Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T13:28:09.752Z Has data issue: false hasContentIssue false

RISK ANALYSIS OF ANNUITY CONVERSION OPTIONS IN A STOCHASTIC MORTALITY ENVIRONMENT

Published online by Cambridge University Press:  09 April 2014

Alexander Kling
Affiliation:
Institut für Finanz- und Aktuarwissenschaften, Lise-Meitner-Str. 14, 89081 Ulm, Germany Phone: +49-731-20644242 E-mail: [email protected]
Jochen Ruß
Affiliation:
Institut für Finanz- und Aktuarwissenschaften and Universität Ulm, Lise-Meitner-Str. 14, 89081 Ulm, Germany Phone: +49-731-20644233 E-mail: [email protected]
Katja Schilling*
Affiliation:
Institut für Versicherungswissenschaften, Universität Ulm, Helmholtzstraße 20, 89081 Ulm, Germany Phone: +49-731-5031174, Fax: +49-731-5031188

Abstract

While extensive literature exists on the valuation and risk management of financial guarantees embedded in insurance contracts, both the corresponding longevity guarantees and interactions between financial and longevity guarantees are often ignored. The present paper provides a framework for a joint analysis of financial and longevity guarantees, and applies this framework to different annuity conversion options in deferred unit-linked annuities. In particular, we analyze and compare different versions of so-called guaranteed annuity options and guaranteed minimum income benefits with respect to the value of the option and the resulting risk for the insurer. Furthermore, we examine whether and to what extent an insurance company is able to reduce the risk by typical risk management strategies. The analysis is based on a combined stochastic model for both financial market and future survival probabilities. We show that different annuity conversion options have significantly different option values, and that different risk management strategies lead to a significantly different risk for the insurance company.

