. X., Villa, C. & Henderson, R. (1993) Projection structure of rhodopsin. Nature 362:770–72. [aPAH, EAD, RMG]CrossRefGoogle ScholarPubMed
Schnetkamp, P. P. M. (1989) Na-Ca or Na-Ca-K exchange in the outer segments of vertebrate rod photoreceptors. Progress in Biophysics and Molecular Biology 54:129. [PPMS]CrossRefGoogle ScholarPubMed
Schnetkamp, P. P. M. (1990) Cation selectivity of and cation binding to the cGMP-dependent channel in bovine rod outer segment membranes. Journal of General Physiology 96:517–34. [aRSM]CrossRefGoogle Scholar
Schnetkamp, P. P. M., Li, X-.B., Basu, D. K. & Szerencsei, R. T. (1991) Regulation of free cytosolic Ca2+ concentration in the outer segments of bovine retinal rods by Na-Ca-K exchange measured with Fluo-3. Journal of Biological Chemistry 266:22975–82. [PPMS]CrossRefGoogle ScholarPubMed
Schnetkamp, P. P. M. & Szerencsei, R. T. (1993) Intracellular Ca2+ sequestration and release in intact bovine retinal rod outer segments. Journal of Biological Chemistry 268:12449–57. [PPMS]CrossRefGoogle ScholarPubMed
Scholz, K. P. & Byrne, J. H. (1988) Intracellular injection of cAMP induces a long-term reduction of neuronal K+ currents. Science 240:1664–66. [aZX]CrossRefGoogle ScholarPubMed
Schulte, T. H. & Marchesi, V. T. (1979) Conformation of the human erythrocyte glycophorin A and its constituent peptides. Biochemistry 18:275–80. [ADA]CrossRefGoogle ScholarPubMed
Scott, K., Sieving, P. A., Bingham, E., Bhagat, V. J., Sullivan, J., Alpern, M. & Richards, J. E. (1993) Rhodopsin mutations associated with autosomal dominant retinitis pigmentosa. American Journal of Human Genetics 53:147. [aSPD]Google Scholar
Shapley, R. & Enroth-Cugell, C. (1984) Visual adaptation and retinal gain controls. Progress in Retinal Research 3:263–46. [aMDB]CrossRefGoogle Scholar
Sheffield, V. C., Fishman, G. A., Beck, J. S., Kimura, A. E. & Stone, E. M. (1991) Identification of novel rhodopsin mutations associated with retinitis pigmentosa by GC-damped denaturing gradient gel electrophoresis. American Journal of Human Genetics 49:699706. [aSPD]Google ScholarPubMed
Shichi, H., Lewis, M. S., Irreverre, F. & Stone, A. L. (1969) Biochemistry of visual pigments: 1. Purification and properties of bovine rhodopsin. Journal of Biological Chemistry 244:529–36. [aPAH]CrossRefGoogle Scholar
Shinozawa, T., Sokabe, M., Terada, S., Matsusaka, H. & Yoshizawa, T. (1987) Detection of cyclic GMP binding protein and ion channel activity in frog rod outer segments. Journal of Biochemistry 102:281–20. [aRSM]CrossRefGoogle ScholarPubMed
Shiono, T., Hotta, Y., Noro, M., Sakuma, T., Tamai, M., Hayakawa, M., Hashimoto, T., Fujiki, K., Kanai, A. & Nakajima, A. (1992) Clinical features of Japanese family with autosomal dominant retinitis pigmentosa caused by a single point mutation in codon 347 of rhodopsin gene. Japanese Journal of Ophthalmology 36:6975. [aSPD]Google ScholarPubMed
Shnyrov, V. L. & Berman, A. L. (1988) Calorimetric study of thermal denaturation of vertebrate visual pigments. Biomedica et Biochimica Acta 47:355–62. [aPAH]Google ScholarPubMed
Shuster, T. A. & Farber, D. B. (1984) Phosphorylation in sealed rod outer segments: Effects of cyclic nucleotides. Biochemistry 23:515–21. [aMDB]CrossRefGoogle ScholarPubMed
Shuster, T. A., Nagy, A. K., Conly, D. C. & Farber, D. B. (1992) Direct zinc binding to purified rhodopsin and disc membranes. Biochemical Journal 282:123–28. [aPAH]CrossRefGoogle ScholarPubMed
Sidman, R. L. & Green, M. D. (1965) Retinal degeneration in the mouse: Location of the rd locus in linkage group XVII. Journal of Heredity 56:2329. [MWK]CrossRefGoogle ScholarPubMed
Sidman, R. L. & Green, M. D. (1970) Nervous, a new mutant mouse with cerebellar disease. In: Les mutants pathologiques chez l'animal, ed. Sabourdy, M.. Centre National de la Recherche Scientifique. [MWK]Google Scholar
Sieving, P. A., Richards, J. E., Bingham, E. L. & Naarendorp, F. (1992) Dominant congenital complete nyctalopia and Gly90Asp rhodopsin mutation. Investigative Ophthalmology and Visual Science 33:1397. [aSPD]Google Scholar
Silva, A. J., Paylor, R., Wehner, J. M. & Tanegawa, S. (1992) Impaired spatial learning in a-calcium-calmodulin kinase II mutant mice. Science 257:206211. [aZX, TWA, EDR]CrossRefGoogle ScholarPubMed
Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. (1992) Deficient hippocampal long-term potentiation in alpha-calmodulin kinase II mutant mice. Science 257:201–6. [aZX, EDR]CrossRefGoogle Scholar
Sitaramayya, A. (1986) Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Biochemistry 25:5460–68. [aMDB]CrossRefGoogle Scholar
Sitaramayya, A. & Liebman, P. A. (1983a) Mechanism of ATP quench of phosphodiesterase activation in rod disc membranes. Journal of Biological Chemistry 258:1205–9. [aMDB]CrossRefGoogle ScholarPubMed
Sitaramayya, A. & Liebman, P. A. (1983b) Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. Journal of Biological Chemistry 258:12106–9. [aMDB]CrossRefGoogle ScholarPubMed
Skene, J. H. P. (1989) Axonal growth-associated proteins. Annual Review of Neuroscience 12:127–56. [aZX]CrossRefGoogle ScholarPubMed
Skene, J. H. P., Jacobson, R. D., Snipes, G. J., McGuire, C. B., Norden, J. J. & Freeman, J. A. (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233:783–86. [aZX]CrossRefGoogle ScholarPubMed
Skene, J. H. P. & Willard, M. J. (1981a) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. Journal of Cell Biology 89:8695. [aZX]CrossRefGoogle ScholarPubMed
Slack, J. R. & Pockett, S. (1991) Cyclic AMP induces long-term increase in synaptic efficacy in CA1 region of rat hippocampus. Neuroscience Letters 130:6972. [aZX]CrossRefGoogle ScholarPubMed
Small, K. W., Weber, J. L., Roses, A., Lennon, F., Vance, J. M. & Pericak-Vance, N. U. (1992) North Carolina macular dystrophy is assigned to chromosome 6. Genomics 13:681–85. [aSPD]CrossRefGoogle ScholarPubMed
Smigel, M. D. (1986) Purification of brain adenylyl cyclase using forskolin affinity chromatography and WGA-Sepharose. Journal of Biological Chemistry 261:1976–82. [aZX]CrossRefGoogle Scholar
Smith, R. J. H., Lee, E. C., Kimberling, W. J., Daiger, S. P., Pelias, M. Z., Keats, B. J. B., Jay, M. L., Bird, A., Reardon, W., Guest, M., Agyagri, R. & Hejtmancik, F. (1992) Localization of two genes for Usher syndrome type I to chromosome 11. Genomics 14:9951002. [aSPD]CrossRefGoogle ScholarPubMed
Smith, S. J. & Augustine, G. J. (1988) Calcium ions, active zones and synaptic transmitter release. Trends in Neuroscience 11:458–64. [aZX]CrossRefGoogle ScholarPubMed
Smith, S. O., Courtin, J., de Groot, H., Gebhard, R. & Lugtenburg, J. (1991) 13C magic angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin. Biochemistry 30:7409–15. [SOS]CrossRefGoogle ScholarPubMed
Smith, S. O., de Groot, H., Gebhard, R. & Lugtenburg, J. (1992) Magic angle spinning NMR studies on the metarhodopsin II intermediate of bovine rhodopsin: Evidence for an unprotonated Scruff base. Photochemistry & Photobiology 56:1035–39. [SOS]CrossRefGoogle Scholar
Smith, S. O. & Peersen, O. B. (1992) Solid-state NMR approaches for studying membrane protein structure. Annual Review of Biophysical and Biomolecular Structure 21:2547. [SOS]CrossRefGoogle ScholarPubMed
Sneyd, J. & Tranchina, D. (1989) Phototransduction in cones: An inverse problem in enzyme kinetics. Bulletin of Mathematical Biology 51:749–84. [aMDB]CrossRefGoogle ScholarPubMed
Somlyo, A. P. & Walz, B. (1985) Elemental distribution in rana pipiens retinal rods: Quantitative electron probe analysis. Journal of Physiology (London) 358:183–95. [RLH]CrossRefGoogle ScholarPubMed
Sowadski, J. M. (1994) Crystallization of membrane proteins. Current Opinion in Structural Biology 4:761–64. [RMG]CrossRefGoogle Scholar
Squire, L. R. & Davis, H. P. (1981) The pharmacology of memory: A neurobiological perspective. Annual Review of Pharmacology and Toxicology 21:323–56. [aZX]CrossRefGoogle ScholarPubMed
Srivastava, D., Fox, D. A. & Hurwitz, R. L. (in press) The role of magnesium in the hydrolysis of cGMP by the bovine retinal rod cGMP phosphodiesterase. Biochemical Journal. [RLH]Google Scholar
Srivastava, D., Hurwitz, R. L. & Fox, D. A. (submitted) Effects of magnesium on cyclic GMP hydrolysis by the bovine retinal rod cyclic GMP phosphodiesterase. [RLH]Google Scholar
