Euclid's Elements were translated into Hebrew from Arabic in the 13th century; but precious few of the Arabic commentaries have come down to us in a Hebrew version (al-Fārābī, Ibn al-Hayṯam). Nonetheless, a study of several texts dealing with the Fifth Postulate (the Parallel Postulate) of Book I reveals that the Hebrew authors are greatly indebted to Arabic sources.
We shall examine three attempted proofs of the Parallel Postulate. The two attempts by Moses ha-Levi of Seville (13th century) and Alfonso of Valladolid (14th century) are mathematically unconvincing. Nevertheless they are interesting historically: Moses ha-Levi exploits the movement of lines which are infinite in actu; and Alfonso, starting from a critique of Ibn al-Hayṯam and al-Nayrīzī, claims to innovate in the use of the method of superposition.
In contrast, Gersonides' attempt (14th century) is a well-articulated series of premises and proofs, including several arguments which we have traced back to the Taḥrīr Uṣūl Uqlīdis of Pseudo-Ṭūsī. We feel it is important to emphasize this relationship, even though it is impossible to establish the route by which these arguments found their way to Gersonides.