Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T13:09:53.406Z Has data issue: false hasContentIssue false

From magnitude to natural numbers: A developmental neurocognitive perspective

Published online by Cambridge University Press:  11 December 2008

Roi Cohen Kadosh
Affiliation:
Institute of Cognitive Neuroscience and Department of Psychology, University College London, London WC1N 3AR, United [email protected]@ucl.ac.ukhttp://www.icn.ucl.ac.uk/Research-Groups/Visual-Cognition-Group/index.php
Vincent Walsh
Affiliation:
Institute of Cognitive Neuroscience and Department of Psychology, University College London, London WC1N 3AR, United [email protected]@ucl.ac.ukhttp://www.icn.ucl.ac.uk/Research-Groups/Visual-Cognition-Group/index.php

Abstract

In their target article, Rips et al. have presented the view that there is no necessary dependency between natural numbers and internal magnitude. However, they do not give enough weight to neuroimaging and neuropsychological studies. We provide evidence demonstrating that the acquisition of natural numbers depends on magnitude representation and that natural numbers develop from a general magnitude mechanism in the parietal lobes.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, D. & Dhital, B. (2006) Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience 18:1820–28.CrossRefGoogle ScholarPubMed
Brannon, E. M. (2006) The representation of numerical magnitude. Current Opinion in Neurobiology 16:222–29.CrossRefGoogle ScholarPubMed
Cantlon, J. F., Brannon, E. M., Carter, E. J. & Pelphrey, K. A. (2006) Functional imaging of numerical processing in adults and 4-year-old children. PLoS Biology 4(5):844–54 (e125).CrossRefGoogle Scholar
Cohen Kadosh, R., Cohen Kadosh, K.Kaas, A.Henik, A. & Goebel, R. (2007a) Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron 53:307–14.CrossRefGoogle ScholarPubMed
Cohen Kadosh, R., Cohen Kadosh, K., Schuhmann, T., Kaas, A., Goebel, R., Henik, A. & Sack, A. T. (2007b) Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Current Biology 17:689–93.CrossRefGoogle ScholarPubMed
Cohen Kadosh, R., Henik, A. & Walsh, V. (2007c) Small is bright and big is dark in synaesthesia. Current Biology 17:R834–35.CrossRefGoogle Scholar
Cohen Kadosh, R., Henik, A. & Walsh, V. (in press) Synaesthesia: Learned or lost? Developmental Science.Google Scholar
Cohen Kadosh, K. & Johnson, M. H. (2007) Developing a cortex specialized for face perception. Trends in Cognitive Sciences 11:367–69.CrossRefGoogle ScholarPubMed
Cohen Kadosh, R., Lammertyn, J. & Izard, V. (2008) Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology 84:132–47.CrossRefGoogle ScholarPubMed
Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003) Three parietal circuits for number processing. Cognitive Neuropsychology 20:487506.CrossRefGoogle ScholarPubMed
Feigenson, L. (2007) The equality of quantity. Trends in Cognitive Sciences 11:185–87.CrossRefGoogle Scholar
Geary, D. G. (1993) Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin 114:345–62.CrossRefGoogle ScholarPubMed
Izard, V., Dehaene-Lambertz, G. & Dehaene, S. (2008) Distinct cerebral pathways for object identity and number in human infants. PLoS Biology 6:e11.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2001) Functional brain development in humans. Nature Reviews Neuroscience 2:475–83.CrossRefGoogle ScholarPubMed
Nieder, A. (2005) Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience 6:177–90.CrossRefGoogle ScholarPubMed
Rubinsten, O. & Henik, A. (2005) Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology 19:641–48.CrossRefGoogle ScholarPubMed
Rubinsten, O. & Henik, A. (2006) Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology 98:854–67.CrossRefGoogle Scholar
Thomas, M. S. C. & Johnson, M. H. (2008) New advances in understanding sensitive periods in brain development. Current Directions in Psychological Science 17:15.CrossRefGoogle Scholar
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7:483–88.CrossRefGoogle ScholarPubMed