Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T15:10:30.551Z Has data issue: false hasContentIssue false

Anticipation is the key to understanding music and the effects of music on emotion

Published online by Cambridge University Press:  01 October 2008

Peter Vuust
Affiliation:
Center of Functionally Integrative Neuroscience, Aarhus University Hospital, 8000 Aarhus C, [email protected]://www.musik-kons.dk/foku/pvuust.php Royal Academy of Music, 8000 Aarhus, Denmark
Chris D. Frith
Affiliation:
Center of Functionally Integrative Neuroscience, Aarhus University Hospital, 8000 Aarhus C, [email protected]://www.musik-kons.dk/foku/pvuust.php Wellcome Trust Centre for Neuroimaging, University College, London, WC1 N 3BG, United [email protected]://www.interacting-minds.net

Abstract

There is certainly a need for a framework to guide the study of the physiological mechanisms underlying the experience of music and the emotions that music evokes. However, this framework should be organised hierarchically, with musical anticipation as its fundamental mechanism.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brochard, R., Abecasis, D., Potter, D., Ragot, R. & Drake, C. (2003) The “ticktock” of our internal clock: Direct brain evidence of subjective accents in isochronous sequences. Psychological Science 14:362–66.CrossRefGoogle Scholar
Cooper, G. W. & Meyer, L. B. (1960) The rhythmic structure of music. University of Chicago Press.Google Scholar
Friston, K. (2005) A theory of cortical responses. Philosophical Transactions of the Royal Society of London B 360:815–56.CrossRefGoogle ScholarPubMed
Frith, C. & Dolan, R. J. (1997) Brain mechanisms associated with top-down processes in perception. Philosophical Transactions of the Royal Society of London, B: Biological Sciences 352:1221–30.CrossRefGoogle ScholarPubMed
Green, A. C., Bæhrentsen, K. B., Stødkilde-Jørgensen, H., Wallentin, M., Roepstorff, A. & Vuust, P. (2008) Music in minor activates limbic structures: A relation to dissonance? NeuroReport 19:711–15.Google Scholar
Huotilainen, M., Kujala, A., Hotakainen, M., Parkkonen, L., Taulu, S., Simola, J., Nenonen, J., Karjalainen, M. & Naatanen, R. (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport 16:8184.CrossRefGoogle ScholarPubMed
Huron, D. (2006) Sweet anticipation: Music and the psychology of expectation. MIT.Google Scholar
Khalfa, S., Schon, D., Anton, J. L. & Liegeois-Chauvel, C. (2005) Brain regions involved in the recognition of happiness and sadness in music. NeuroReport 16:1981–84.CrossRefGoogle ScholarPubMed
Leino, S., Brattico, E., Tervaniemi, M. & Vuust, P. (2007) Representation of harmony rules in the human brain: Further evidence from event-related potentials. Brain Research 1142:169–77.CrossRefGoogle ScholarPubMed
Lerdahl, F. & Jackendoff, R. (1977) Toward a formal theory of tonal music. Journal of Music Theory 21(1):111–71.CrossRefGoogle Scholar
Lerdahl, F. & Jackendoff, R. (1999) A generative theory of music. MIT Press.Google Scholar
Meyer, L. B. (1956) Emotion and meaning in music. University of Chicago Press.Google Scholar
Monelle, R. (1992) Linguistics and semiotics in music. Harwood Academic.Google Scholar
Pallesen, K. J., Brattico, E., Bailey, C., Korvenoja, A., Koivisto, J., Gjedde, A. & Carlson, S. (2005) Emotion processing of major, minor, and dissonant chords: A functional magnetic resonance imaging study. Annals of the New York Academy of Sciences 1060:450–53.CrossRefGoogle ScholarPubMed
Palmer, C. & Krumhansl, C. L. (1990) Mental representations for musical meter. Journal of Experimental Psychology: Human Perception and Performance 16:728–41.Google ScholarPubMed
Roepstorff, A. & Frith, C. (2004) What's at the top in the top-down control of action? Script-sharing and “top-top” control of action in cognitive experiments. Psychological Research 68:189–98.CrossRefGoogle ScholarPubMed
Shepard, R. N. (2001) Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences 24:581601.CrossRefGoogle ScholarPubMed
Tononi, G. & Edelman, G. M. (1998) Consciousness and the integration of information in the brain. Advances in Neurology 77:245–79.Google ScholarPubMed
Vuust, P., Østergaard, L., Pallesen, K. J., Bailey, C. & Roepstorff, A. (in press) Predictive coding of music. Cortex.Google Scholar
Vuust, P., Østergaard, L. & Roepstorff, A. (2006a) Polyrhythmic communicational devices appear as language in the brains of musicians. In: ICMPC9 – Proceedings of the International Conference on Music Perception and CognitionESCOM, Bologna, 2006, pp. 1159–67. (Unpublished Proceedings).Google Scholar
Vuust, P., Pallesen, K. J., Bailey, C., Van Zuijen, T. L., Gjedde, A., Roepstorff, A. & Østergaard, L. (2005) To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. NeuroImage 24:560–64.CrossRefGoogle ScholarPubMed
Vuust, P., Roepstorff, A., Wallentin, M., Mouridsen, K. & Østergaard, L. (2006b) It don't mean a thing … Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). NeuroImage 31:832–41.Google Scholar
Winkler, I., Karmos, G. & Naatanen, R. (1996) Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event–related potential. Brain Research 742:239–52.CrossRefGoogle ScholarPubMed