Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T03:14:50.215Z Has data issue: false hasContentIssue false

Physiological and biochemical changes associated with massive mortality events occurring in larvae of American oyster (Crassostrea virginica)

Published online by Cambridge University Press:  29 June 2011

Bertrand Genard
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
Fabrice Pernet*
Affiliation:
Institut de recherche sur les zones côtières, 232b rue de l’Eglise, Shippagan, Nouveau-Brunswick E8S 2L7, Canada Ifremer, Laboratoire Environnement Ressources du Languedoc Roussillon, bd Jean Monnet, 34203 Sète, France
Karine Lemarchand
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
Pierre Boudry
Affiliation:
Ifremer, UMR M100 Physiologie et Ecophysiologie des Mollusques marins, 29280 Plouzané, France
Dario Moraga
Affiliation:
Institut Universitaire Européen de la Mer, Laboratoire des Sciences de l’Environnement marin, Université de Bretagne occidentale, 29280 Plouzané, France
Réjean Tremblay
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
*
a Corresponding auteur: [email protected]
Get access

Abstract

In this paper, biochemical and physiological analyses were used to characterize changes associated with mortality event occurred during veliger development of American oyster, Crassostrea virginica. Biochemical analyses included the evaluation of lipid classes, fatty acid composition and total protein content. Larval physiology was evaluated by studying feeding activity, enzymes related to energy metabolism, oxidative stress levels and enzymatic antioxidant defenses. These analyses were complemented by bacterial community analyses as well as by measuring larval oyster performance. We observed that mortality events coincided with (1) strong changes in the surrounding bacterial community; (2) a progressive decrease in feeding activity; (3) higher levels of some lipid classes (free fatty acids, diglycerides, and acetone mobile phospholipids); (4) lower levels of phospholipids and protein; (5) higher contents of non-methylene interrupted dienoic fatty acids (22:2 NMI); (6) a decrease in energy metabolism activity (citrate synthase and cytochrome oxidase activities); (7) a higher oxidative stress (lipid peroxidation level); and (8) an activation of antioxidant defences before mortality (glutathione peroxidase and superoxide dismutase). We hypothesized that mortality emergence was related to higher energy consumption coupled with the progressive decline in feeding activity, lowered energy reserves and a decrease in energy metabolism activity. Thus, the low energy availability limited the efficiency of antioxidant defenses, resulting in a higher oxidative stress.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Ackman, R.G., Hooper, S.N., 1973, Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates, a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Crangon septemspinosus). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 46, 153165. CrossRefGoogle Scholar
Bayne, B.L., 2004, Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integr. Comp. Biol. 44, 425432. CrossRefGoogle ScholarPubMed
Bell, J.G., Sargent, J.R., 2003, Arachidonic acid in aquaculture feeds, current status and future opportunities. Aquaculture 218, 491499. CrossRefGoogle Scholar
Ben Kheder, R., Queré, C., Moal, J., Robert, R., 2010a, Effect of nutrition on Crassostrea gigas development and the evolution of physiological indices, Part A: Quantitative and qualitative diet effects. Aquaculture 305, 165173. CrossRefGoogle Scholar
