Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:13:56.563Z Has data issue: false hasContentIssue false

A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component

Published online by Cambridge University Press:  07 February 2018

Georges Dionne*
Affiliation:
Université de Montréal, Canada
Charles Vanasse*
Affiliation:
Université de Montréal, Canada
*
CRT, Université de Montréal, C.P. 6128, Succ. A, Montreal, H3C 3J7, Canada
CRT, Université de Montréal, C.P. 6128, Succ. A, Montreal, H3C 3J7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The objective of this paper is to provide an extension of well-known models of tarification in automobile insurance. The analysis begins by introducing a regression component in the Poisson model in order to use all available information in the estimation of the distribution. In a second step, a random variable is included in the regression component of the Poisson model and a negative binomial model with a regression component is derived. We then present our main contribution by proposing a bonus-malus system which integrates a priori and a posteriori information on an individual basis. We show how net premium tables can be derived from the model. Examples of tables are presented.

Type
Workshop
Copyright
Copyright © International Actuarial Association 1989

Footnotes

*

Centre de recherche sur les transports and Department of Economics. This research was financed by SSHRC Canada. Comments on a previous version of the paper by Alois Gisler, Christian Gourieroux, Stuart Klugman, Jean Lemaire, David Scott and two anonymous referees were very useful.

References

Bichsel, F. (1964) Erfahrungs-Tarifierung in der Motorfahrzeughaftpflichtversicherung. Mitt. Verein. Schweiz. Versicherungs-Mathematiker 64, 119130.Google Scholar
Boyer, M. and Dionne, G. (1986) La tarification de l'assurance automobile et les incitations à la sécurité routière: une étude empirique. Schweizerische Zeitschrift für Volkswirtschaft und Statistik 122, 293322.Google Scholar
Cummins, J. D., Dionne, G., McDonald, J. B. and Pritchett, B. M. (1988) Application of the GB2 Distribution in Modeling Insurance Loss Processes. Mimeo, Department of Insurance, University of Pennsylvania.Google Scholar
Dionne, G. and Vanasse, C. (1988) Automobile Insurance Ratemaking in the Presence of Asymmetrical Information. Mimeo, CRT and Economics Department, Université de Montréal.Google Scholar
Ferreira, J. (1974) The Long-Term Effects of Merit Rating Plans on Individual Motorists. Operations Research 22, 954978.CrossRefGoogle Scholar
Gourieroux, C., Monfort, A. and Trognon, A. (1984) Pseudo Maximum Likelihood Methods: Application to Poisson Models. Econometrica 52, 701720.Google Scholar
Greenwood, M. and Tyle, G. U. (1920) An Inquiry into the Nature of Frequency Distribution of Multiple Happenings. Journal of Royal Statistical Society A 83, 255279.Google Scholar
Hausman, J., Hall, B.H. and Griliches, Z. (1984) Econometric Models for Count Data with an Application to the Patents — R & D Relationship. Econometrica 52, 910938.CrossRefGoogle Scholar
Hogg, R.V. and Klugman, S.A. (1984) Loss Distributions. Wiley, New-York.Google Scholar
Lemaire, J. (1985) Automobile Insurance: Actuarial Models. Kluwer-Nighoff, Boston, 248 pages.Google Scholar
Lemaire, J. (1988) A Comparative Analysis of Most European and Japanese Bonus-Malus Systems. Journal of Risk and Insurance LV, 660681.CrossRefGoogle Scholar
Neuhaus, W. (1988) A Bonus-malus System in Automobile Insurance. Insurance: Mathematics & Economics 7, 103112.Google Scholar
Seal, H. L. (1969) Stochastic Theory of a Risk Business. Wiley, New-York.Google Scholar
Sundt, B. (1987) Two Credibility Regression Approaches for the Classification of Passenger Cars in a Multiplicative Tariff”. ASTIN Bulletin 17, 4170.CrossRefGoogle Scholar
Sundt, B. (1988) Credibility Estimators With Geometric Weights. Insurance: Mathematics & Economics 7, 113122.Google Scholar
Van Eeghen, J., Greup, E. K. and Nijssen, J. A. (1983) Surveys of Acturial Studies: Rate Making. Research Department, Nationale – Nederlanden N.V., 138 pages.Google Scholar