Published online by Cambridge University Press: 24 October 2008
Ṯābit b. Qurra is especially known as a mathematician, but his work in astronomy is also important. This article reviews his eight surviving astronomical treatises, as well as relevant fragments of his lost works cited by later authors in Arabic and Latin. We conclude that, as an active participant in the scientific movement of 9th-century Baghdad, Ṯābit played a crucial role in the establishment of astronomy as an exact science. The argument is based on an assessment of his contribution in three areas: the relationship between observation and theory, the “mathematization” of astronomy, and the relationship between “mathematical” astronomy and “physical” astronomy.
Ṯābit b. Qurra est surtout connu comme mathématicien, mais son œuvre d'astronomie était importante, nous avons accès environ au quart de celle-ci. Cet article présente un essai de synthèse sur ce qui a été transmis de cet auteur dans cette dernière discipline: ses huit traités complets maintenant édités, dont le contenu est rappelé brièvement, et quelques fragments d'œuvres perdues eitées par des auteurs postérieurs, en arabe ou en traduction latine, dont le regroupement n'avait pas encore été fait. Lorsque nous replaçons cette œuvre dans le contexte du commencement du mouvement scientifique à Bagdad au IXe siècle, nous voyons que Ṯābit a joué un rôle très important dans l'établissement du statut de l'astronomie comme science exacte (méthode, thèmes et programme), ce qui est développé sur trois points: la théorisation de la relation entre observation et théorie, la “mathématisation” de l'astronomie, et le rapport conflictuel entre astronomie “mathématique” et astronomie “physique.”
1 See Qurra, Thābit Ibn, Œuvres d'astronomie, Éd., trad. et commentaire par Morelon, R., Sciences et Philosophie arabes, Textes et études (Paris, 1987)Google Scholar. This work contains the detailed references and discussion of the questions which, of necessity, are only touched upon briefly in this article.
2 See Thābit, , Œuvres d'astronomie, introduction to “Treatise 3,” pp. XLVI–LIII.Google Scholar
3 Respectively “Treatise 1” and “Treatise 2” in Thābit, , Œuvres d'astronomie, introduction pp. XXXVII–XLV, text and translation pp. 1–25, commentary pp. 170–88.Google Scholar
4 “Treatise 4” in Thābit, , Œuures d'astronomie, introduction pp. LXXVI–LXXIX, text and translation pp. 68–82, commentary pp. 216–21.Google Scholar
5 See Ptolemy, , The Almagest, edition by Heiberg, J.L., 2 vols. (Leipzig, 1898–1903), and English translation by G.J. Toomer, Ptolemy's Almagest (London, 1984), pp. 145–6.Google Scholar
6 See Thābit, , Œuvres d'astronomie, p. 78.Google Scholar
7 “Treatise 5” in Thābit, , Œuvres d'astronomie, introduction pp. LXXX-XCII, text and translation pp. 83–92, commentary pp. 222–9.Google Scholar
8 See The Almagest, ed. Heiberg, I, 272–5 and Ptolemy's Almagest, pp. 176–7.Google Scholar
9 “Treatise 6” and “Treatise 7” in Thābit, , Œuures d'astronomie, introduction pp. XCIII-CXVIII, text and translation pp. 93–116, commentary pp. 230–59.Google Scholar
10 For a detailed discussion of the evolution of this method see Thābit, , Œuvres d'astronomie, pp. XXV-XXX.Google Scholar
11 See the explanation of these elements and their justification in Thābit, , Œuvres d'astronomie, pp. C-CXVII.Google Scholar
12 “Treatise 8” in Thābit, , Œuvres d'astronomie, introduction pp. CXIX-CXXV, text and translation pp. 118–29, commentary pp. 260–4.Google Scholar
13 See Neugebauer, O., “The astronomical origin of the theory of conic sections,” Proceedings of the American Philosophical Society, 93, 3 (1948): 136–8, taken up againGoogle ScholarNeugebauer, O., Astronomy and History, Selected Essays (New York and Heidelberg, 1983), pp. 295–7.CrossRefGoogle Scholar
