Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T11:12:56.318Z Has data issue: true hasContentIssue false

Approximative Evaluation of the Distribution Function of Aggregate Claims1

Published online by Cambridge University Press:  29 August 2014

T. Pentikäinen*
Affiliation:
Helsinki
*
Kasavuorentie 12 C 9, SF-02700 Kauniainen, Finland.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A formula, originally presented by Haldane (1938), for the evaluation of the distribution of aggregate claims is examined and compared with some other approaches. The idea is to apply a symmetrizing transformation to the original variable in order to make it susceptible to be approximated by the normal distribution.

Type
Articles
Copyright
Copyright © International Actuarial Association 1987

Footnotes

1.

Presented originally at the Risk Theory Seminar in Oberwolfach 1984 and in an extended form at the Risk Theory Seminar of the American Risk and Insurance Association in Nashville 1985.

References

Beard, R. E., Pentikäinen, T. and Pesonen, E. (1984) Risk Theory. Chapman and Hall, London (referred as BPP in the text).CrossRefGoogle Scholar
Bertram, J. (1981) Numerische Berechnung von Gesamtschadenverteilung. Blätter der Deutschen Gesellschaft für Versicherungsmathematik.Google Scholar
Bohman, H. and Esscher, F. (1964) Studies in risk theory with numerical illustrations. Scandinavian Actuarial Journal.CrossRefGoogle Scholar
Box, G. E. B. and Cox, D. R. (1964) An analysis of transformations. Journal of the Royal Statistical Society B26, 211252.Google Scholar
Esscher, F. (1932) On the probability function. Scandinavian Actuarial Journal.Google Scholar
Goovaerts, M. J., De Vylder, F. and Haezendonck, J. (1984) Insurance Premiums. North-Holland, Amsterdam.Google Scholar
Goovaerts, M. J., and Kaas, R. (1986) Best bounds for positive distributions with fixed moments. Insurance: Mathematics & Economics 5, 1.Google Scholar
Haldane, J. B. S. (1938) The approximate normalization of a class of frequency distributions. Biometrica 29, 392404.CrossRefGoogle Scholar
Kendall, M. and Stuart, A. (1979) The Advanced Theory of Statistics Vol. I. Charles Griffin, London.Google Scholar
Lau, H-S (1984) An effective approach for estimating the aggregate loss. Journal of Risk and Insurance, LI.1.Google Scholar
Oschwald, M. (1984) Gamma Power-Entwicklung zur Berechnung der Verteilungsfunktionen des Gesamtschadens. Mitteilungen der Vereinigung Scweizerischer Versicherungsmathematiker.Google Scholar
Pentikäinen, T. (1977) On the approximation of the total amount of claims. ASTIN Bulletin 9, 281289.CrossRefGoogle Scholar
Pusa, O. (1985) Tests of the fit of the Esscher and NP formulas, Examination Paper, as yet available in Finnish only.Google Scholar
Wilson, E. B. and Hilferty, Margaret (1931) The distribution of chi-square. Proceedings of National Academy of Science, USA 17, 684688.CrossRefGoogle ScholarPubMed