Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T14:45:45.872Z Has data issue: false hasContentIssue false

Delegation, subdivision, and modularity: How rich is Conceptual Structure?

Published online by Cambridge University Press:  01 December 2003

Damián Justo*
Affiliation:
Institut Jean Nicod, Centre National de la Recherche Scientifique – École des Hautes Études en Sciences Sociales – École Normale Supérieure (CNRS – EHESS – ENS), 75007 Paris, France; École des Hautes Études en Sciences Sociales, 75006 Paris, France http://www.institutnicod.org
Julien Dutant*
Affiliation:
Institut Jean Nicod, Centre National de la Recherche Scientifique – École des Hautes Études en Sciences Sociales – École Normale Supérieure (CNRS – EHESS – ENS), 75007 Paris, France; U.F.R. de Philosophie, Sorbonne Paris IV, 75005 Paris, France; École Normale Supérieure – Lettres et Sciences Humaines, 69342 Lyon, France
Benoît Hardy-Vallée*
Affiliation:
Institut Jean Nicod, Centre National de la Recherche Scientifique – École des Hautes Études en Sciences Sociales – École Normale Supérieure (CNRS – EHESS – ENS), 75007 Paris, France; Département de Philosophie, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada http://benoithv.free.fr
David Nicolas*
Affiliation:
Institut Jean Nicod, Centre National de la Recherche Scientifique – École des Hautes Études en Sciences Sociales – École Normale Supérieure (CNRS – EHESS – ENS), 75007 Paris, France http://d.a.nicolas.free.fr/research
Benjamin Q. Sylvand*
Affiliation:
Institut Jean Nicod, Centre National de la Recherche Scientifique – École des Hautes Études en Sciences Sociales – École Normale Supérieure (CNRS – EHESS – ENS), 75007 Paris, France; U.F.R. de Philosophie, Sorbonne Paris IV, 75005 Paris, France

Abstract:

Contra Jackendoff, we argue that within the parallel architecture framework, the generality of language does not require a rich conceptual structure. To show this, we put forward a delegation model of specialization. We find Jackendoff's alternative, the subdivision model, insufficiently supported. In particular, the computational consequences of his representational notion of modularity need to be clarified.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Note

1. For further discussion of representational (or intentional) and computational modularity, see Segal (1996).

PDF 663.1 KB