Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T00:36:54.191Z Has data issue: false hasContentIssue false

Close coordination between recognition and action: Really two separate streams?

Published online by Cambridge University Press:  20 August 2007

Markus Graf
Affiliation:
Department for Cognitive and Computational Psychophysics, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany. [email protected]://www.kyb.mpg.de/~grafm

Abstract

Somewhat in contrast to their proposal of two separate somatosensory streams, Dijkerman & de Haan (D&dH) propose that tactile recognition involves active manual exploration, and therefore involves parietal cortex. I argue that interactions from perception for action to object recognition can be found also in vision. Furthermore, there is evidence that perception for action and perception for recognition rely on similar processing principles.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chao, L. L. & Martin, A. (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478–84.CrossRefGoogle ScholarPubMed
Craighero, L., Fadiga, L., Rizzolatti, G. & Umilta, C. (1999) Action for perception: A motor-visual attentional effect. Journal of Experimental Psychology: Human Perception and Performance 25:1673–92.Google ScholarPubMed
Ferrera, V. P. & Grinband, J. (2006) Walk the line: Parietal neurons respect category boundaries. Nature Neuroscience 9:1207–208.CrossRefGoogle ScholarPubMed
Freedman, D. J. & Assad, J. A. (2006) Experience-dependent representation of visual categories in parietal cortex. Nature 443:8588.CrossRefGoogle ScholarPubMed
Goodale, M. A. & Milner, A. D. (2004) Sight unseen. Oxford University Press.Google Scholar
Graf, M. (2006) Coordinate transformations in object recognition. Psychological Bulletin 132:920–45.CrossRefGoogle ScholarPubMed
Graf, M., Kaping, D. & Bülthoff, H. H. (2005) Orientation congruency effects for familiar objects: Coordinate transformations in object recognition. Psychological Science 16:214–21.CrossRefGoogle ScholarPubMed
Grèzes, J., Tucker, M., Armony, J., Ellis, R. & Passingham, R. E. (2003) Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience 17:2735–40.CrossRefGoogle ScholarPubMed
Grossberg, S. (2000) The complementary brain: Unifying brain dynamics and modularity. Trends in Cognitive Sciences 4:233–46.CrossRefGoogle ScholarPubMed
Harris, I. M. & Miniussi, C. (2006) Effects of right parietal TMS on object recognition. Journal of Vision 6, Abstract No. 324a, p. 324. Available at: http://journalofvision.org/6/6/324/.CrossRefGoogle Scholar
Helbig, H. B., Graf, M. & Kiefer, M. (2006) The role of action representations in visual object recognition. Experimental Brain Research 174:221–28.CrossRefGoogle ScholarPubMed
Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001) The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences 24:849937.CrossRefGoogle ScholarPubMed
Milner, A. D. & Goodale, M. A. (1995) The visual brain in action. Oxford University Press.Google Scholar
Newell, F. N., Ernst, M. O., Tjan, B. J. & Bülthoff, H. H. (2001) Viewpoint dependence in visual and haptic object recognition. Psychological Science 12(1):3742.CrossRefGoogle ScholarPubMed
O'Regan, J. K. & Noë, A. (2001) A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5):939–73.CrossRefGoogle ScholarPubMed
Pasqualotto, A., Finucane, C. M. & Newell, F. N. (2005) Visual and haptic representations of scenes are updated with observer movement. Experimental Brain Research 166:481–88.CrossRefGoogle ScholarPubMed
Pavese, A. & Buxbaum, L. J. (2002) Action matters: The role of action plans and object affordances in selection for action. Visual Cognition 9:559–90.CrossRefGoogle Scholar
Prinz, W. (1990) A common coding approach to perception and action. In: Relationships between perception and action: Current approaches, ed. Neumann, O. & Prinz, W.. Springer-Verlag.Google Scholar
Prinz, W. (1997) Perception and action planning. European Journal of Cognitive Psychology 9:129–54.CrossRefGoogle Scholar
Salinas, E. & Abbott, L. F. (2001) Coordinate transformations in the visual system: How to generate gain fields and what to compute with them. In: Advances in neural population coding, ed. Nicolelis, M. A. L.. Special issue, Progress in Brain Research 130:175–90. Elsevier.CrossRefGoogle Scholar
Salinas, E. & Sejnowski, T. J. (2001) Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–40.CrossRefGoogle ScholarPubMed
Seger, C. A., Poldrack, R. A., Prabhakaran, V., Zhao, M., Glover, G. & Gabrieli, J. D. E. (2000) Hemispheric asymmetries and individual differences in visual concept learning as measured by functional MRI. Neuropsychologia 38:1316–24.CrossRefGoogle ScholarPubMed
Sommerville, J. A. & Decety, J. (2006) Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychonomic Bulletin and Review 13:179200.CrossRefGoogle ScholarPubMed
Tarr, M. J. (2003) Visual object recognition: Can a single mechanism suffice? In: Perception of faces, objects, and scenes: Analytic and holistic processes, ed. Peterson, M. A. & Rhodes, G., pp. 177211. Oxford University Press.Google Scholar
Tarr, M. J. & Bülthoff, H. H. (1998) Image-based object recognition in man, monkey and machine. Cognition 67:120.CrossRefGoogle ScholarPubMed
Tucker, M. & Ellis, R. (1998) On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance 24:830–46.Google ScholarPubMed
Tucker, M. & Ellis, R. (2001) The potentiation of grasp types during visual object categorization. Visual Cognition 8:769800.CrossRefGoogle Scholar
Tucker, M. & Ellis, R. (2004) Action priming by briefly presented objects. Acta Psychologica 116:185203.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. & Haxby, J. V. (1994) ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology 4:157–65.CrossRefGoogle ScholarPubMed
Vogels, R., Sary, G., Dupont, P. & Orban, G. A. (2002) Human brain regions involved in visual categorization. NeuroImage 16:401–14.CrossRefGoogle ScholarPubMed
Yarbus, A. L. (1967) Eye movements and vision. Plenum Press.CrossRefGoogle Scholar