Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T00:19:31.308Z Has data issue: false hasContentIssue false

Some Remarks on a Recent Paper by Borch*)

Published online by Cambridge University Press:  29 August 2014

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In his recent paper, “An Attempt to Determine the Optimum Amount of Stop Loss Reinsurance”, presented to the XVIth International Congress of Actuaries, Dr. Karl Borch considers the problem of minimizing the variance of the total claims borne by the ceding insurer. Adopting this variance as a measure of risk, he considers as the most efficient reinsurance scheme that one which serves to minimize this variance. If x represents the amount of total claims with distribution function F (x), he considers a reinsurance scheme as a transformation of F (x). Attacking his problem from a different point of view, we restate and prove it for a set of transformations apparently wider than that which he allows.

The process of reinsurance substitutes for the amount of total claims x a transformed value Tx as the liability of the ceding insurer, and hence a reinsurance scheme may be described by the associated transformation T of the random variable x representing the amount of total claims, rather than by a transformation of its distribution as discussed by Borch. Let us define an admissible transformation as a Lebesgue-measurable transformation T such that

where c is a fixed number between o and m = E (x). Condition (a) implies that the insurer will never bear an amount greater than the actual total claims. In condition (b), c represents the reinsurance premium, assumed fixed, and is equal to the expected value of the difference between the total amount of claims x and the total retained amount of claims Tx borne by the insurer.

Type
Research Article
Copyright
Copyright © International Actuarial Association 1961

Footnotes

*)

Presented to the 1961 ASTIN Colloquium.

References

*) Presented to the 1961 ASTIN Colloquium.