14 “Treatise 9” in Thābit, , Œuvres d'astronomie, introduction pp. CXXVI-CXL, text and translation pp. 131–64, commentary pp. 265–91.Google Scholar
15 Maimonides, Moses, The Guide of the Perplexed, English translation by Shlomo Pines (Chicago, 1963), pp. 324–5.Google Scholar
16 Ibid., p. 457. These fragments have been commented on in part by Duhem, P., Le système du monde, 10 vols. (Paris, 1913–1959), vol. II, pp. 117–19.Google Scholar
17 Albert, the Great, Opera omnia, V,1, De cœlo et Mundo, ed. Hossfeld, P. (Cologne, 1970), p. 30, lines 25–30.Google Scholar
18 See Henquinet, F. M., “Une pièce inédite du commentaire d'Albert le Grand sur le IVe livre des sentences,” Recherches de Théologie Ancienne et Médiévale, 7 (1935): 263–93, the cited text is on p. 285. There is no trace to this day of the two treatises of Ṯābit whose titles are cited by Albert the Great, neither in Arabic or Latin translation.Google Scholar
19 See Morelon, R., “Les deux versions du traité de Thābit b. Qurra Sur le mouvement des deux luminaires,” Mélanges de l'Institut Dominicain d'Études Orientales, 18 (1988): 9–44Google Scholar. The text of the fragment is on pp. 28–9, its translation on pp. 32–4, and the commentary on pp. 38–43; see in particular p. 42 and note 13 on the proof from “terrestrial” mechanics which this fragment assumes is known.
20 Manuscript Damascus, Ẓāhiriyya, 4871, fols. 78b-79b, the fragment is on fol. 79a, lines 9–11.
21 See Ibn, Yūnus, Kitāb al-zīj al-kabīr al-ḥākimī – Le livre de la grande table hakémite, partially edited and translated by Caussin, edition separate from Notices et extraits des manuscrits de la Bibliothèque Nationale (Paris, Imprimerie de la République, An XII – 1804); for the two fragments below see pp. 99–105Google Scholar; the text had been reviewed against the manuscript and the translation has been re-done. The recipient of the first letter, al-Qāsim b. ‘Ubayd Allāh, died in 291/904, he had succeeded his father, in 289/902, in the post of Vizier of the caliph al-Muktafi; the recipient of the second letter, IsḤaq b. ḥunayn (died in 298/910), is the famous physician and translator from Greek into Arabic.
22 A treatise translated from Arabic and existing only in Latin has been passed down under the name of Ṯābit on this problem of trepidation, see Neugebauer, O., “Thābit Ben Qurra On the Solar Year and On the Motion of the Eighth Sphere,” Proceedings of the American Philosophical Society, 106, 3 (1962): 290–9Google Scholar. But this attribution appears to be false, see Thābit, , Œuvres d'astronomie, pp. XVIII-XIX.Google Scholar
23 See on this subject the testimony of al-Bīrūnī cited in Thābit, , Œuvres d'astronomie, p. XLIX.Google Scholar
24 See Thābit, , Œuvres d'astronomie, p. 112.Google Scholar
25 See Ptolemy's Almagest, p. 600.
26 See Thābit, , Œuvres d'astronomie, p. 108.Google Scholar
27 See Ptolemy's Almagest, p. 600.
28 Text being edited, this passage in found in the beginning of the second part.
29 Personal correspondence with Mrs A. Duhoux-Tihon.
30 For the development of this theme in the Latin world up to the time of Copernicus, see Lerner, M. P., “L'Achille des Coperniciens,” Bibliothèque d'Humanisme et de Renaissance, 42, 2 (1980): 313–27.Google Scholar
31 Edited by A. I. Sabra and N. Shehaby (Cairo, 1971).
32 See, for example, Léon, Gauthier, “Une réforme du système astronomique de Ptolémée tentée par les philosophes arabes du XIIIe siècle,” Journal Asiatique, 14 (1909): 483–510.Google Scholar
33 See al-‘Urī, Mu'ayyad al-Dīn, Kitāb al-Hay'a – Tārīḫ ‘ilm al-falak al-'arabī, Ed. and Introd. by Saliba, George (Beirut, 1990), pp. 27–9.Google Scholar