Stanton, P. K. & Sarvey, J. M. (1985a) The effect of high-frequency electrical stimulation and norepinephrine on cyclic AMP levels in normal versus norepinephrine-depleted rat hippocampal slices. Brain Research 358:343–48. [aZX]CrossRefGoogle ScholarPubMed
Stanton, P. K. & Sarvey, J. M. (1985b) Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. Journal of Neuroscience 5:2169–76. [aZX]CrossRefGoogle Scholar
Steinberg, R. H., Fisher, S. K. & Anderson, D. H. (1980) Disc morphogenesis in vertebrate photoreceptors. Journal of Comparative Neurology 190:501–18. [aMDB]CrossRefGoogle ScholarPubMed
Stepanik, P. L., Lerious, V. & McGinnis, J. F. (1993) Developmental appearance, species and tissue specificity of mouse 23-kDa, a retinal calcium-binding protein (recoverin). Experimental Eye Research 57:189–97. [JFM]CrossRefGoogle Scholar
Stern, J. H., Kaupp, U. B. & MacLeish, P. R. (1986) Control of the light regulated current in rod photoreceptors by cyclic GMP, calcium and L-cis-diltiazem. Proceedings of the National Academy of Sciences USA 83:1167. [aRSM]CrossRefGoogle ScholarPubMed
Stone, E. M., Kimura, A. E., Nichols, B. E., Khadivi, P., Fishman, G. A. & Sheffield, V. C. (1991) Regional distribution of retinal degeneration in patients with proline to histidine mutation in codon-23 of the rhodopsin gene. Ophthalmology 98:1806–13. [aSPD]CrossRefGoogle ScholarPubMed
Stone, E. M., Nichols, B. E., Streb, L. M., Kimura, A. E. & Sheffield, V. C. (1992a) Genetic linkage of vitelliform macular degeneration (Best's disease) to chromosome llql3. Nature Cenetics 1:246–50. [aSPD]CrossRefGoogle Scholar
Stone, E. M., Vandenburgh, K., Kimura, A. E., Lam, B. L., Fishman, G. A., Heckenlively, J. R., Castillo, T. A. & Sheffield, V. C. (1993) Novel mutations in the peripherin (RDS) and rhodopsin genes associated with autosomal dominant retinitis pigmentosa (ADRP). Investigative Ophthalmology and Visual Science 34:1149. [aSPD]Google Scholar
Straume, M., Mitchell, D., Miller, J. & Litman, B. J.. (1990) Interconversions of metarhodopsins I and II: A branched photointermediate decay model. Biochemistry 29:9135–42. [ADA]CrossRefGoogle Scholar
Stryer, L. (1986) Cyclic GMP cascade of vision. Annual Review of Neuroscience 9:87119. [aSPD, aRSM]CrossRefGoogle Scholar
Stryer, L. (1991) Visual excitation and recovery. Journal of Biological Chemistry 266:10711–14. [aMDB, aJBH, aRSM]CrossRefGoogle ScholarPubMed
Subbaraya, I., Qin, N., McGinness, J. F. & Baehr, W. (1994) Cloning and expression of frog recoverin and its interaction with rhodopsin kinase. Investigative Ophthalmology and Visual Science 35:1485. [aJBH, JFM, AY]Google Scholar
Suber, M. L., Pittler, S. J., Qin, N., Wright, G. C., Holcombe, V., Lee, R. H., Craft, C. M., Lolley, R. N., Baehr, W. & Hurwitz, R. L. (1993) Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase β-subunit gene. Proceedings of the National Academy of Sciences USA 90:3968–72. [aSPD, MWK]CrossRefGoogle ScholarPubMed
Subramaniam, S., Gerstein, M., Osterhelt, D. & Henderson, R. (1993) Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO Journal 12:18. [aPAH, RMG]CrossRefGoogle ScholarPubMed
Sugimoto, Y., Yatsunami, K., Tsujimoto, M., Khorana, H. G. & Ichikawa, A. (1991) The amino acid sequence of a glutamic acid-rich protein from bovine retina as deduced from the cDNA sequence. Proceedings of the National Academy of Sciences USA 88:3116–19. [rRSM]CrossRefGoogle ScholarPubMed
Suh, K. H. & Hamm, H. (1988) Components I and II form a complex with the beta gamma subunils of G protein in frog rod outer segments. Investigative Ophthalmology and Visual Science 28: 218. [aMDB]Google Scholar
Sullivan, J. M., Makris, G. S., Dickinson, P., Mulhall, L. E. M., Sc, D. A., Forrest, S., Cotton, R. G. H. & Loughnan, M. S. (1993) A new codon 15 rhodopsin gene mutation in autosomal dominant retinitis pigmentosa is associated with sectorial disease. Archives of Ophthalmology 111: 1512–17. [aSPD]CrossRefGoogle ScholarPubMed
Sullivan, J. M., Scott, K. M., Falls, B. E., Richards, J. E. & Sieving, P. A. (1993) A novel rhodopsin mutation at the retinal binding site (LYS-296-MET) in ADRP. Investigative Ophthalmology and Visual Science 34: 1149. [aSPD]Google Scholar
