Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T23:49:59.722Z Has data issue: false hasContentIssue false

Quasi-Likelihood Estimation of Benchmark Rates for Excess of Loss Reinsurance Programs

Published online by Cambridge University Press:  09 August 2013

Robert Verlaak
Affiliation:
Aon Benfield, Brussels, Faculty of Business and Economics, Katholieke Universiteit Leuven, Belgium, E-mail: [email protected]
Werner Hürlimann
Affiliation:
IRIS integrated risk management ag, Zürich, Swiss
Jan Beirlant
Affiliation:
Department of Mathematics and Leuven Statistics Research Centre, Katholieke Universiteit Leuven, Belgium

Abstract

In this paper a method for determining benchmark rates for the excess of loss reinsurance of a Motor Third Party Liability insurance portfolio will be developed based on observed market rates. The benchmark rates are expressed as a percentage of the expected premium income that is available to cover the whole risk of the portfolio. The rates are assumed to be based on a compound process with a heavy tailed severity, such as Burr or Pareto distributions. In the absence of claim data these assumptions propagate the theoretical benchmark rate component of the regression model.

Given the whole set of excess of loss reinsurance rates in a given market, the unknown parameters are estimated within the framework of quasi-likelihood estimation. This framework makes it possible to select a theoretical benchmark rate model and to choose a parsimonious submodel for describing the observed market rates over a 4-years observation period. This method is applied to the Belgian Motor Third Party Liability excess of loss rates observed during the years 2001 till 2004.

Type
Research Article
Copyright
Copyright © International Actuarial Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Agresti, A. (2002) Categorial Data Analysis, John Wiley & Sons, New York.CrossRefGoogle Scholar
Bühlmann, H. (1970) Mathematical Methods in Risk Theory, Springer-Verlag, Berlin.Google Scholar
Burham, K.P. and Anderson, D.R. (2004) Model Selection and Multi-Model Inference – A Practical Information – Theoretic Approach, Springer Verlag New York.CrossRefGoogle Scholar
Carter, R.L., Lucas, L.D. and Ralph, N. (2000) Reinsurance, Reaction Publishing Group (in association with Guy Carpenter & Company).Google Scholar
Dobson, A.J. (2002) An Introduction to Generalized Linear Models, Chapmann and Hall.Google Scholar
Doerr, R. (1980) Property Excess of Loss: Pareto Rating. Swiss Re publications.Google Scholar
Gerathewohl, K. (1980) Reinsurance Principles and Practice, Volume I, Verlag Versicherungswirtschaft e.V., Karlsruhe.Google Scholar
Gerathewohl, K. (1982) Reinsurance Principles and Practice, Volume II, Verlag Versicherungswirtschaft e.V., Karlsruhe.Google Scholar
Godambe, V.P. and Kale, B.K. (1991) Estimating Equations. Oxford Science Series 7.Google Scholar
Hardin, J. and Hilbe, J. (2001) Generalized Linear Models and Extensions, Stata Press college station Texas (Tex.).Google Scholar
Kiln, R. (1982) Reinsurance in Practice, Witherby & Co., London.Google Scholar
Klugman, S.A., Panjer, H. and Willmot, G.E. (1998) Loss Models, From Data to Decisions, John Wiley & Sons, New York.Google Scholar
Mack, Th. (1997) Schadenversicherungsmathematik. Schriftenreihe Angewandte Versicherungsmathematik, Heft 28, Verlag Versicherungswirtschaft.Google Scholar
McCullagh, P. and Nelder, J.A. (1985) Generalized Linear Models, Chapmann and Hall.Google Scholar
McCulloch, C.E. and Searle, S.R. (2001) Generalized, Linear and Mixed Models, Wiley New York (N.Y.).Google Scholar
Schmitter, H. (1978) Quotierung von Sach-Schadenexzedenten mit Hilfe des Paretomodells. Swiss Re publications.Google Scholar
Schmitter, H. and Bütikofer, P. (1997) Abschätzung von Risikoprämien für Sach-Schadenexze-denten mit Hilfe des Paretomodells. Swiss Re publications.Google Scholar
Schmutz, M. and Doerr, R. (1998) Das Paretomodell in der Sach-Rückversicherung. Swiss Re publications.Google Scholar
Seber, G.A.F. (1977) Linear Regression Analysis, Wiley New York.Google Scholar
Straub, E. (1988) Non-life Insurance Mathematics, Springer Verlag.CrossRefGoogle Scholar
Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Longitudinal Data, Springer Verlag New York.Google Scholar
Verlaak, R. and Beirlant, J. (2003) Optimal Reinsurance Programs: An optimal Combination of several Reinsurance Protections on an heterogeneous Insurance Portfolio, Insurance: Mathematics and Economics, 33: 381403.Google Scholar
Wang, S. (2002) A universal framework for pricing financial and insurance risks, Astin Bulletin, 32(2), 213234.CrossRefGoogle Scholar
Wang, S. (1996) Premium calculation by transforming the layer premium density, Astin Bulletin, 26(1), 7192.CrossRefGoogle Scholar
Wang, S. (1998) Implementation of Proportional Hazards Transforms in Ratemaking, Proceedings of the Casualty Actuarial Society LXXV, 940979.Google Scholar