Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T17:02:25.396Z Has data issue: false hasContentIssue false

Trend et systèmes de Bonus-Malus1

Published online by Cambridge University Press:  29 August 2014

Par Jean-Luc Besson*
Affiliation:
Assemblée Plénière des Sociétés d'Assurances Dommages, Paris
et Christian Partrat*
Affiliation:
Institut de Statistique, URA 1321, Université Pierre et Marie Curie, Paris
*
Assemblée Pléntère des Sociétés d'Assurances Dommages. 26 Boulevard Haussmann, 75009 Paris, France
Institut de Statistique, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper deals with the Bonus-Malus system obtained when the claims frequency is submitted to trend. This system is specified in the two particular cases of Poisson-Gamma and Poisson-Inverse Gaussian distributions. The theoretical results are checked on data issued from automobile insurance policies observed during three years.

Type
Articles
Copyright
Copyright © International Actuarial Association 1992

Footnotes

1

Une première version de cet article a été présentée sous le titre «Loi de Poisson-Inverse Gaussienne et systèmes de Bonus-Malus» au XXIIe Astin Colloquium, Montreux 1990.

References

RÉFÉRENCES

Acher, J. (1985) Analyse de la survenance des sinistres en assurance automobile, systèmes de Bonus-Malus. Journal de la Société Statistique de Paris. Vol. 126, n° 2, 5562.Google Scholar
Athreya, K. (1986) Another conjugate family for the normal distribution. Stat. und Prob. Letters 4, 6164.CrossRefGoogle Scholar
Brøns, H. et Tolver Jensen, S. (1989) Maximum likelihood estimation in the Negative Binomial distribution. Comptes-rendus de la 47e session de l'Institut International de Statistique (Paris), Contributed papers. Vol. 1, 168169.Google Scholar
Erdelyi, A. et Magnus, W. (1953) Higher transcendental functions. Vol. 2, Mac Graw Hill.Google Scholar
Folks, J. et Chikara, R. (1978) The Inverse Gaussian distribution and its statistical application. A review — Journal of the Royal Statistical Society B40, 263270.Google Scholar
Gossiaux, A. et Lemaire, J. (1981) Méthodes d'ajustement de distribution de sinistres. Bulletin de l'Association des Actuaires Suisses MUSUM 81, 157164.Google Scholar
Johnson, N. et Kotz, S. (1969) Distributions in Statistics: discrete distributions. Wiley.Google Scholar
Jørgensen, B. (1982) Statistical properties of the generalized Inverse Gaussian distribution. Lecture Notes in Statistics. Vol. 9, Springer Verlag.CrossRefGoogle Scholar
Kestemont, R. et Paris, J. (1985) Sur l'ajustement du nombre de sinistres. Bulletin de l'Association des Actuaires Suisses MUSUM 85, 157164.Google Scholar
Lemaire, J. (1985) Automobile Insurance: actuarial models. Huebner International series on Risk, Insurance and Economie Security. Kluwer-Nijhoff Publishing.CrossRefGoogle Scholar
Panjer, H. et Willmot, G. (1988) Motivating claim frequency models. Comptes-Rendus du 23e Congrès International d'Actuaires (Helsinki). Vol. 3, 269284.Google Scholar
Picard, P. (1976) Généralisation de l'étude sur la survenance des sinistres en assurance automobile. Bulletin trimestriel de l'Institut des Actuaires Français 1976, 204267.Google Scholar
Ruohonen, M. (1988) A model for the claim number process. ASTIN Bulletin 18, 5768.CrossRefGoogle Scholar
Sichel, H. (1971) On a family of discrete distributions particularly suited to represent long tailed frequency data. Proceedings of the third Symposium on Mathematical Statistics, ed. Loubscher, N.F.. Pretoria.Google Scholar
Simonsen, W. (1976) On the solution of a maximum likelihood equation of the Negative Binomial distribution. Scandinavian Actuarial Journal 1976, 220231.CrossRefGoogle Scholar
Simonsen, W. (1979) Correction note. Scandinavian Actuarial Journal 1979, 228229.Google Scholar
Stein, G.Zucchini, W. et Juritz, J. (1987) Parameter estimation for the Sichel distribution and its multivariate extension. Journal of the American Statistical Association 82, 938944.CrossRefGoogle Scholar
Teugels, J.-L. et Sundt, B. (1990) A Stop-Loss experience rating scheme for fleets of cars. XXII Astin Colloquium (Montreux).Google Scholar
Tremblay, L. (1992) Using the Poisson-Inverse Gaussian in Bonus-Malus Systems. ASTIN Bulletin 22, 97106.CrossRefGoogle Scholar
Willmot, G. (1986) Mixed compound Poisson distributions. ASTIN Bulletin 16–S, 5979.CrossRefGoogle Scholar
Willmot, G. (1987) The Poisson-Inverse Gaussian distribution as an alternative to the Negative Binomial. Scandinavian Actuarial Journal 1987, 113127.CrossRefGoogle Scholar
Willmot, G. et Sundt, B. (1989) On posterior probabilities and moments in mixed Poisson processes. Scandinavian Actuarial Journal 1989, 139146.CrossRefGoogle Scholar