Sung, C.-H., Davenport, C. M., Hennessy, J. C., Maumenee, I. H., Jacobson, S. G., Heckenlively, J. R., Nowakowski, R., Fishman, G., Gouras, P. & Nathans, J. (1991) Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Proceedings of the National Academy of Sciences USA 88:6481–85. [aSPD]CrossRefGoogle ScholarPubMed
Sung, C.-H., Davenport, C. M. & Nathans, J. (1993) Rhodopsin mutations responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes along the polypeptide chain. Journal of Biological Chemistry 268: 26645–49. [aSPD]CrossRefGoogle ScholarPubMed
Sung, C.-H., Schneider, B. G., Agarwal, N., Papermaster, D. S. & Nathans, J. (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proceedings of the National Academy of Sciences USA 88: 8840–44. [aSPD]CrossRefGoogle ScholarPubMed
Sutkowski, E. M., Tang, W., Broome, C. W., Robbins, J. D. & Seamon, K. B. (1994) Biochemistry 33: 12852–859. [MMR]CrossRefGoogle Scholar
Takamatsu, K. & Uyemura, K. (1992) Identification of recoverin-like immunorcactivity in mouse brain. Brain Research 571:350–53. [KT]CrossRefGoogle ScholarPubMed
Tamura, T., Nakatani, K. & Yau, K.-W. (1991) Calcium feedback and sensitivity regulation in primate rods. Journal of General Physiology 98: 95130. [aMDB]CrossRefGoogle ScholarPubMed
Tang, W. J. & Gilman, A. G. (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254: 1500–03. [TWA]CrossRefGoogle ScholarPubMed
Tang, W. J., Krupinski, J. & Gilman, A. G. (1991) Expression and characterization of calmodulin-activated (type I) adenylyl cyclase. Journal of Biological Chemistry 266: 85958603. [arZX, TWA, MMR]CrossRefGoogle Scholar
Taussig, R. T., Quarmby, L. R. & Gilman, A. G. (1993) Regulation of purified type I & type III adenylyl cyclases by C protein beta/gamma subunits. Journal of Biological Chemistry 268:912. [aZX]CrossRefGoogle Scholar
Thirkill, C. E., Tait, R. C., Tyler, N. K., Roth, A. M. & Keltner, J. L. (1992) The cancer-associated retinopathy antigen is a recoverin-like protein. Investigative Ophthalmology and Visual Science 33: 2768–72. [aJBH, JFM]Google ScholarPubMed
Tiberi, M. & Caron, M. G. (in press) Journal of Biolgical Chemistry. [MMR]Google Scholar
Ting, T. D. & Ho, Y.-K. (1991) Molecular mechanism of GTP hydrolysis by bovine transducin: Pre-steady-state kinetic analyses. Biochemistry 30: 89969007. [aMDB]CrossRefGoogle ScholarPubMed
Toscano, W. A. Jr, Westcott, K. R., LaPorte, D. C. & Storm, D. R. (1979) Evidence for a dissociable protein subunit required for calmodulin stimulation of brain adenylate cyclase. Proceedings of the National Academy of Sciences USA 76: P558286. [aZX]CrossRefGoogle ScholarPubMed
Tola, M. R., Xia, Z., Storm, D. R. & Schimerlik, M. I. (1990). Reconstitution of muscarinic receptor mediated inhibition of adenylyl cyclase. Molecular Pharmacology 37: 950–57. [aZX]Google Scholar
Toyoshima, C. & Unwin, N. (1990) Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. Journal of Cell Biology 111:2623–35. [aPAH]CrossRefGoogle ScholarPubMed
Tranchina, D., Sneyd, J. & Cadenas, I. D. (1991) Light adaptation in turtle cones: Testing and analysis of a model for phototransduction. Biophysical Journal 60: 217–37. [aMDB]CrossRefGoogle Scholar
Travis, G. H. (1991) Name dropping. Nature 349: 24. [aSPD]CrossRefGoogle ScholarPubMed
Travis, G. H., Brennan, M. B., Danielson, P. E., Kozak, C. A. & Sutcliffe, J. G. (1989) Identification of photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 338: 7073. [MWK]CrossRefGoogle Scholar
Travis, G. H., Sutcliffe, J. G. & Bok, D. (1991a) The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron 6: 6170. [aSPD, MWK]CrossRefGoogle ScholarPubMed
Treisman, G., Bagley, S. & Gnegy, M. (1983) Calmodulin-sensitive and calmodulin-insensitive components of adenylate cyclase activity in rat striatum have differential responsiveness to guanyl nucleotides. Journal of Neurochemistry 41: 13981406. [MMR]CrossRefGoogle ScholarPubMed
Tsuboi, S. Matsumoto, H., Jackson, K. W., Tsujimoto, K., Williams, T. & Yamazaki, A. (1994a) Phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in Rana catesbiana rod photoreceptors: 1. Characterization of the phosphorylation. Journal of Biological Chemistry 269: 15016–23. [aMDB]CrossRefGoogle Scholar