Ben Kheder, R., Quere, C., Moal, J., Robert, R., 2010b, Effect of nutrition on Crassostrea gigas larval development and the evolution of physiological indices, Part B: Effects of temporary food deprivation. Aquaculture 308, 174182. CrossRefGoogle Scholar
Canesi, L., Gallo, G., Gavioli, M., Pruzzo, C., 2002, Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc. Res. Techniq. 57, 469476. CrossRefGoogle Scholar
Childress, J.J., Somero, G.N., 1979, Depth-related enzyme activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar. Biol. 52, 272283. CrossRefGoogle Scholar
Chu, F.-L., Webb, K.L., 1984, Polyunsaturated fatty acids and neutral lipids in developing larvae of the oyster Crassostrea virginica. Lipids 19, 815820. CrossRefGoogle Scholar
Dandapat, J., Chainy, G.B.N., Rao, K.J., 2003, Lipid peroxidation and antioxidant defense status during larval development and metamorphosis of giant prawn, Macrobrachium rosenbergii. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 135, 221233. CrossRefGoogle Scholar
Delaunay, F., Marty, Y., Moal, J., Samain, J.-F., 1992, Growth and lipid class composition of Pecten maximus (L.) larvae grown under hatchery conditions. J. Exp. Mar. Biol. Ecol. 163, 209219. CrossRefGoogle Scholar
Delaunay, F., Marty, Y., Moal, J., Samain, J.-F., 1993, The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173, 163179. CrossRefGoogle Scholar
Derewenda, Z.S., 1994, Structure and function of lipases. Adv. Protein Chem. 45, 152. CrossRefGoogle ScholarPubMed
Elston, R., Leibovitz, L., 1980, Pathogenesis of experimental vibriosis in larval American oysters, Crassostrea virginica. Can. J. Fish. Aquat. Sci. 37, 964978. CrossRefGoogle Scholar
Estes, R.M., Friedman, C.S., Elston, R.A., Herwig, R.P., 2004, Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae. Dis. Aquat. Org. 58, 223230. CrossRefGoogle ScholarPubMed
Farias, A., Bell, J.G., Uriarte, I., Sargent, J.R., 2003, Polyunsaturated fatty acids in total lipid and phospholipids of Chilean scallop Argopecten purpuratus (L.) larvae, effects of diet and temperature. Aquaculture 228, 289305. CrossRefGoogle Scholar
Flohé, L., Ötting, F., 1985, Superoxide dismutase assays. Methods Enzymol. 150, 93104. Google Scholar
Flye-Sainte-Marie, J., Pouvreau, S., Paillard, C., Jean, F., 2007, Impact of Brown Ring Disease on the energy budget of the Manila clam Ruditapes philippinarum. J. Exp. Mar. Biol. Ecol. 349, 378389. CrossRefGoogle Scholar
Folch, J., Lees, M., Sloane-Stanley, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497509. Google ScholarPubMed
Gale, L.D., Manzi, J.J., Crosby, M.P., 1991, Energetic costs to the eastern oyster Crassostrea-virginica due to recent parasitism by the ectoparasitic gastropod Boonea impressa. Mar. Ecol. Prog. Ser. 79, 8998. CrossRefGoogle Scholar
Gallager, S.M., Mann, R., Sasaki, G.C., 1986, Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56, 81103. CrossRefGoogle Scholar
Garcia-Esquivel, Z., Bricelj, V.M., Felbeck, H., 2002, Metabolic depression and whole-body response to enforced starvation by Crassostrea gigas postlarvae. Comp. Biochem. Physiol. 133, 6377. CrossRefGoogle ScholarPubMed
Gomez-Leon, J., Villamil, L., Lemos, M.L., Novoa, B., Figueras, A., 2005, Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl. Environ. Microbiol. 71, 98104. CrossRefGoogle ScholarPubMed
Griffiths, S., Melville, K., Cook, M., Vincent, S., St Pierre, M., Lanteigne, C., 2001, Profiling of bacterial species associated with haddock larviculture by PCR amplification of 16S rDNA and denaturing gradient gel electrophoresis. J. Aquat. Anim. Health. 13, 355363. 2.0.CO;2>CrossRefGoogle Scholar
Guillard R.R.L. 1975, Culture of phytoplankton for feeding marine invertebrates. In: Smith W.L., Chanley M.H. (Eds.), Culture of Marine Invertebrate Animals, New York, Plenum Press, pp. 29–60.