Type
Research Article
Copyright
Copyright © ASTIN Bulletin 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, L.B., Jäckel, P. and Kahl, C. (2010) Simulation of square-root processes. Encyclopedia of Quantitative Finance.CrossRefGoogle Scholar
Bacinello, A.R., Millossovich, P., Olivieri, A. and Pitacco, E. (2011) Variable annuities: A unifying valuation approach. Insurance: Mathematics and Economics, 49 (3), 285297.Google Scholar
Ballotta, L. and Haberman, S. (2003) Valuation of guaranteed annuity conversion options. Insurance: Mathematics and Economics, 33 (1), 87108.Google Scholar
Ballotta, L. and Haberman, S. (2006) The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case. Insurance: Mathematics and Economics, 38 (1), 195214.Google Scholar
Bauer, D., Benth, F.E. and Kiesel, R. (2012) Modeling the forward surface of mortality. SIAM Journal on Financial Mathematics, 3 (1), 639666.CrossRefGoogle Scholar
Bauer, D., Börger, M. and Ruß, J. (2010) On the pricing of longevity-linked securities. Insurance: Mathematics and Economics, 46 (1), 139149.Google Scholar
Bauer, D., Börger, M., Ruß, J. and Zwiesler, H.-J. (2008a) The volatility of mortality. Asia-Pacific Journal of Risk and Insurance, 3 (1), 172199.CrossRefGoogle Scholar
Bauer, D., Kling, A. and Ruß, J. (2008b) A universal pricing framework for guaranteed minimum benefits in variable annuities. Astin Bulletin, 38 (2), 621651.CrossRefGoogle Scholar
Bielecki, T.R. and Rutkowski, M. (2004) Credit Risk: Modeling, Valuation and Hedging. Berlin, Germany: Springer Verlag.CrossRefGoogle Scholar
Bieluch, P. and Mueller, H. (2004) Managing the risks from variable annuities – the next phase. The Actuary, 38 (3), 1, 45, 16.Google Scholar
Biffis, E., Denuit, M. and Devolder, P. (2010) Stochastic mortality under measure changes. Scandinavian Actuarial Journal, 2010 (4), 284311.CrossRefGoogle Scholar
Biffis, E. and Millossovich, P. (2006) The fair value of guaranteed annuity options. Scandinavian Actuarial Journal, 2006 (1), 2341.CrossRefGoogle Scholar
Börger, M. (2010) Deterministic shock vs. stochastic value-at-risk – an analysis of the Solvency II standard model approach to longevity risk. Blätter der DGVFM, 31 (2), 225259.CrossRefGoogle Scholar
Boyle, P. and Hardy, M. (2003) Guaranteed annuity options. Astin Bulletin, 33 (2), 125152.CrossRefGoogle Scholar
Brigo, D. and Mercurio, F. (2007) Interest Rate Models – Theory and Practice: With Smile, Inflation, and Credit. Berlin, Germany: Springer Verlag.Google Scholar
Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985) A theory of the term structure of interest rates. Econometrica, 53 (2), 385407.CrossRefGoogle Scholar
Currie, I., Durban, M. and Eilers, P. (2004) Smoothing and forecasting mortality rates. Statistical Modelling, 4 (4), 279298.CrossRefGoogle Scholar
DAV-Unterarbeitsgruppe Rentnersterblichkeit (2005) Herleitung der DAV-Sterbetafel 2004 R für Rentenversicherungen. Blätter der DGVFM, 27 (2), 199313.CrossRefGoogle Scholar
Fischer, T., May, A. and Walther, B. (2003) Anpassung eines CIR-1-Modells zur Simulation der Zinsstrukturkurve. Blätter der DGVFM, 26 (2), 193206.CrossRefGoogle Scholar
Graf, S., Hauser, M. and Zwiesler, H.-J. (2010) Hedging von garantierten Ablaufleistungen in Fondspolicen. Blätter der DGVFM, 31 (1), 126.CrossRefGoogle Scholar
Graf, S., Kling, A. and Ruß, J. (2012) Financial planning and risk-return profiles. European Actuarial Journal, 2 (1), 77104.CrossRefGoogle Scholar
Hardy, M. (2003) Investment Guarantees: Modeling and Risk Management for Equity-Linked Life Insurance. Hoboken, NJ: John Wiley & Sons.Google Scholar
Helwich, M. (2003) Über den Vergleich des Zinsrisikos mit dem biometrischen Risiko bei Lebensversicherungen. Diploma thesis, Universität Rostock, Germany.Google Scholar
Hoem, J.M. (1988) The versatility of the Markov chain as a tool in the mathematics of life insurance. In Transactions of the 23rd International Congress of Actuaries, pp. 171202.Google Scholar
Koralov, L.B. and Sinai, Y.G. (2007) Theory of Probability and Random Processes. Berlin, Germany: Springer Verlag.CrossRefGoogle Scholar
Lord, R., Koekkoek, R. and Van Dijk, D. (2010) A comparison of biased simulation schemes for stochastic volatility models. Quantitative Finance, 10 (2), 177194.CrossRefGoogle Scholar
Majerek, D., Nowak, W. and Zięba, W. (2005) Conditional strong law of large number. International Journal of Pure and Applied Mathematics, 20 (2), 143156.Google Scholar
Marshall, C., Hardy, M. and Saunders, D. (2010) Valuation of a guaranteed minimum income benefit. North American Actuarial Journal, 14 (1), 3858.CrossRefGoogle Scholar
Milevsky, M.A. and Promislow, S.D. (2001) Mortality derivatives and the option to annuitise. Insurance: Mathematics and Economics, 29 (3), 299318.Google Scholar
Møller, T. and Steffensen, M. (2007) Market-Valuation Methods in Life and Pension Insurance. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Norberg, R. (2001) On bonus and bonus prognoses in life insurance. Scandinavian Actuarial Journal, 2001 (2), 126147.CrossRefGoogle Scholar
Norberg, R. (2010) Forward mortality and other vital rates – are they the way forward? Insurance: Mathematics and Economics, 47 (2), 105112.CrossRefGoogle Scholar
Schrager, D.F. (2006) Affine stochastic mortality. Insurance: Mathematics and Economics, 38 (1), 8197.Google Scholar
Shreve, S.E. (2004) Stochastic Calculus for Finance II: Continuous-Time Models. New York: Springer Verlag.CrossRefGoogle Scholar
Van Haastrecht, A., Plat, R. and Pelsser, A. (2010) Valuation of guaranteed annuity options using a stochastic volatility model for equity prices. Insurance: Mathematics and Economics, 47 (3), 266277.Google Scholar