Tsuboi, S., Matsumoto, H. & Yamazaki, A. (1994) Phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in Rana catesbiana rod photoreceptors: 2. A possible mechanism for the turnoff of cGMP phosphodiesterase without GTP hydrolysis. Journal of Biological Chemistry 269: 15024–29. [aMDB, AY]CrossRefGoogle Scholar
Tully, T., Preat, T., Boynton, S. C. & Del Vecchio, M. (in press). Genetic dissection of consolidated memory in Drosophila melanogaster. Cell. [EDR]Google Scholar
Tycko, R. & Smith, S. O. (1993) Symmetry principles in the design of pulse sequences for structural measurements in magic angle spinning nuclear magnetic resonance. Journal of Chemical Physics 98: 932– 43. [SOS]CrossRefGoogle Scholar
Udovichenko, I. P., Cunnick, J., Gonzalez, K. & Takemoto, D. J. (1994) Functional effect of phosphorylation of the photoreceptor phosphodiesterase inhibitory subunit by protein kinase C. Journal of Biological Chemistry 269: 9850–56. [aMDB]CrossRefGoogle ScholarPubMed
Uhl, R., Wagner, R. & Ryba, N. (1990) Watching C proteins at work. Trends in Neuroscience 13:6470. [aMDB]CrossRefGoogle Scholar
Ulshafer, R. J., Garcia, C. A. & Hollyfield, J. G. (1980) Sensitivity of photoreceptors to elevated levels of cGMP in the human retina. Investigative Ophthamology and Visual Science 19: 1236–41. [aSPD]Google ScholarPubMed
Ulshafer, R. J., Sherry, D. M., Dawson, R. Jr, & Wallace, D. R. (1990) Excitatory amino acid involvement in retinal degeneration. Brain Research 531: 350–54. [MT]CrossRefGoogle ScholarPubMed
Unger, V. M., Hargrave, P. A. & Schertler, G. F. X. (1995) Localization of the transmembrane helices in the three-dimensional structure of frog rhodopsin. Biophysics Journal 68: A330. [rPAH]Google Scholar
Unwin, P. N. T. & Zampighi, G. (1980) Structure of the junction between communicating cells. Nature 283: 545–49. [aPAH]CrossRefGoogle ScholarPubMed
Vaithinathan, R., Berson, E. L. & Dryja, T. P. (1993) Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. Investigative Ophthalmology and Visual Science 34:1149. [aSPD]Google Scholar
van der Steen, R., Groesbeek, M., van Amsterdam, L. J. P., Lugtenburg, J., van Oostrum, J. & de Grip, W. J. (1989) All E–10,20-methanoretinylopsin, light-stable rhodopsin. Synthesis and spectroscopy of all E–10,20-methano- and all-E-retinoyl fluoride and their reaction with bovine opsin. Recueil des Travauz Chimiques des Pays-Bos 108:2027. [aPAH]CrossRefGoogle Scholar
Van Nie, R., Ivanyi, D. & Demant, P. 91978) A new H-2 linked mutation, rds, causing retinal degeneration in the mouse. Tissue Antigens 12: 106–8. [MWK]Google Scholar
van Soest, S., van den Bora, L. I., Gal, A., Farrar, G. J., Bleeker, Wagemakers L. M., Westerveld, A., Humphries, P., Sandkuijl, L. A. & Bergen, A. A. B. (1994) Assignment of a gene for autosomal dominant recessive retinitis pigmentosa (RP12) to chromosome lq31-q32.1 in an inbred and genetically heterogeneous disease population. Genomics 22: 499504. [aSPD, AB]CrossRefGoogle Scholar
Vanderkooi, G. (1974) Organisation of proteins in membranes with special reference to the cytochrome oxidase system. Biochimica et Biophysica Acta 344: 307–45. [aPAH]CrossRefGoogle Scholar
Villacres, E. C., Xia, Z., Bookbinder, L. H., Edelhoff, S., Adler, D. A., Disteche, C. M. & Storm, D. R. (1993) Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase. Genomics 16: 473–78. [aZX]CrossRefGoogle ScholarPubMed
Vuong, T. M. & Chabre, M. (1990) Subsecond deactivation of transducin by endogenous GTP hydrolysis. Nature 346: 7174. [aMDB]CrossRefGoogle ScholarPubMed
Vuong, T. M. & Chabre, M. (1991) Deactivation kinetics of the transduction cascade of vision. Proceedings of the National Academy of Sciences USA 88: 9813–17. [aMDB]CrossRefGoogle Scholar
Vuong, R. M., Chabre, M. & Stryer, L. (1984) Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature 311:659–61. [aMDB]CrossRefGoogle Scholar
Wagner, R., Ryba, N. & Uhl, R. (1988) Sub-second turnover of transducin GTPase in bovine rod outer segments. FEBS Letters 234:4448. [aMDB]CrossRefGoogle ScholarPubMed
Wagner, R., Ryba, N. & Uhl, R. (1989) Calcium regulates the rate of rhodopsin disactivation and the primary amplification step in visual transduction. FEBS Letters 242:249–54. [aMDB]CrossRefGoogle ScholarPubMed
