Published online by Cambridge University Press: 29 August 2014
It is commonly thought that the characteristic function (Fourier transform) of the Pareto distribution has no known functional form (e.g. Seal, 1978, pp. 14, 40, 57). This is quite untrue. Nevertheless the characteristic function of the Pareto density is conspicuously absent from standard reference works even when the Pareto distribution itself receives substantial comment (e.g. Haight, 1961; Johnson and Kotz, 1970, Ch. 19; Patel, Kapadia and Owen, 1976, § 1. 5).
The Pareto density may be written
with distribution function
mean = p/(v − 1) and variance = b2v(v − 1)2(v−2). These are infinite when v≤1 and v≤2, respectively. Its Laplace transform (s= c + iu)
where E is the generalized exponential integral (Pagurova, 1961) and can be written in terms of incomplete gamma or confluent hypergeometric functions (Slater, 1960, Sec. 5.6). When s = − it β(s) becomes the characteristic function (see Appendix I).
As Benktander (1970) tells us, the Pareto distribution has been particularly successful at representing the distribution of the larger claim amounts. In earlier years it was employed to represent the distribution of life insurance sums assured but more recently it has been used for the claim distributions of fire and automobile insurance. Table 1 provides the v-values we have been able to locate. Note that the variance of the distribution is infinite when v≤2 and if it were not for the anomalous v-values of Andersson (1971) we would have ventured the opinion that modern claim data encourage the assumption that v>2. In our numerical work we have used v = 2.7 and smaller values might change some of the computer rules we have proposed in Appendix II.