Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T10:35:00.489Z Has data issue: false hasContentIssue false

Behavior is sensible but not globally optimal: Seeking common ground in the optimality debate

Published online by Cambridge University Press:  10 January 2019

Dobromir Rahnev
Affiliation:
School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332. [email protected]
Rachel N. Denison
Affiliation:
Department of Psychology and Center for Neural Science, New York University, New York, NY 10003. [email protected]

Abstract

The disagreements among commentators may appear substantial, but much of the debate seems to stem from inconsistent use of the term optimality. Optimality can be used to indicate sensible behavior (adapted to the environment), globally optimal behavior (fully predicted from optimality considerations alone), locally optimal behavior (conforming to a specific model), and optimality as an empirical strategy (a tool for studying behavior). Distinguishing among these different concepts uncovers considerable common ground in the optimality debate.

Type
Authors’ Response
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Box, G. E. P. (1979) Robustness in scientific model building. In: Robustness in statistics, ed. Launer, R. L. & Wilkinson, G. N., pp. 201–36. Academic Press.Google Scholar
Briggs, R. A. (2017) Normative theories of rational choice: Expected utility. In: The Stanford encyclopedia of philosophy. Springer. Available at: https://plato.stanford.edu/archives/spr2017/entries/rationality-normative-utility/.Google Scholar
Hubel, D. H. & Wiesel, T. N. (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology 206(2):419–36. Available at: http://www.ncbi.nlm.nih.gov/pubmed/5498493.Google Scholar
Lawson, J. L. & Uhlenbeck, G. E., eds. (1950) Threshold signals. McGraw-Hill. Retrieved August 7, 2018. Available at: https://trove.nla.gov.au/work/13687839?q&versionId=41165553.Google Scholar
Ma, W. J. (2012) Organizing probabilistic models of perception. Trends in Cognitive Sciences 16(10):511–18. Retrieved March 2, 2013. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22981359.Google Scholar
Müller-Lyer, F. C. (1889) Optische Urteilstäuschungen. Archiv für Anatomie und Physiologie, Physiologische Abteilung 2:263–70.Google Scholar
Rosenberg, A. & McShea, D. W. (2008) Philosophy of biology: A contemporary introduction. Routledge.Google Scholar
Balcı, F., Simen, P., Niyogi, R., Saxe, A., Hughes, J. A., Holmes, P. & Cohen, J. D. (2011b) Acquisition of decision making criteria: Reward rate ultimately beats accuracy. Attention, Perception & Psychophysics 73(2):640–57. Retrieved September 11, 2015. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3383845&tool=pmcentrez&rendertype=abstract.Google Scholar
Bowers, J. S. & Davis, C. J. (2012a) Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin 138(3):389414.Available at: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22545686&retmode=ref&cmd=prlinks.Google Scholar
Geisler, W. S. (2011) Contributions of ideal observer theory to vision research. Vision Research 51(7):771–81.Google Scholar
Gibson, J. J. & Radner, M. (1937) Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. Journal of Experimental Psychology 20(5):453–67. Available at: http://doi.apa.org/getdoi.cfm?doi=10.1037/h0059826.Google Scholar
Jaynes, E. (1957/2003) Probability theory: The logic of science. (Original lectures published 1957). Available at: http://www.med.mcgill.ca/epidemiology/hanley/bios601/GaussianModel/JaynesProbabilityTheory.pdf. Cambridge University Press.Google Scholar
Kahneman, D. & Tversky, A. (1979) Prospect theory: An analysis of decision under risk. Econometrica 47(2):263–92. Retrieved March 11, 2017. Available at: http://www.jstor.org/stable/1914185?origin=crossref.Google Scholar
Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P. & Cohen, J. D. (2009) Reward-rate optimization in two-alternative decision making: Empirical tests of theoretical predictions. Journal of Experimental Psychology: Human Perception and Performance 35:1865–97. Available at: http://dx.doi.org/10.1037/a0016926.Google Scholar