Wahlsten, D. (1991) Sample size to detect a planned contrast and a one degree-of-freedom interaction effect. Psychological Bulletin 110:587–95. [DW]CrossRefGoogle Scholar
Walsh, M. P., Valentine, K. A., Ngai, P. K., Carruthers, C. A. & Hollenberg, M. D. (1984) Ca2+-dependent hydrophobic-interaction chromatography: Isolation of a novel Ca2+-binding protein and protein kinase C from bovine brain. Biochemistry Journal 224:117–27. [KT]CrossRefGoogle ScholarPubMed
Wang, N. & Rasenick, M. M. (1991) Tubulin-G protein interactions involve microtubule polymerization domains. Biochemistry 30: 10957– 65. [MMR]CrossRefGoogle ScholarPubMed
Wang, N., Yan, K. & Rasenick, M. M. (1990) Tubulin binds specifically to the signal-transducing proteins, Csa and Gial. Journal of Biological Chemistry 265: 1239–42. [MMR]CrossRefGoogle Scholar
Watanabe, S. I. & Murakami, M. (1991) Similar properties of the cGMPactivated channels between cones and rods in the carp retina. Visual Neuroscience 6:563–68. [aRSM]CrossRefGoogle ScholarPubMed
Watson, J. B., Battenberg, E. F., Wong, K. K., Bloom, F. E. & Sutcliffe, J. G. (1990) Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein. Journal of Neuroscience Research 26:397408. [EDR]CrossRefGoogle ScholarPubMed
Watson, J. B., Sutcliffe, J. G. & Fisher, R. S. (1992) Localization of the protein kinase C phosphorylation/calmodulin binding substrate RC3 in dendritic spines of neostriatal neurons. Proceedings of the National Academy of Sciences USA 89: 8581–85. [EDR]CrossRefGoogle Scholar
Wayman, G. A., Impey, S., Wu, Z., Kinsvogel, W., Prichard, L. & Storm, D. R. (1994) Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs coupled receptors in vivo. Journal of Biological Chemistry 269: 25400–5. [arZX, TWA, MMR]CrossRefGoogle ScholarPubMed
Weber, B. H. F., Vogt, G., Pruett, R. C., Stöhr, H. & Felbor, U. (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorby's fundus dystrophy. Nature Genetics 8: 352–55. [rSPD]CrossRefGoogle Scholar
Wehner, R., Marsh, A. C. & Wehner, S. (1992) Desert ants on a thermal tightrope. Nature 357: 586–87. [aPAH]CrossRefGoogle Scholar
Weitz, C. J. & Nathans, J. (1992) Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. Neuron 8:465–72. [aSPD]CrossRefGoogle ScholarPubMed
Weitz, C. J., Went, L. N. & Nathans, J. (1992a) Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment. American Journal of Human Genetics 51:444–46. [aSPD]Google ScholarPubMed
Weleber, R. G., Carr, R. E., Murphey, W. H., Sheffield, V. & Stone, E. M. (1993) Phenotypic variation including retinitis pigmentosa, pattern dystrophy and fundus flavimaculatis in a single family with a deletion of codon 153 or 154 of the pheripherin/RDS gene. Archives of Ophthalmology 111: 1531–42. [AB, aSPD]CrossRefGoogle Scholar
Well, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levillers, J., Weston, M. D., Kelly, P. M., Kimberling, W. J., Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K. P., Brown, S. D. M. & Petit, C. (1995) Defective mysin VIIA gene responsible for Usher syndrome type IB. Nature 374:6061. [rSPD]CrossRefGoogle Scholar
Wells, J., Wroblewski, J., Keen, J., Inglehearn, C., Jubb, C., Eckstein, A., Jay, M., Arden, G., Bhattacharya, S., Fitzke, F. & Bird, A. (1993) Mutations in the human retinal degeneration slow (rds) gene can cause either retinitis pigmentosa or macular dystrophy. Nature Genetics 3: 213–18. [aSPD]CrossRefGoogle ScholarPubMed
Welte, W. & Wacker, T. (1991). Protein-detergent micellar solutions for the crystallization of membrane proteins: Some general approaches and experiences with the crystallization of pigment-protein complexes from purple bacteria. In: Crystallization of membrane proteins, ed. Michel, H.. CRC Press. [aPAH]Google Scholar
Westcott, K. R., LaPorte, D. C. & Storm, D. R. (1979) Resolution of adenylyl cyclase sensitive and insensitive to Ca2+ and CDR by CDR-sepharose affinity chromatography. Proceedings of the National Academy of Sciences USA 76: 204–28. [WH, aZX]CrossRefGoogle ScholarPubMed
Weyand, I., Godde, M., Frings, S., Weiner, J., Müller, , Altenhofen, W., Hatt, H. & Kaupp, U. B. (1994) Cloning and functional expression of a cyclicnucleotide-gated channel from mammalian sperm. Nature 368: 859–63. [rRSM]CrossRefGoogle Scholar
