Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T15:18:24.199Z Has data issue: false hasContentIssue false

Two Pragmatic Approaches to Loglinear Claim Cost Analysis

Published online by Cambridge University Press:  29 August 2014

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Parameter estimation in case of loglinear modelled claim cost distribution characteristics is mathematically tractable, especially with the Inverse Gaussian and Lognormal distribution.

Type
Research Article
Copyright
Copyright © International Actuarial Association 1980

References

REFERENCES

Berg, P. ter (1980). On the Loglinear Poisson and Gamma Model, Astin Bulletin 11, 3540.CrossRefGoogle Scholar
Ellenberg, J. H. (1973). The Joint Distribution of the Standardized Least Squares Residuals from a General linear Regression, Journal of the American Statistical Association 68, 941943.CrossRefGoogle Scholar
Folks, J. L., and Chhikara, R. S. (1978). The Inverse Gaussian Distribution and its Statistical Application—A Review (with Discussion), Journal of the Royal Statistical Society B 40, 263289.Google Scholar
Godfrey, L. G. (1978). Testing for Multiplicative Heteroscedasticity, Journal of Econometrics 8, 227236.CrossRefGoogle Scholar
Hadwiger, H. (1940a). Natürliche Ausscheidefunktionen für Gesamtheiten und die Lösung der Erneuerungsgleichung, Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 40, 3139.Google Scholar
Hadwiger, H. (1940b). Eine analytische Reproduktionsfunktion für biologische Gesamtheiten, Skandinavisk Aktuarietidskrift 23, 101113.Google Scholar
Hadwiger, H. (1942). Wahl einer Näherungsfunktion für Verteilungen auf Grund einer Funktionalgleichung, Blätter für Versicherungsmathematik 5, 345352.Google Scholar
Hadwiger, H., and Ruchti, W. (1941). Darstellung der Fruchtbarkeit durch eine biologische Reproduktionsformel, Archiv für mathematische Wirtschafts- und Sozial- forschung 7, 3034.Google Scholar
Harvey, A. C. (1976). Estimating Regression Models with Multiplicative Heteroscedasticity, Econometrica 44, 461465.CrossRefGoogle Scholar
Kloek, T., and van Dijk, H. K. (1978). Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo, Econometrica 46, 119. Reprinted in A. Zellner, ed. (1980). Bayesian Analysis in Econometrics and Statistics. Amsterdam: North-Holland Publishing Company.CrossRefGoogle Scholar
Nelder, J. A., and Wedderburn, R. W. M. (1972). Generalized Linear Models, Journal of the Royal Statistical Society A 135, 370384.CrossRefGoogle Scholar
Oberhofer, W., and Kmenta, J. (1974). A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models, Econometrica 42, 579590.CrossRefGoogle Scholar
Rao, C. R. (1973). Linear Statistical Inference and its Applications. New York: John Wiley & Sons, Inc.CrossRefGoogle Scholar
Schrödinger, E. (1915). Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung, Physikalische Zeitschrift 16, 289295.Google Scholar
Seal, H. L. (1969). Stochastic Theory of a Risk Business. New York: John Wiley & Sons, Inc.Google Scholar
Seal, H. L. (1978). From Aggregate Claims Distribution to Probability of Ruin, Astin Bulletin 10, 4753.CrossRefGoogle Scholar
Theil, H. (1971). Principles of Econometrics. New York: John Wiley & Sons, Inc.Google Scholar
Tweedie, M. C. K. (1957). Statistical Properties of Inverse Gaussian Distributions, Annals of Mathematical Statistics 28, 362–377 and 696705.CrossRefGoogle Scholar
Wald, A. (1947). Sequential Analysis. New York: John Wiley & Sons, Inc.Google Scholar
Watson, G. S. (1967). Linear Least Squares Regression, Annals of Mathematical Statistics 38, 16791699.CrossRefGoogle Scholar
Whitmore, G. A., and Yalovski, M. (1978). A Normalizing Logarithmic Transformation for Inverse Gaussian Random Variables, Technometrics 20, 207208.CrossRefGoogle Scholar