Holland, D.L., Spencer, B.E., 1973, Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development, metamorphosis and early spat growth. J. Mar. Biol. Assoc. UK 53, 287298. CrossRefGoogle Scholar
Istivan, T.S., Coloe, P.J., 2006, Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology 152, 12631274. CrossRefGoogle Scholar
Ivanina, A.V., Froelich, B., Williams, T., Sokolov, E.P., Oliver, J.D., Sokolova, I.M., 2011, Interactive effects of cadmium and hypoxia on metabolic responses and bacterial loads of eastern oysters Crassostrea virginica Gmelin. Chemosphere 82, 377389. CrossRefGoogle Scholar
Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L., 2008, Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 114. CrossRefGoogle Scholar
Klingensmith, J.S., 1982, Distribution of methylene and nonmethylene-interrupted dienoic fatty acids in polar lipids and triacylglycerols of selected tissues of the hardshell clam (Mercenaria mercenaria). Lipids 17, 976981. CrossRefGoogle Scholar
Labreuche, Y., Soudant, P., Goncalves, M., Lambert, C., Nicolas, J.L., 2006a, Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Dev. Comp. Immunol. 30, 367379. CrossRefGoogle ScholarPubMed
Labreuche, Y., Lambert, C., Soudant, P., Boulo, V., Huvet, A., Nicolas, J.L., 2006b, Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32. Microbes Infect. 8, 27152724. CrossRefGoogle ScholarPubMed
Lambert, C., Soudant, P., Choquet, G., Paillard, C., 2003, Measurement of Crassostrea gigas hemocyte oxidative metabolism by flow cytometry and the inhibiting capacity of pathogenic vibrios. Fish Shellfish Immunol. 15, 225240. CrossRefGoogle ScholarPubMed
Lambert, C., Soudant, P., Degremont, L., Delaporte, M., Moal, J., Boudry, P., Jean, F., Huvet, A., Samain, J.F., 2007, Hemocyte characteristics in families of oysters, Crassostrea gigas, selected for differential survival during summer and reared in three sites. Aquaculture 270, 276288. CrossRefGoogle Scholar
Langdon, C.J., Waldock, M.J., 1981, The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. J. Mar. Biol. Assoc. UK 61, 431448. CrossRefGoogle Scholar
Lepage, G., Roy, C.C., 1984, Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25, 13911396. Google Scholar
Leeuwenburgh, C., Hollander, J., Leichtweis, S., GriYths, N., Gore, M., Ji, L.L., 1997, Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am. J. Physiol. 272, R363R369. Google ScholarPubMed
Marie, B., Genard, B., Rees, J.F., Zal, F., 2006, Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Mar. Biol. 150, 273284. CrossRefGoogle Scholar
McCord, J.M., Fridovich, I., 1969, Superoxide Dismutase, an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 60496055. Google Scholar
Meyer, E., Green, A.J., Moore, M., Manahan, D.T., 2007, Food availability and physiological state of sea urchin larvae (Strongylocentrotus purpuratus). Mar. Biol. 152, 179191. CrossRefGoogle Scholar
Morales, A.E., Perez-Jimenez, A., Hidalgo, M.C., Abellan, E., Cardenete, G., 2004, Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. 139, 153161. Google ScholarPubMed
Moran, A.L., Manahan, D.T., 2003, Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni. Biol. Bull. 204, 270277. CrossRefGoogle ScholarPubMed
Moran, A.L., Manahan, D.T., 2004, Physiological recovery from prolonged “starvation” in larvae of the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 306, 1736. CrossRefGoogle Scholar
Nicolas, J.L., Corre, S., Gauthier, G., Robert, R., Ansquer, D., 1996, Bacterial problems associated with scallop Pecten maximus larval culture. Dis. Aquat. Org. 27, 6776. CrossRefGoogle Scholar
Nohl, H., Gille, L., Staniek, K., 2005, Intracellular generation of reactive oxygen species by mitochondria. Biochem. Pharmacol. 69, 719723. CrossRefGoogle ScholarPubMed
Nohl, H., Kozlov, A.V., Gille, L., Staniek, K., 2003, Cell respiration and formation of reactive oxygen species, facts and artefacts. Biochem. Soc. Trans. 31, 13081311. CrossRefGoogle ScholarPubMed
Paglia, D.E., Valentine, W.N., 1967, Studies on the quantitative and qualitative characterization of erythrocyte glutathion peroxidase. J. Lab. Clin. Med. 70, 158168. Google Scholar
Paillard, C., Le Roux, F., Borrego, J.J., 2004, Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477498. CrossRefGoogle Scholar
Parrish C.C., 1999, Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In, Arts M.T., Wainman B.C. (Eds.), Lipids in Freshwater Ecosystems, New York, Springer-Verlag, pp. 5–20
