Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T02:48:26.965Z Has data issue: false hasContentIssue false

Lead concentrations and size dependence of lead accumulationin the clam Dosinia exoleta from shellfish extraction areasin the Galician Rías (NW Spain)

Published online by Cambridge University Press:  09 February 2008

Paula Sánchez-Marín
Affiliation:
Laboratorio de Ecoloxía Mariña (LEM), Facultade de Ciencias do Mar, Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia, Spain
Ricardo Beiras
Affiliation:
Laboratorio de Ecoloxía Mariña (LEM), Facultade de Ciencias do Mar, Universidade de Vigo, Campus Universitario, 36310 Vigo, Galicia, Spain
Get access

Abstract

To protect public health, the European Commission established maximum levels of certain contaminants permitted in foodstuffs. The maximum amount of lead allowed in bivalve mollusc is 1.5 µg g−1 wet weight. In the Galician Rías, which are important areas of shellfish production in Spain, high levels of lead have been detected in the commercial bivalve Dosinia exoleta (Veneridae). Given the environmental and socio-economical problems this could represent, Pb concentration was tested in D. exoleta from two Rías, and the relation of lead accumulation with body size studied in detail. Implications for fisheries management are also discussed in this paper. Results showed a strong dependence of Pb accumulation on body size, with lead concentrations increasing exponentially with shell length. Larger animals presented a 5-fold increase in lead concentrations above the maximum permitted level. The size limit (length beyond which D. exoleta should not be extracted for commercial purposes) was initially established at 40 mm; but a more comprehensive geographical study of Pb concentrations in individuals from 35 to 40 mm long revealed that this size limit was not protective enough, and 35 mm is proposed as a safer limit.

Type
Brief Report
Copyright
© EDP Sciences, IFREMER, IRD, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous, 2001, Commission Directive 2001/22/EC laying down the sampling methods and the methods of analysis for the official control of the levels of lead, cadmium, mercury and 3-MCPD in foodstuffs. Official Journal of the European Communities, L 77, 16 March 2001, pp. 14–21.
Anonymous, 2002, Commission Regulation (EC) No 221/2002 of 6 February 2002 amending Regulation (EC) No 466/2001 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L37, 7 February 2002, pp. 4–6.
Anonymous, 2005, Anuario de pesca. Servicio de produción pesqueira da Dirección Xeral de Recursos Mariños. Consellería de Pesca.
Beiras, R., Fernández, N., Bellas, J., Besada, V., González-Quijano, A., Nunes, T., 2003a, Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52, 12091224. CrossRef
Beiras R., Bellas J., Fernández N., Lorenzo J.I., Cobelo-García A., 2003b, Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinalis. Mar. Environ. Res. 56, 531–553.
Beiras R., Fernández N., Pombar L., 2003c, Metal accumulation in wild intertidal mussels from the Galician Rías. In: Villalba A., Reguera B., Romalde J.L., Beiras R. (Eds.) Molluscan Shellfish Safety, pp. 521–531.
Besada, V., Fumega, J., Vaamonde, A., 2002, Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991-1999. Sci. Total Environ. 288, 239253. CrossRef
Brown, B.E., 1982, The form and function of metal-containing “granules” in invertebrate tissues. Biol. Rev. 57, 621667. CrossRef
Bryan, G.W., Langston, W.J., Burt, G.R., 1985, A guide to the assessment of heavy-metal contamination in estuaries using biological indicators. J. Mar. Biol. Assoc. UK Occas. Publ. 4, 192.
Chang L.W. Cockerham L.G., 1994, Toxic metals in the environment. In: Cockerham L.G., Shane B.S. (Eds.) Basic Environmental Toxicology. CRC Press Inc.
De Wit, M., Blust, R., 1998, Determination of metals in saline and biological matrices by axial inductively coupled plasma atomic emission spectrometry using microconcentric nebulization. J. Anal. Atom. Spectrom. 13, 515520.
Johnels, A.G., Westermark, T., Berg, W., Perrson, P.I., Sjostrad, B., 1967, Pike some other aquatic organisms in Sweden as indicators of mercury contamination in the environment. Oikos 18, 323333. CrossRef
Jung, K., Setelzenmüller, V., Zauke, G.-P., 2006, Spatial distribution of heavy metal concentrations and biomass indices in Cerastoderma edule Linnaeus (1758) from the German Wadden Sea: An integrated biomonitoring approach. J. Exp. Mar. Biol. Ecol. 338, 8195. CrossRef
Lu, X.Q., Werner, I., Young, T.M., 2005, Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay. Environ. Internat. 31, 593602. CrossRef
Prego, R., Cobelo-García, A., 2003, Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ. Pollut. 121, 425452 CrossRef
Saavedra, Y., González, A., Fernández, P., Blanco, J., 2004, Interspecific variation of metal concentrations in three bivalve mollusks from Galicia. Arch. Environ. Contam. Toxicol. 47, 341351. CrossRef
Sadiq M., 1992, Toxic metal chemistry in marine environments. Marcel Dekker, Inc.
Sokolowski, A., Fichet, D., Garcia-Meunier, P., Radenac, G., Wolowicz, M., Blanchard, G., 2002, The relationship between metal concentrations and phenotypes in the Baltic clam Macoma balthica (L.) from the Gulf of Gdansk, southern Baltic. Chemosphere 47, 475484. CrossRef
Sokolowski, A., Wolowicz, M., Hummel, H., 2007, Metal sources to the Baltic clam Macoma balthica (Mollusca: Bivalvia) in the southern Baltic Sea (the Gulf of Gdansk). Mar. Environ. Res. 63, 236256. CrossRef
Southgate, T., Slinn, D.J., Eastham, J.F., 1983, Mine-derived metal pollution in the Isle of Man. Mar. Pollut. Bull. 14, 137140. CrossRef
Strong, C.R., Luoma, S.N., 1981, Variations in the correlation of body size with concentrations of Cu and Ag in the bivalve Macoma balthica. Can. J. Fish. Aquat. Sci. 38, 10591064. CrossRef
Szefer, P., Geldon, J., Ali, A.A., Osuna, F.P., Ruiz-Fernandes, A.C., Galvan, S.R.G., 1998, Distribution and association of trace metals in soft tissue and byssus of Mytella strigata and other benthic organisms from Mazatlan Harbour, mangrove lagoon of the northwest coast of Mexico. Environ. Internat. 24, 359374. CrossRef
Wallace, W.G., Lee, B.-G., Luoma, S. N., 2003, Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar. Ecol. Prog. Ser. 249, 183197.