Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:19:15.520Z Has data issue: false hasContentIssue false

Tail index partition-based rules extraction with application to tornado damage insurance

Published online by Cambridge University Press:  22 February 2023

Arthur Maillart
Affiliation:
Detralytics, Paris, France Institut de Science Financière et d’Assurances, Université de Lyon, Université Lyon 1, 50 Avenue Tony Garnier, F-69007 Lyon, France
Christian Y. Robert*
Affiliation:
Laboratory in Finance and Insurance – LFA, CREST – Center for Research in Economics and Statistics, ENSAE Paris, France, Institut de Science Financière et d’Assurances, Université de Lyon, Université Lyon 1, 50 Avenue Tony Garnier, F-69007 Lyon, France
*
*Corresponding author. E-mail: [email protected]

Abstract

The tail index is an important parameter that measures how extreme events occur. In many practical cases, this tail index depends on covariates. In this paper,we assume that it takes a finite number of values over a partition of the covariate space. This article proposes a tail index partition-based rules extraction method that is able to construct estimates of the partition subsets and estimates of the tail index values. The method combines two steps: first an additive tree ensemble based on the Gamma deviance is fitted, and second a hierarchical clustering with spatial constraints is used to estimate the subsets of the partition. We also propose a global tree surrogate model to approximate the partition-based rules while providing an explainable model from the initial covariates. Our procedure is illustrated on simulated data. A real case study on wind property damages caused by tornadoes is finally presented.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The International Actuarial Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breiman, L. (2001) Random forests. Machine Learning, 45(1), 532.CrossRefGoogle Scholar
Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression Trees. New York: Routledge.Google Scholar
Chavent, M., Kuentz-Simonet, V., Labenne, A. and Saracco, J. (2018) ClustGeo: An r package for hierarchical clustering with spatial constraints. Computational Statistics, 33(4), 17991822.CrossRefGoogle Scholar
Chavez-Demoulin, V., Embrechts, P. and Hofert, M. (2015) An extreme value approach for modeling operational risk losses depending on covariates. Journal of Risk and Insurance, 83(3), 735776.CrossRefGoogle Scholar
Daouia, A., Gardes, L., Girard, S. and Lekina, A. (2010) Kernel estimators of extreme level curves. TEST, 20(2), 311333.CrossRefGoogle Scholar
Dekkers, A.L.M., Einmahl, J.H.J. and Haan, L.D. (1989) A moment estimator for the index of an extreme-value distribution. The Annals of Statistics, 17(4), 18331855.Google Scholar
Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997) Modelling Extremal Events for Insurance and Finance. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Farkas, S., Lopez, O. and Thomas, M. (2021) Cyber claim analysis using generalized pareto regression trees with applications to insurance. Insurance: Mathematics and Economics, 98, 92105.Google Scholar
Friedman, J.H. (2001) Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 11891232.CrossRefGoogle Scholar
Gardes, L. and Girard, S. (2012) Functional kernel estimators of large conditional quantiles. Electronic Journal of Statistics, 6(none), 17151744.CrossRefGoogle Scholar
Gardes, L. and Stupfler, G. (2013) Estimation of the conditional tail index using a smoothed local hill estimator. Extremes, 17(1), 4575.CrossRefGoogle Scholar
Girard, S. (2004) A hill type estimator of the weibull tail-coefficient. Communications in Statistics - Theory and Methods, 33(2), 205234.CrossRefGoogle Scholar
Goegebeur, Y., Guillou, A. and Schorgen, A. (2013) Nonparametric regression estimation of conditional tails: The random covariate case. Statistics, 48(4), 732755.CrossRefGoogle Scholar
Goegebeur, Y., Guillou, A. and Stupfler, G. (2015) Uniform asymptotic properties of a nonparametric regression estimator of conditional tails. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 51(3).CrossRefGoogle Scholar
Gordon, A. (1996) A survey of constrained classification. Computational Statistics & Data Analysis, 21(1), 1729.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY: Springer Science & Business Media.CrossRefGoogle Scholar
Hill, B.M. (1975) A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3(5), 11631174.CrossRefGoogle Scholar
Legendre, P. (2011) const. clust: Space-and time-constrained clustering package. r package version 1.2. URL: http://adn.biol.umontreal.ca/~numericalecology/Rcode.Google Scholar
Li, R., Leng, C. and You, J. (2020) Semiparametric tail index regression. Journal of Business & Economic Statistics, 40(1), 8295.CrossRefGoogle Scholar
Maillart, A. and Robert, C. (2021) Hill random forests. Working paper.Google Scholar
Murtagh, F. (1985) A survey of algorithms for contiguity-constrained clustering and related problems. The Computer Journal, 28(1), 8288.CrossRefGoogle Scholar
Pickands, J. (1975). Statistical inference using extreme order statistics. The Annals of Statistics, 3(1), 119131.Google Scholar
Scornet, E., Biau, G. and Vert, J.-P. (2015) Consistency of random forests. The Annals of Statistics, 43(4), 17161741.CrossRefGoogle Scholar
Stupfler, G. (2013). A moment estimator for the conditional extreme-value index. Electronic Journal of Statistics, 7(none), 22982343.CrossRefGoogle Scholar
The CGAL Project (2021). CGAL User and Reference Manual. CGAL Editorial Board, 5.2.1 edition.Google Scholar
Wang, H. and Tsai, C.-L. (2009) Tail index regression. Journal of the American Statistical Association, 104(487), 12331240.CrossRefGoogle Scholar
Zomorodian, A. and Edelsbrunner, H. (2000) Fast software for box intersections. Proceedings of the Sixteenth Annual Symposium on Computational Geometry - SCG’00. ACM Press.CrossRefGoogle Scholar