Whelan, J. P. & McGinnis, J. F. (1988) Light-dependent subcellular movement of photoreceptor proteins. Journal of Neuroscience Research 20: 263–70. [JFM]CrossRefGoogle ScholarPubMed
Wilden, U., Hall, S. W. & Kuhn, H. (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48 KDa protein of rod outer segments. Proceedings of the National Academy of Sciences USA 83:1174–78. [aMDB]CrossRefGoogle ScholarPubMed
Wilden, U. & Kuhn, H. (1982) Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochemistry 21: 3014–22. [aMDB]CrossRefGoogle ScholarPubMed
Williams, D. S., Linberg, K. A., Vaughan, D. K., Fariss, R. N. & Fisher, S. K. (1988) Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. Journal of Comparative Neurology 272:161–76. [aMDB]CrossRefGoogle ScholarPubMed
Wohlfart, P., Haase, H., Molday, R. S. & Cook, N. J. (1992) Antibodies against synthetic peptides used to determine the topology and site of glycosylation of the cGMP-gated channel from bovine rod photoreceptors. Journal of Biological Chemistry 267:644–48. [aRSM]CrossRefGoogle ScholarPubMed
Wohlfart, P., Muller, H. & Cook, N. J. (1989) Lectin binding and enzymatic deglycosylation of cGMP-gated channel from bovine rod photoreceptors. Journal of Biological Chemistry 264:20934–39. [aRSM]CrossRefGoogle ScholarPubMed
Wong, S. & Molday, R. S. (1986) A spectrin-like protein in retinal rod outer segments. Biochemistry 25: 62946300. [aRSM]CrossRefGoogle ScholarPubMed
Wu, S. M., Qiao, X., Noebels, J. L. & Yang, X. L.: Localization and modulatory actions of zinc in vertebrate retina. Vision Research 33:2611–16. [MT]CrossRefGoogle Scholar
Wu, Z., Thomas, S. A., Xia, Z., Willacres, E. C., Palmiter, R. D. & Storm, D. R. (in press) Deficient spatial memory and altered LTP in type 1 adenylyl cyclase mutant mice. Proceedings of the National Academy of Sciences 92: 220–4. [arZX]CrossRefGoogle Scholar
Wu, Z., Wong, S. T. & Storm, D. R. (1993) Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain. Journal of Biological Chemistry 268:23766–68. [aZX]CrossRefGoogle ScholarPubMed
Xia, Z., Choi, E. J., Wang, F., Blazynski, C., & Storm, D. R. (1993) The type I calmodulin sensitive adenylyl cyclase is neural specific. Journal of Neurochemistry 60: 305–11. [aZX]CrossRefGoogle ScholarPubMed
Xia, Z., Choi, E. J., Wang, F. & Storm, D. R. (1992) The type III calcium/calmodulin-sensitive adenylyl cyclase is not specific to olfactory sensory neurons. Neuroscience Letters 144:169–73. [aZX]CrossRefGoogle Scholar
Xia, Z., Refsdal, C. D., Merchant, K. M., Dorsa, D. M. & Storm, D. R. (1991) Distinct patterns for the distribution of mRNA for the calmodulinsensitive adenylyl cyclase in rat brain: Expression in areas associated with learning and memory. Neuron 6: 431–43. [aZX]CrossRefGoogle Scholar
Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H. & Miki, N. (1990) Visinin: A novel calcium binding protein expressed in retinal cone cells. Neuron 2:469–76. [aJBH, KT]CrossRefGoogle Scholar
Yamazaki, A., Hayashi, F., Tatsumi, M., Bitenski, M. W. & George, J. S. (1990) Interaction between the subunits of transducin and cyclic GMP phosphodiesterase in Rana catesbiana rod photoreceptors. Journal of Biological Chemistry 265: 11539–48. [aMDB, AY]CrossRefGoogle ScholarPubMed
Yamazaki, A., Yamazaki, M., Tsuboi, S., Kishigami, A., Umbarger, K. O., Hutson, L. D., Madland, W. T. & Hayashi, F. (1993) Regulation of G protein function by an effector in GTP-dependent signal transduction. An inhibitory subunit of cGMP phosphodiesterase inhibits GTP hydrolysis by transducin in vertebrate rod photoreceptors. Journal of Biological Chemistry 268:88998907. [rMDB]CrossRefGoogle ScholarPubMed
Yarfitz, S. & Hurley, J. B. (1994) Transduction mechanisms of vertebrate and invertebrate photoreceptors. Journal of Biological Chemistry 269: 14329–32. [aMDB]CrossRefGoogle ScholarPubMed
Yau, K.-W. (1994) Phototransduction mechanism in retinal rods and cones: The Friedenwald lecture. Investigative Ophthalmology and Visual Science 35: 932. [aMDB]Google ScholarPubMed
