Published online by Cambridge University Press: 29 August 2014
We gıve a complete parametrıc solutıon of the followıng problem: Fınd a claım sıze dıstrıbutıon F on the fınıte ınterval [ο, ω], maxımizıng the stop-loss premıum correspondıng to a gıven excess e, under the constraınts that the fırst moment of F be at most equal to μ and the second at most equal to ν The method used ıs the dualıty technıque ın semı-contınuous lınear programmıng descrıbed in De Vylder (1978) Thıs technıque ıs summarızed, wıthout proofs, ın the fırst part of the paper.
Presented at the 14th ASTIN Colloquium, Taormina, October 1978.