Pernet, F., Bricelj, V.M., Cartier, S., 2006a, Lipid class dynamics during larval ontogeny of sea scallops, Placopecten magellanicus, in relation to metamorphic success and response to antibiotics. J. Exp. Mar. Biol. Ecol. 329, 265280. CrossRefGoogle Scholar
Pernet, F., Bricelj, V.M., Parrish, C.C., 2005, Effect of varying dietary levels of omega 6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. J. Exp. Mar. Biol. Ecol. 327, 115133. CrossRefGoogle Scholar
Pernet, F., Pelletier, C.J., Milley, J., 2006b, Comparison of three solid-phase extraction methods for fatty acid analysis of lipid fractions in tissues of marine bivalves. J. Chromatogr. A 1137, 127137. CrossRefGoogle ScholarPubMed
Plante, S., Pernet, F., Hache, R., Ritchie, R., Ji, B., McIntosh, D., 2007, Ontogenetic variations in lipid class and fatty acid composition of haddock larvae Melanogrammus aeglefinus in relation to changes in diet and microbial environment. Aquaculture 263, 107121. CrossRefGoogle Scholar
Prado, S., Romalde, J.L., Barja, J.L., 2010, Review of probiotics for use in bivalve hatcheries. Vet. Microbiol. 145, 187197. CrossRefGoogle ScholarPubMed
Regoli, F., Nigro, M., Benedetti, M., Fattorini, D., Gorbi, S., 2005, Antioxidant efficiency in early life stages of the Antarctic silverfish, Pleuragramma antarcticum, responsiveness to pro-oxidant conditions of platelet ice and chemical exposure. Aquat. Toxicol. 75, 4352. CrossRefGoogle ScholarPubMed
Rico-Villa, B., Le Coz, J.R., Mingant, C., Robert, R., 2006, Influence of phytoplankton diet mixtures on microalgae consumption, larval developement and settlement of the Pacific oyster Crassostrea gigas (Thunberb). Aquaculture 256, 377388. CrossRefGoogle Scholar
Samain, J.F., Degremont, L., Soletchnik, P., Haure, J., Bedier, E., Ropert, M., Moal, J., Huvet, A., Bacca, H., Van Wormhoudt, A., Delaporte, M., Costil, K., Pouvreau, S., Lambert, C., Boulo, V., Soudant, P., Nicolas, J.L., Le Roux, F., Renault, T., Gagnaire, B., Geret, F., Boutet, I., Burgeot, T., Boudry, P., 2007, Genetically based resistance to summer mortality in the Pacific oyster (Crassostrea gigas) and its relationship with physiological, immunological characteristics and infection processes. Aquaculture 268, 227243. CrossRefGoogle Scholar
Schmiel, D.H., Miller, V.L., 1999, Bacterial phospholipases and pathogenesis. Microb. Infect. 1, 11031112. CrossRefGoogle ScholarPubMed
Sewell, M.A., 2005, Utilization of lipids during early development of the sea urchin Evechinus chloroticus. Mar. Ecol. Prog. Ser. 304, 133142. CrossRefGoogle Scholar
Smith W.L., Murphy R.C., 2003, The eicosanoids, cyclooxygenase, lipoxygenase, and epoxygenase pathways. In: Vance D.E., Vance J.E. (Eds.), Biochemistry of lipids, lipoproteins and membranes, Vol. 36, Amsterdam, Elsevier Science, pp. 341–371.
Testa, J., Daniel, L.W., Kreger, A.S., 1984, Extracellular Phospholipase A2 and Lysophospholipase Produced by Vibrio vulnificus. Infect. Immunol. 45, 458463. Google Scholar
Torkildsen, L., Lambert, C., Nylund, A., Magnesen, T., Bergh, O., 2005, Bacteria associated with early life stages of the great scallop, Pecten maximus, impact on larval survival. Aquac. Int. 13, 575592. CrossRefGoogle Scholar
Tubiash, H.S., Chanley, P.E., Leifson, E., 1965, Bacillary necrosis, a disease of larval and juvenile bivalve mollusks. J. Bacteriol. 90, 10361044. Google ScholarPubMed
Wang, S.L., Peatman, E., Liu, H., Bushek, D., Ford, S.E., Kucuktas, H., Quilang, J., Li, P., Wallace, R., Wang, Y.P., Guo, X.M., Liu, Z.J., 2010, Microarray analysis of gene expression in eastern oyster (Crassostrea virginica) reveals a novel combination of antimicrobial and oxidative stress host responses after dermo (Perkinsus marinus) challenge. Fish Shellfish Immunol. 29, 921929. CrossRefGoogle ScholarPubMed
Ward, J.E., Langdon, C.J., 1986, Effects of the ectoparasite Boonea (Odostomia) impressa (Say) Gastropoda pyramidellidae, on the growth rate, filtration rate and valve movements of the host Crassostrea virginica (Gmelin). J. Exp. Mar. Biol. Ecol. 99, 163180. CrossRefGoogle Scholar
Widdows, J., Hawkins, A.J.S., 1989, Partitioning of rate of heat dissipation by Mytilus edulis into maintenance, feeding, and growth components. Physiol. Zool. 62, 764784. CrossRefGoogle Scholar
Yonetani, T., 1967, Cytochrome oxidase, beef heart. Methods Enzymol. 10, 332335. CrossRefGoogle Scholar