Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T15:25:58.386Z Has data issue: false hasContentIssue false

A Non Symmetrical Value for Games without Transferable Utilities; Application to Reinsurance*

Published online by Cambridge University Press:  29 August 2014

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define axiomatically a concept of value for games without transferable utilities, without introducing the usual symmetry axiom. The model—a generalization of a previous paper [6] extending Nash's bargaining problem—attempts to take into account the affinities between the players, defined by an a priori set of “distances”. The general solution of all three- and four-person games is described, and various examples are discussed, like the classical “Me and my Aunt” and a reinsurance model.

Nous définissons de manière axiomatique un concept de valeur pour les jeux à utilités non-transférables, sans introduire l'axiome classique de symétrie. Le modèle — une généralisation d'un concept de valeur [6] étendant à plusieurs joueurs le problème de marchandage de Nash — tient compte des affinités entre les joueurs, données sous forme d'une matrice de “distances” a priori. Nous donnons la solution générale de tous les jeux à trois et quatre joueurs, et discutons plusieurs exemples classiques, dont le célèbre “Ma tante et moi” et le modèle de réassurance de Borch.

Type
Research Article
Copyright
Copyright © International Actuarial Association 1979

Footnotes

*

Presented at the 14th ASTIN Colloquium, Taormina, October 1978.

References

REFERENCES

[1] Bühlmann, H. (1970). Mathematical methods in risk theory, Berlin.Google Scholar
[2] Davis, M. and Maschler, M. (1965). The kernel of a cooperative game, Naval Research Logistics Quarterly, 12, 223259.CrossRefGoogle Scholar
[3] Gerber, H. (1974). On additive premium calculation principles, Astin Bulletin, 7, 215222.CrossRefGoogle Scholar
[4] Gerber, H. (1974). On iterative premium calculation principles, Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, 74, 163172.Google Scholar
[5] Lemaire, J. (1973). Optimalité d'un contrat d'échange de risques entre assureurs, Cahiers du C.E.R.O. Bruxelles, 15, 139156.Google Scholar
[6] Lemaire, J. (1973). A new value for games without transferable utilities, International Journal of Game Theory, 2, 205213.CrossRefGoogle Scholar
[7] Lemaire, J. (1977). Echange de risques entre assureurs et théorie des jeux, Astin Bulletin, 9, 155179.CrossRefGoogle Scholar
[8] Nash, J. (1950). The bargaining problem, Econometrica, 18, 155162.CrossRefGoogle Scholar
[9] Owen, G. (1971). Political games, Naval Research Logistics Quarterly, 18, 345355.CrossRefGoogle Scholar
[10] Owen, G. (1972). Values of games without side payments, International Journal of Game Theory, 1, 95110.CrossRefGoogle Scholar
[11] Selten, R. and Schuster, K. (1968). Psychological variables and coalition forming behavior, Proc. of the conference of the IEA (Smolenice), London, 221246.Google Scholar
[12] Shapley, L. S. (1953). A value for n-person games, Annals of Maths. Studies, 28, 307318, Princeton.Google Scholar