Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T20:46:58.689Z Has data issue: false hasContentIssue false

Effect of the probiotic strain Phaeobacter gallaeciensis after bacterial challenge on the complete larval development of Pecten maximus

Published online by Cambridge University Press:  12 August 2014

Bertrand Genard
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Olivier Larouche
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Jean-Louis Nicolas
Affiliation:
UR Ifremer PFOM, UMR 6539 LEMAR (CNRS/UBO/IRD/Ifremer), Centre de Bretagne, Ifremer, BP 70, 29280 Plouzané, France
Philippe Miner
Affiliation:
UR Ifremer PFOM, UMR 6539 LEMAR (CNRS/UBO/IRD/Ifremer), Centre de Bretagne, Ifremer, BP 70, 29280 Plouzané, France
Marie-Lou Beaudin
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Réjean Tremblay*
Affiliation:
Institut des sciences de la mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
*
a Corresponding author: [email protected]
Get access

Abstract

The aim of this project was to evaluate the impact of probiotic (Phaeobacter gallaeciensis, X34 strain) treatment on the complete development (from veliger to metamorphosis) of Pecten maximus larvae in the context of a bacterial challenge and in conditions more representative of hatchery practices. To that effect, the present study was divided into two main steps. In the first, we used in vitro analyses (antibiograms and microplate assays) to validate the inhibition abilities of X34 on the growth of four Vibrio pathogen species. During the second step, we added pathogens (Vibrio pectenicida) into rearing tanks after two weeks of pre-treatment with the probiotic and then followed the larval development of Pecten maximus through the monitoring of survival rates, shell lengths and metamorphosis ability. Moreover, antioxidant (catalase and superoxide dismutase) and lipids peroxidation activities were also measured after bacterial challenge in order to evaluate the physiological response of larvae to pathogen exposition. Our results indicated an activation of the two selected antioxidant enzymes after bacterial challenge, but the increase was significantly lower in probiotic treated larvae. At the end of the experiment, the strain X34 treatment prevented a mass mortality event and showed a significant increase in the number of individuals reaching competence, when compared to untreated larvae.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balcázar, J.L., de Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., Múzquiz, J.L., 2006, The role of probiotics in aquaculture. Vet. Microbiol. 114, 173186. CrossRefGoogle ScholarPubMed
Berger, M., Neumann, A., Schulz, S., Simon, M., Brinkhoff, T., 2011, Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-Acyl homoserine lactone-mediated quorum sensing. J. Bacteriol. 193, 65766585. CrossRefGoogle ScholarPubMed
Cabello, F.C., 2006, Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8, 11371144. CrossRefGoogle ScholarPubMed
D’Alvise P.W., Lillebo S., Prol-Garcia M.J., Wergeland H.I., Nielsen K.F., Bergh O., Gram L., 2012, Phaeobacter gallaeciensis Reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLOS One 7, e43996.
Elston, R.A., Hasegawa, H., Humphrey, K.L., Polyak, I.K., Häse, C.C., 2008, Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Dis. Aquat. Organ. 20, 11934. CrossRefGoogle Scholar
Elston R.A., Ford S.E., 2011, Shellfish Diseases and Health Management, Wiley-Blackwell, pp. 359–394.
Genard, B., Pernet, F., Lemarchand, K., Boudry, P., Moraga, D., Tremblay, R., 2011, Physiological and biochemical changes associated with massive mortality events occurring in larvae of American oyster (Crassostrea virginica). Aquat. Living Resour. 24, 247260. CrossRefGoogle Scholar
Genard B., Miner P., Nicolas J.L., Moraga D., Boudry P., Pernet F., Tremblay R., 2013, Integrative study of physiological changes associated with bacterial infection in Pacific oyster larvae. PLoS ONE 8, 10.1371/journal.pone.0064534.
Geng, H., Bruhn, J.B., Nielsen, K.F., Gram, L., Belas, R., 2008, Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl. Environ. Microbiol. 74, 15351545. CrossRefGoogle Scholar
