Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T02:36:08.864Z Has data issue: false hasContentIssue false

Analysis of the Expected Shortfall of Aggregate Dependent Risks

Published online by Cambridge University Press:  17 April 2015

Stan Alink
Affiliation:
Katholieke Universiteit Nijmegen, Subfaculteit Wiskunde, Toernooiveld 1 – 6500 GL Nijmegen, The Netherlands
Matthias Löwe
Affiliation:
Westfälischen Wilhelms Universität Münster, Fachbereich Mathematik, Institut für Mathematische Statistik, Einsteinstrasse 62 – 48149 Münster, Germany
Mario V. Wüthrich
Affiliation:
Winterthur Insurance, Römerstrasse 17, P.O. Box 357, CH-8401 Winterthur, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider d identically and continuously distributed dependent risks X 1,…, Xd . Our main result is a theorem on the asymptotic behaviour of expected shortfall for the aggregate risks: there is a constant cd such that for large u we have . Moreover we study diversification effects in two dimensions, similar to our Value-at-Risk studies in [2].

Type
Articles
Copyright
Copyright © ASTIN Bulletin 2005

References

Acerbi, C. and Tasche, D. (2002) On the coherence of expected shortfall, Journal of Banking and Finance 26(7), 14871503.CrossRefGoogle Scholar
Alink, S., Löwe, M. and Wüthrich, M.V. (2004) Diversification of aggregate dependent risks, Insurance: Math. Econom. 35, 7795.Google Scholar
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999) Coherent measures of risk. Math. Fin. 9/3, 203228.CrossRefGoogle Scholar
Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular variation. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Modelling extremal events for insurance and finance. Springer, Berlin.CrossRefGoogle Scholar
Embrechts, P., McNeil, A. and Straumann, D. (2002) Correlation and Dependency in Risk Management: Properties and Pitfalls. In Risk Management: Value at Risk and Beyond, Dempster, M. (Ed.), Cambridge University Press, Cambridge, 176223.CrossRefGoogle Scholar
Joe, H. (1997) Multivariate Models and Dependence Concepts. Chapman and Hall, London.Google Scholar
Juri, A. and Wüthrich, M.V. (2002) Copula convergence theorems for tail events. Insurance: Math. Econom. 30, 405420.Google Scholar
Juri, A. and Wüthrich, M.V. (2003) Tail dependence from a distributional point of view. Extremes 6, 213246.CrossRefGoogle Scholar
Kimberling, C. (1974) A probabilistic interpretation of complete monotonicity. Aequationes Mathematica 10, 152164.CrossRefGoogle Scholar
Nelsen, R.B. (1999) An Introduction to Copulas. Springer, New York.CrossRefGoogle Scholar
Sklar, A. (1959) Fonctions de répartition à n dimensions et leur marges. Publications de l’Institut de Statistique de l’Université de Paris 8, 229231.Google Scholar
Wüthrich, M.V (2003) Asymptotic Value-at-Risk estimates for sums of dependent random variables. Astin Bulletin 33/(1), 7592.CrossRefGoogle Scholar