Yau, K.-W. & Baylor, D. A. (1989) Cyclic GMP-activated conductance of retinal photoreceptor cells. Annual Review of Neuroscience 12:289327. [arMDB, aRSM, LWH, RLH]CrossRefGoogle ScholarPubMed
Yau, K.-W & Nakatani, K. (1984a) Electrogenic Na-Ca exchange in retinal rod outer segment. Nature 311:661–63. [aRSM]CrossRefGoogle ScholarPubMed
Yau, K.-W & Nakatani, K.(1984b) Cation selectivity of light-sensitive conductance in retinal rods. Nature 309:352–54. [aRSM]CrossRefGoogle ScholarPubMed
Yau, K.-W & Nakatani, K.(1985a) Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature 317: 252–55. [aRSM]CrossRefGoogle ScholarPubMed
Yau, K.-W & Nakatani, K. (1985b) Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature 313: 579–82. [aRSM]CrossRefGoogle ScholarPubMed
Yeager, R. E., Heideman, W., Rosenberg, G. B. & Storm, D. R. (1985) Purification of the calmodulin-sensitive sensitive adenylyl cyclase from bovine brain. Biochemistry 24:3776–83. [aZX]CrossRefGoogle Scholar
Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. (1991) Mutations affecting internal TEA blockage identify the probable pore-forming region of K+ channels. Science 251:939–42. [aRSM]CrossRefGoogle Scholar
Yool, A. J. & Schwartz, T. L. (1991) Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 349:700–4.[aRSM]CrossRefGoogle Scholar
Yoshida, T., Willardson, B. M., Wilkins, J. F., Jensen, G. J., Thornton, B. D. & Bitensky, M. W. (1994) The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. Journal of Biological Chemistry 269: 24050–57. [BMW]CrossRefGoogle ScholarPubMed
Yoshikami, S., George, J. S. & Hagins, W. A. (1980) Light-induced calcium fluxes from outer segment layer of vertebrate retinas. Nature 287:395–98. [TGW]CrossRefGoogle Scholar
Yoshimura, M. & Cooper, D. M. (1992) Cloning and expression of a Ca2+ inhibitable adenylyl cyclase from NCB-20 cells. Proceedings of National Academy of Sciences USA 89: 6716–20. [aZX]CrossRefGoogle ScholarPubMed
Younger, J. P., McCarthy, S. T. & Owen, W. G. (1992) Modulation of cytosolic free calcium and changes in sensitivity and circulating current occur over the same range of steady-state adapting lights in rod photoreceptors. Incostigatice Ophthalmology and Visual Science 33: 1104. [aMDB]Google Scholar
Yovell, Y. & Abrams, T. W. (1992) Temporal asymmetry in activation of Aplysia adenylyl cyclase may explain properties of conditioning. Proceedings of the National Academy of Sciences USA 89: 6526–30. [TWA]CrossRefGoogle Scholar
Yovell, Y., Kandel, E. R., Dudai, Y. & Abrams, T. W. (1992) A quantitative study of the Ca2+/calmodulin sensitivity of adenylyl cyclase in Aplysia, Drosophila, and rat. Journal of Ncurochemistry 59: 1736–44. [aZX]CrossRefGoogle ScholarPubMed
Yurkova, E. V., Demin, V. V. & Abdulaev, N. G. (1990) Crystallization of membrane proteins: Bovine rhodopsin. Biotnedical Science 1: 585–90. [aPAH]Google ScholarPubMed
Zankel, T., Ok, H., Johnson, R., Chang, C. W., Sekiya, N., Naoki, H., Yoshihara, K. & Nakanishi, K. (1990) Bovine rhodopsin with 11-cis-locked retinal chromophore neither activates rhodopsin kinase nor undergoes conformational change upon irradiation. Journal of the American Chemical Society 112: 5387–88. [aPAH]CrossRefGoogle Scholar
Zhong, Y. & Wu, C. F. (1991) Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251:198201. [aZX]CrossRefGoogle ScholarPubMed
Zhukovsky, E. A. & Oprian, D. D. (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 245:928–30. [aPAH]CrossRefGoogle Scholar
Zimmerman, A. L. & Baylor, D. A. (1986) Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores. Nature 321:7072. [aRSM]CrossRefGoogle ScholarPubMed
Zimmmerman, A. L., Yamanaka, G., Eckstein, F., Baylor, D. A., & Stryer, L. (1985) Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Proceedings of the National Academy of Sciences USA 82:8813–17. [aRSM]CrossRefGoogle Scholar
Zong-Yi, L., Jacobson, S. G. & Milam, S. G. (1994) Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: Retinal histopathology and immunochemistry. Experimental Eye Research 58:397408. [AB]Google Scholar
Zozulya, S. & Stryer, L. (1992) Calcium-myristoyl protein switch. Proceedings of the National Academy of Sciences USA 89:11569–73. [aJBH, SK]CrossRefGoogle ScholarPubMed