Granados-Amores, A., Campa-Cordova, A.I., Araya, R., Mazon-Suastegui, J.M., Saucedo, P.E., 2012, Growth, survival and enzyme activity of lions-paw scallop (Nodipecten subnodosus) spat treated with probiotics at the hatchery. Aquac. Res. 43, 13351343. CrossRefGoogle Scholar
Jeanthon, C., Prieur, D., Cochard, J.C., 1988, Bacteriological survey of antibiotic-treated sea waters in a Pecten maximus hatchery. Aquaculture 71, 18. CrossRefGoogle Scholar
Jorquera, M.A., Silva, F.R., Riquelme, C.E., 2001, Bacteria in the culture of the scallop Argopecten purpuratus (Lamarck 1819). Aquac. Int. 9, 285303. CrossRefGoogle Scholar
Karim, M., Zhao, W., Rowley, D., Nelson, D., Gomez-Chiarri, M., 2013, Probiotic strains for shellfish aquaculture: Protection of eastern oyster, Crassostrea virginica, larvae and juveniles against bacterial challenge. J. Shellfish Res. 32, 401408. CrossRefGoogle Scholar
Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L., 2008, Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture 274, 114. CrossRefGoogle Scholar
Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L., 2009, Screening for probiotics of GreenshellTM mussel larvae, Perna canaliculus, using a larval challenge bioassay. Aquaculture 296, 159164. CrossRefGoogle Scholar
Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L., 2010, Alteromonas macleodii 0444 and Neptunomonas sp. 0536, two novel probiotics for hatchery-reared Greenshell (TM) mussel larvae, Perna canaliculus. Aquaculture 309, 4955. CrossRefGoogle Scholar
Kesarcodi-Watson, A., Miner, P., Nicolas, J.L., Robert, R., 2012, Protective effect of four potential probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster (Crassostrea gigas), flat oyster (Ostrea edulis) and scallop (Pecten maximus). Aquaculture 344–349, 2934. CrossRefGoogle Scholar
Nicolas, J.L., Corre, S., Gauthier, G., Robert, R., Ansquer, D., 1996, Bacterial problems associated with scallop Pecten maximus larval culture. Dis. Aquat. Org. 27, 6776. CrossRefGoogle Scholar
Paillard, C., Le Roux, F., Borrego, J.J., 2004, Bacterial disease in marine bivalves, a review of recent studies: Trends and evolution. Aquat. Living Resour. 17, 477498. CrossRefGoogle Scholar
Prado, S., Montes, J., Romalde, S., Barja, J.L., 2009, Inhibitory activity of Phaeobacter strains against aquaculture pathogenic bacteria. Int. Microbiol. 12, 107114. Google Scholar
Prado, S., Romalde, S., Barja, J.L., 2010, Review of probiotics for use in bivalve hatcheries. Vet. Microbiol. 145, 187197. CrossRefGoogle ScholarPubMed
Riquelme, C., Hayashida, G., Araya, R., Uchida, A., Satomi, M., Ishida, Y., 1996, Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios. J. Shellfish Res. 15, 369374. Google Scholar
Riquelme, C.E., Jorquera, M.A., Rojas, A.I., Avendano, R.E., Reyes, N., 2001, Addition of inhibitor-producing bacteria to mass cultures of Argopecten purpuratus larvae (Lamarck, 1819). Aquaculture 192, 111119. CrossRefGoogle Scholar
Robert, R., Miner, P., Nicolas, J.L., 1996, Mortality control of scallop larvae in the hatchery. Aquac. Int. 4, 305313. CrossRefGoogle Scholar
Robert, R., Gérard, A., 1999, Bivalve hatchery technology: The current situation for the pacific oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquat. Living Resour. 12, 121130. CrossRefGoogle Scholar
Ruiz-Ponte, C., Samain, J.F., Sanchez, J.L., Nicolas, J.L., 1999, The benefit of a Roseobacter species on the survival of scallop larvae. Mar. Biotechnol. 1, 5259. CrossRefGoogle ScholarPubMed
Sun, Y.Z., Yang, H.L., Ma, R.L., Lin, W.Y., 2010, Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol. 29, 803809. CrossRefGoogle Scholar
Torkildsen, L., Samuelsen, O.B., Lunestad, B.T., Bergh, O., 2000, Minimum inhibitory concentrations of chloramphenicol, florfenicol, trimethoprim/sulfadiazine and flumequine in seawater of bacteria associated with scallops (Pecten maximus) larvae. Aquaculture 185, 112. CrossRefGoogle Scholar
Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W., 2000, Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64, 655671. CrossRefGoogle ScholarPubMed